C. E. Brennen, Fundamentals of Multiphase Flow, 2005.
DOI : 10.1017/CBO9780511807169

J. Franc and J. Michel, Fundamentals of Cavitation, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00216178

P. V. Carey, Liquid-vapor phase-change phenomena, 1992.

T. G. Liu, B. C. Khoo, and W. F. Xie, Isentropic one-fluid modelling of unsteady cavitating flow, Journal of Computational Physics, vol.201, issue.1, pp.80-108, 2004.
DOI : 10.1016/j.jcp.2004.05.010

W. F. Xie, T. G. Liu, and B. C. Khoo, Application of a one-fluid model for large scale homogeneous unsteady cavitation: The modified Schmidt model, Computers & Fluids, vol.35, issue.10, pp.1177-1192, 2006.
DOI : 10.1016/j.compfluid.2005.05.006

J. R. Edwards, R. K. Franklin, and M. Liou, Low-Diffusion Flux-Splitting Methods for Real Fluid Flows with Phase Transitions, AIAA Journal, vol.38, issue.9, pp.1624-1633, 2000.
DOI : 10.2514/2.1145

D. Jamet, O. Lebaigue, N. Coutris, and J. M. Delhaye, The Second Gradient Method for the Direct Numerical Simulation of Liquid???Vapor Flows with Phase Change, Journal of Computational Physics, vol.169, issue.2, pp.169-624, 2001.
DOI : 10.1006/jcph.2000.6692

R. Saurel, F. Petitpas, and R. , Modelling phase transition in metastable liquids: application to cavitating and flashing flows, Journal of Fluid Mechanics, vol.15, pp.313-350, 2008.
DOI : 10.1017/S0022112087003227

URL : https://hal.archives-ouvertes.fr/inria-00333908

R. Saurel, F. Petitpas, and R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics, vol.228, issue.5, pp.1678-1712, 2009.
DOI : 10.1016/j.jcp.2008.11.002

R. Saurel and O. L. Métayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics, vol.431, pp.239-271, 2001.
DOI : 10.1017/S0022112000003098

Y. Utturkar, J. Wu, G. Wang, and W. Shyy, Recent progress in modelling of cryogenic cavitation for liquid rocket propulsion, Progress. Aero. Sci, pp.41-558, 2005.

T. Barberon and P. Helluy, Finite volume simulation of cavitating flows, Computers & Fluids, vol.34, issue.7, pp.832-858, 2005.
DOI : 10.1016/j.compfluid.2004.06.004

URL : https://hal.archives-ouvertes.fr/inria-00071762

S. Müller, M. Bachmann, D. Kröninger, T. Kurz, and P. Helluy, Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles, Computers & Fluids, vol.38, issue.9, pp.1850-1862, 2009.
DOI : 10.1016/j.compfluid.2009.04.004

G. Faccanoni, S. Kokh, and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.5, pp.2-46, 2012.
DOI : 10.1051/m2an/2011069

URL : https://hal.archives-ouvertes.fr/hal-00976983

K. Shyue, An Adaptive Moving-Mesh Relaxation Scheme for Compressible Two-Phase Barotropic Flow With Cavitation, ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia ??? Parts A, B, C, and D, pp.2011-04009, 2011.
DOI : 10.1115/AJK2011-04009

M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, International Journal of Multiphase Flow, vol.12, issue.6, pp.861-889, 1986.
DOI : 10.1016/0301-9322(86)90033-9

A. Zein, M. Hantke, and G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids, Journal of Computational Physics, vol.229, issue.8, pp.2964-2998, 2010.
DOI : 10.1016/j.jcp.2009.12.026

A. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations, Physics of Fluids, vol.13, issue.10, pp.3002-3024, 2001.
DOI : 10.1063/1.1398042

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.
DOI : 10.1017/CBO9780511791253

R. Saurel and R. , A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows, Journal of Computational Physics, vol.150, issue.2, pp.425-467, 1999.
DOI : 10.1006/jcph.1999.6187

F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, and L. Munier, Diffuse interface model for high speed cavitating underwater systems, International Journal of Multiphase Flow, vol.35, issue.8, pp.747-759, 2009.
DOI : 10.1016/j.ijmultiphaseflow.2009.03.011

S. , L. Martelot, B. Nkonga, and R. Saurel, Liquid and liquid-gas flows at all speeds: Reference solutions and numerical schemes, INRIA Research Report N, vol.7935, 2012.

A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, vol.202, issue.2, pp.664-698, 2005.
DOI : 10.1016/j.jcp.2004.07.019

URL : https://hal.archives-ouvertes.fr/hal-00871724

R. Abgrall and H. Kumar, Abstract, Communications in Computational Physics, vol.321, issue.05, 2013.
DOI : 10.1137/0903007

F. Petitpas, E. Franquet, R. Saurel, and O. L. Métayer, A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks, Journal of Computational Physics, vol.225, issue.2, pp.225-2214, 2007.
DOI : 10.1016/j.jcp.2007.03.014

G. Allaire, S. Clerc, and S. Kokh, A Five-Equation Model for the Simulation of Interfaces between Compressible Fluids, Journal of Computational Physics, vol.181, issue.2, pp.577-616, 2002.
DOI : 10.1006/jcph.2002.7143

N. Andrianov and G. Warnecke, The Riemann problem for the Baer???Nunziato two-phase flow model, Journal of Computational Physics, vol.195, issue.2, pp.434-464, 2004.
DOI : 10.1016/j.jcp.2003.10.006

D. W. Schwendeman, C. W. Wahle, and A. K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, Journal of Computational Physics, vol.212, issue.2, pp.212-490, 2006.
DOI : 10.1016/j.jcp.2005.07.012

S. A. Tokareva and E. F. Toro, HLLC-type Riemann solver for the Baer???Nunziato equations of compressible two-phase flow, Journal of Computational Physics, vol.229, issue.10, pp.3573-3604, 2010.
DOI : 10.1016/j.jcp.2010.01.016

Y. Jinbo, T. Ogasawara, and H. Takahira, Numerical Investigations of Nonspherical Bubble Collapse Near Boundaries by the Improved Ghost Fluid Method, Proceedings of the 8th International Symposium on Cavitation, 2012.
DOI : 10.3850/978-981-07-2826-7_202

T. Flåtten and H. Lund, RELAXATION TWO-PHASE FLOW MODELS AND THE SUBCHARACTERISTIC CONDITION, Mathematical Models and Methods in Applied Sciences, vol.21, issue.12, pp.2379-2407, 2011.
DOI : 10.1142/S0218202511005775

H. Lund, A Hierarchy of Relaxation Models for Two-Phase Flow, SIAM Journal on Applied Mathematics, vol.72, issue.6, pp.1713-1741, 2012.
DOI : 10.1137/12086368X

T. P. Liu, Hyperbolic conservation laws with relaxation, Communications in Mathematical Physics, vol.18, issue.1, pp.153-175, 1987.
DOI : 10.1007/BF01210707

O. , L. Métayer, J. Massoni, and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models, Int. J. Therm. Sci, pp.43-265, 2004.

O. , L. Métayer, J. Massoni, and R. Saurel, Modeling evaporation fronts with reactive riemann solvers, J. Comput. Phys, vol.205, pp.567-610, 2005.

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 1997.
DOI : 10.1007/b79761

R. J. Leveque, Wave Propagation Algorithms for Multidimensional Hyperbolic Systems, Journal of Computational Physics, vol.131, issue.2, pp.327-353, 1997.
DOI : 10.1006/jcph.1996.5603

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb, pp.47-271, 1959.

E. Godlewski and P. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, 1996.
DOI : 10.1007/978-1-4612-0713-9

D. Bale, R. J. Leveque, S. Mitran, and J. A. Rossmanith, A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions, SIAM Journal on Scientific Computing, vol.24, issue.3, pp.24-955, 2002.
DOI : 10.1137/S106482750139738X

A. Harten, P. D. Lax, and B. Van-leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.
DOI : 10.1137/1025002

E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, vol.54, issue.1, pp.25-34, 1994.
DOI : 10.1007/BF01414629

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. D. Maso, P. G. Lefloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl, vol.74, pp.483-548, 1995.

C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework., SIAM Journal on Numerical Analysis, vol.44, issue.1, pp.300-321, 2006.
DOI : 10.1137/050628052

M. J. Castro, P. Lefloch, M. L. Muñoz-ruiz, and C. Parés, Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes, Journal of Computational Physics, vol.227, issue.17, pp.227-8107, 2008.
DOI : 10.1016/j.jcp.2008.05.012

R. Abgrall and S. Karni, A comment on the computation of non-conservative products, Journal of Computational Physics, vol.229, issue.8, pp.2759-2763, 2010.
DOI : 10.1016/j.jcp.2009.12.015

URL : https://hal.archives-ouvertes.fr/inria-00535567

S. F. Davis, Simplified Second-Order Godunov-Type Methods, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.3, pp.445-473, 1988.
DOI : 10.1137/0909030

M. Pelanti and K. Shyue, A mixture-energy-consistent numerical approximation of a two-phase flow model for fluids with interfaces and cavitation, Hyperbolic Problems: Theory, Numerics, Applications, Proc. 14th Intl. Conf. on Hyperbolic Problems, AIMS, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01136009

K. Shyue, A high-resolution mapped grid algorithm for compressible multiphase flow problems, Journal of Computational Physics, vol.229, issue.23, pp.8780-8801, 2010.
DOI : 10.1016/j.jcp.2010.08.010

F. Caro, F. Coquel, D. Jamet, and S. Kokh, A simple finite-volume method for compressible isothermal two-phase flows simulation, Intl. J. Finite, vol.3, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01114190

R. Saurel, N. Favrie, F. Petitpas, M. Lallemand, and S. L. Gavrilyuk, Modelling dynamic and irreversible powder compaction, Journal of Fluid Mechanics, vol.30, pp.348-396, 2010.
DOI : 10.1016/j.jcp.2008.11.002

URL : https://hal.archives-ouvertes.fr/hal-01443539

H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Computers & Fluids, vol.28, issue.1, pp.63-86, 1999.
DOI : 10.1016/S0045-7930(98)00017-6

URL : https://hal.archives-ouvertes.fr/hal-00871725

H. Guillard and A. Murrone, On the behaviour of upwind schemes in the low Mach number limit: II. Godunov-type schemes, Computers and Fluids, vol.338, pp.655-675, 2004.

M. Bilanceri, F. Beux, and M. V. Salvetti, An implicit low-diffusive HLL scheme with complete time linearization: Application to cavitating barotropic flows, Computers & Fluids, vol.39, issue.10, p.39, 1990.
DOI : 10.1016/j.compfluid.2010.07.002

B. Braconnier, J. Hu, Y. Niu, B. Nkonga, and K. Shyue, Numerical simulations of low Mach compressible two-phase flows: Preliminary assessment of some basic solution techniques, ESAIM: Proceedings, vol.28, pp.117-134, 2009.
DOI : 10.1051/proc/2009042