T. D. Rossing and R. B. Sheperd, Acoustics of cymbals, Proceedings of the 11th ICA, pp.329-333, 1983.

C. Wilbur and T. D. Rossing, Subharmonic generation in cymbals at large amplitude, The Journal of the Acoustical Society of America, vol.101, issue.5, p.3144, 1997.
DOI : 10.1121/1.419051

N. H. Fletcher, Nonlinear dynamics and chaos in musical instruments .-In: Complex systems: from biology to computation, pp.106-117, 1993.

N. H. Fletcher, Nonlinear frequency shifts in quasispherical???cap shells: Pitch glide in Chinese gongs, The Journal of the Acoustical Society of America, vol.78, issue.6, pp.2069-2073, 1985.
DOI : 10.1121/1.392664

K. A. Legge and N. H. Fletcher, Nonlinearity, chaos, and the sound of shallow gongs, The Journal of the Acoustical Society of America, vol.86, issue.6, pp.2439-2443, 1989.
DOI : 10.1121/1.398451

C. Touze, A. Chaigne, T. Rossing, and S. Schedin, Analysis of cymbal vibration using nonlinear signal processing tools, Proceedings of ISMA 98, pp.377-382, 1998.

J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Reviews of Modern Physics, vol.124, issue.3, pp.617-656, 1985.
DOI : 10.1016/0378-4371(84)90280-2

J. P. Eckmann, S. 0. Kamphorst, D. Ruelle, and S. Ciliberto, Liapunov exponents from time series, Physical Review A, vol.53, issue.6, pp.4971-4979, 1986.
DOI : 10.1103/PhysRevLett.53.2402

M. Sano and Y. Sawada, Measurement of the Lyapunov Spectrum from a Chaotic Time Series, Physical Review Letters, vol.57, issue.10, p.1082, 1985.
DOI : 10.1016/0375-9601(76)90101-8

A. Wolf, J. B. Swift, H. L. Swinney, and J. A. , Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, vol.16, issue.3, pp.285-317, 1985.
DOI : 10.1016/0167-2789(85)90011-9

URL : http://chaos.utexas.edu/manuscripts/1085774778.pdf

H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series, Physics Letters A, vol.185, issue.1, pp.77-87, 1994.
DOI : 10.1016/0375-9601(94)90991-1

J. B. Kadtke, J. Brush, and J. , GLOBAL DYNAMICAL EQUATIONS AND LYAPUNOV EXPONENTS FROM NOISY CHAOTIC TIME SERIES, International Journal of Bifurcation and Chaos, vol.03, issue.03, pp.607-616, 1993.
DOI : 10.1142/S0218127493000507

R. Brown, Calculating Lyapunov exponents for short and/or noisy data sets, Physical Review E, vol.17, issue.6, pp.3962-3969, 1993.
DOI : 10.1016/0167-2789(85)90001-6

P. Bryant, R. Brown, and H. , Lyapunov exponents from observed time series, Physical Review Letters, vol.20, issue.13, pp.1523-1526, 1990.
DOI : 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

K. Briggs, An improved method for estimating Liapunov exponents of chaotic time series, Physics Letters A, vol.151, issue.1-2, pp.27-32, 1990.
DOI : 10.1016/0375-9601(90)90841-B

R. Brown, P. Bryant, and H. , Computing the Lyapunov spectrum of a dynamical system from an observed time series, Physical Review A, vol.3, issue.6, pp.2787-2806, 1991.
DOI : 10.1137/1.9781611971811

T. D. Sauer, J. A. Tempkin, and J. A. Yorke, Spurious Lyapunov Exponents in Attractor Reconstruction, Physical Review Letters, vol.55, issue.20, pp.4341-4344, 1998.
DOI : 10.1103/PhysRevE.55.2145

H. Kantz and T. Schreiber, Nonlinear time series analysis, 1997.
DOI : 10.1017/CBO9780511755798

J. Holzfuss and W. , Liapunov exponents from a time series of acoustic chaos, Physical Review A, vol.33, issue.4, pp.2146-2152, 1989.
DOI : 10.1103/PhysRevA.33.1134

T. W. Frison, H. D. Abarbanel, J. Cembrola, and B. , Neales: Chaos in ocean ambient noise, J. Acoust. Soc. Am, pp.99-1527, 1996.
DOI : 10.1121/1.414730

T. D. Wilson and D. H. Keefe, Characterizing the clarinet tone: Measurements of Lyapunov exponents, correlation dimension, and unsteadiness, The Journal of the Acoustical Society of America, vol.104, issue.1, pp.550-561, 1998.
DOI : 10.1121/1.423254

M. H. Lee, J. N. Lee, and K. Soh, Chaos in segments from Korean traditional singing and Western singing, The Journal of the Acoustical Society of America, vol.103, issue.2, pp.1175-1182, 1998.
DOI : 10.1121/1.421226

M. Banbrook, G. Ushaw, and S. Mclaughlin, How to extract Lyapunov exponents from short and noisy time series, IEEE Transactions on Signal Processing, vol.45, issue.5, pp.45-1378, 1997.
DOI : 10.1109/78.575715

F. Takens, Detecting strange attractors in turbulence, 1981.
DOI : 10.1007/BF01646553

E. Ott, T. Sauer, and J. Yorke, Coping with chaos: Analysis of chaotic data and the exploitation of chaotic systems, Wiley Interscience, 1994.

A. M. Fraser and H. L. , Independent coordinates for strange attractors from mutual information, Physical Review A, vol.55, issue.2, pp.1134-1140, 1986.
DOI : 10.1088/0031-8949/1985/T9/021

M. B. Kennel, R. Brown, and H. D. , Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A, vol.45, issue.6, pp.3403-3411, 1992.
DOI : 10.1103/PhysRevLett.45.712

P. Grassberger, T. Schreiber, and C. , NONLINEAR TIME SEQUENCE ANALYSIS, International Journal of Bifurcation and Chaos, vol.01, issue.03, pp.521-547, 1991.
DOI : 10.1142/S0218127491000403

C. Touze and D. , Matignon: Techniques d'ordre superieur pour I' elimination d' exposants de Lyapunov fallacieux, 2000.

U. Parlitz, IDENTIFICATION OF TRUE AND SPURIOUS LYAPUNOV EXPONENTS FROM TIME SERIES, International Journal of Bifurcation and Chaos, vol.02, issue.01, pp.155-165, 1992.
DOI : 10.1142/S0218127492000148

R. Stoop and J. Parisi, Calculation of Lyapunov exponents avoiding spurious elements, Physica D: Nonlinear Phenomena, vol.50, issue.1, pp.89-94, 1991.
DOI : 10.1016/0167-2789(91)90082-K

J. L. Kaplan and J. A. Yorke, Chaotic behaviour in multidimensional difference equations.-In: Functional differential equations and approximation of fixed points, pp.204-227, 1979.
DOI : 10.1007/bfb0064319

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D: Nonlinear Phenomena, vol.9, issue.1-2, pp.189-208, 1983.
DOI : 10.1016/0167-2789(83)90298-1

H. G. Schuster, Deterministic chaos, 1995.
DOI : 10.1002/3527604804

P. Manneville, Structures dissipatives, chaos et turbulence. Collection Alea-Saclay ed, 1991.

D. Ruelle and F. , Takens: On the nature of turbulence, Communications in Mathematical Physics, vol.20, issue.167, 1971.

S. Newhouse, D. Ruelle, and F. , Takens: Occurrence of axiom-A attractors near quasi-periodic flows on Tm, m 2: 3. Communications in, Mathematical Physics, vol.64, issue.35, 1978.

P. Berge, Y. Pomeau, and C. , Vidal: L'ordre dans le chaos, 1984.

J. H. Curry and J. A. Yorke, A transition from Hopfbifuraction to chaos, Lect. Notes in Math, vol.668, 1978.

M. H. Jensen, P. Bak, and T. , Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps, Physical Review A, vol.69, issue.4, pp.1960-1969, 1984.
DOI : 10.1143/PTP.69.403

T. Bohr, P. Bak, and M. H. Jensen, Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps, Physical Review A, vol.103, issue.4, pp.1970-1981, 1984.
DOI : 10.1016/0375-9601(84)90244-5