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Probabilistic representation of a class of non conservative

nonlinear Partial Differential Equations
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April 11th 2015

Abstract

We introduce a new class of nonlinear Stochastic Differential Equations in the sense of McKean, related

to non conservative nonlinear Partial Differential equations (PDEs). We discuss existence and uniqueness

pathwise and in law under various assumptions. We propose an original interacting particle system for

which we discuss the propagation of chaos. To this system, we associate a random function which is

proved to converge to a solution of a regularized version of PDE.

Key words and phrases: Chaos propagation; Nonlinear Partial Differential Equations; Nonlinear Stochastic

Differential Equations; Particle systems; Probabilistic representation of PDEs; McKean.
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1 Introduction

Probabilistic representations of nonlinear Partial Differential Equations (PDEs) are interesting in several

aspects. From a theoretical point of view, such representations allow for probabilistic tools to study the

analytic properties of the equation (existence and/or uniqueness of a solution, regularity,. . . ). They also

have their own interest typically when they provide a microscopic interpretation of physical phenomena

macroscopically drawn by a nonlinear PDE. Similarly, stochastic control problems are a way of interpreting

non-linear PDEs through Hamilton-Jacobi-Bellman equation that have their own theoretical and practical

interests (see [16]). Besides, from a numerical point of view, such representations allow for new approxi-

mation schemes potentially less sensitive to the dimension of the state space thanks to their probabilistic

nature involving Monte Carlo based methods.

The present paper focuses on a specific forward approach relying on nonlinear SDEs in the sense of

McKean [22]. The coefficients of that SDE instead of depending only on the position of the solution Y , also

depend on the law of the process, in a non-anticipating way. One historical contribution on the subject was

performed by [31], which concentrated on non-linearities on the drift coefficients.

Let us consider d, p ∈ N⋆. Let Φ : [0, T ]×Rd×R → Rd×p, g : [0, T ]×Rd×R → Rd, Λ : [0, T ]×Rd×R → R, be

Borel bounded functions and ζ0 be a probability on Rd. When it is absolutely continuous we denote by v0
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its density so that ζ0(dx) = v0(x)dx. We are motivated in non-linear PDEs (in the sense of the distributions)

of the form




∂tv = 1
2

d∑

i,j=1

∂2ij
(
(ΦΦt)i,j(t, x, v)v

)
− div (g(t, x, v)v) + Λ(t, x, v)v , for any t ∈ [0, T ] ,

v(0, dx) = ζ0(dx),

(1.1)

where v :]0, T ]× R
d → R is the unknown function and the second equation means that v(t, x)dx converges

weakly to ζ0(dx) when t → 0. When Λ = 0, PDEs of the type (1.1) are generalizations of the Fokker-

Planck equation and they are often denominated in the literature as McKean type equations. Their solutions

are probability measures dynamics which often describe the macroscopic distribution law of a microscopic

particle which behaves in a diffusive way. For that reason, those time evolution PDEs are conservative in the

sense that their solutions v(t, ·) verify the property
∫
Rd v(t, x)dx to be constant in t, generally equal to 1,

which is the mass of a probability measure. More precisely, often the solution v of (1.1) is associated with a

couple (Y, v), where Y is a stochastic process and v a real valued function defined on [0, T ]× Rd such that
{
Yt = Y0 +

∫ t

0
Φ(s, Ys, v(s, Ys))dWs +

∫ t

0
g(s, Ys, v(s, Ys))ds , with Y0 ∼ ζ0

v(t, ·) is the density of the law of Yt ,
(1.2)

and (Wt)t≥0 is a p-dimensional Brownian motion on a filtered probability space (Ω,F ,Ft,P). A major

technical difficulty arising when studying the existence and uniqueness for solutions of (1.2) is due to the

point dependence of the SDE coefficients w.r.t. the probability density v. In the literature (1.2) was generally

faced by analytic methods. A lot of work was performed in the case of smooth Lipschitz coefficients with

regular initial condition, see for instance Proposition 1.3. of [20]. The authors also assumed to be in the

non-degenerate case, with ΦΦt being an invertible matrix and some parabolicity condition. An interesting

earlier work concerns the case Φ(t, x, u) = uk (k ≥ 1), g = 0 see [8]. In dimension d = 1 with g = 0 and

Φ being bounded measurable, probabilistic representations of (1.1) via solutions of (1.2) were obtained in

[11, 1]. [6] extends partially those results to the multidimensional case. Finally [7] treated the case of fast

diffusion. All those techniques were based on the resolution of the corresponding non-linear Fokker-Planck

equation, so through an analytic tool.

In the present article, we are however especially interested in (1.1), in the case where Λ does not vanish. In

that context, the natural generalization of (1.2) is given by




Yt = Y0 +
∫ t

0 Φ(s, Ys, v(s, Ys))dWs +
∫ t

0 g(s, Ys, v(s, Ys))ds , with Y0 ∼ ζ0 ,

v(t, ·) := dνt
dx

such that for any bounded continuous test function ϕ ∈ Cb(Rd,R)

νt(ϕ) := E

[
ϕ(Yt) exp

{∫ t

0
Λ
(
s, Ys, v(s, Ys)

)
ds
}]

, for any t ∈ [0, T ] .

(1.3)

The aim of the paper is precisely to extend the McKean probabilistic representation to a large class of

nonconservative PDEs. The first step in that direction was done by [2] where the Fokker-Planck equation

is a stochastic PDE with multiplicative noise. Even though that equation is pathwise not conservative, the

expectation of the mass was constant and equal to 1. Here again, these developments relied on analytic

tools.

To avoid the technical difficulty due to the pointwise dependence of the SDE coefficients w.r.t. the function

v, this paper focuses on the following regularized version of (1.3):
{
Yt = Y0 +

∫ t

0 Φ(s, Ys, u(s, Ys))dWs +
∫ t

0 g(s, Ys, u(s, Ys))ds , with Y0 ∼ ζ0 ,

u(t, y) := E[K(y − Yt) exp
{∫ t

0
Λ
(
s, Ys, u(s, Ys)

)
ds
}
] , for any t ∈ [0, T ] ,

(1.4)
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where K : Rd → R is a smooth mollifier in Rd. When K = δ0 (1.4) reduces, at least formally to (1.3). An

easy application of Itô’s formula (see e.g. Proposition 6.7) shows that if there is a solution (Y, u) of (1.4), u

is related to the solution (in the distributional sense) of the following partial integro-differential equation

(PIDE) 



∂tv̄ = 1
2

d∑

i,j=1

∂2ij
(
(ΦΦt)i,j(t, x,K ∗ v̄)v̄

)
− div (g(t, x,K ∗ v̄)v̄) + Λ(t, x,K ∗ v̄)v̄

v̄(0, x) = v0 ,

(1.5)

by the relation u = K ∗ v̄ :=
∫
Rd K(· − y)v̄(y)dy. Setting Kε(x) = 1

εd
K
( ·
ε

)
the generalized sequence Kε is

weakly convergent to the Dirac measure at zero. Now, consider the couple (Y ε, uε) solving (1.4) replacing

K with Kε. Ideally, uε should converge to a solution of the limit partial differential equation (1.1). In the

case Λ ≡ 0, with smooth Φ, g and initial condition with other technical conditions, that convergence was

established in Lemma 2.6 of [20]. In our extended setting, again, no mathematical argument is for the

moment available but this limiting behavior is explored empirically by numerical simulations in Section 8.

Always in the caseΛ = 0 with g = 0, but with Φ only measurable, the qualitative behavior of the solution for

large time was numerically simulated in [5, 6] respectively for the one-dimensional and multi-dimensional

case.

Besides the theoretical aspects related to the well-posedness of (1.1) (and (1.4)), our main motivation is

to simulate numerically efficiently their solutions. With this numerical objective, several types of proba-

bilistic representations have been developed in the literature, each one having specific features regarding

the implied approximation schemes.

One method which has been largely investigated for approximating solutions of time evolutionary PDEs is

the method of forward-backward SDEs. FBSDEs were initially developed in [24], see also [23] for a survey

and [25] for a recent monograph on the subject. The idea is to express the PDE solution v(t, ·) at time t as

the expectation of a functional of the so called forward diffusion process X . Numerically, many judicious

schemes have been proposed [26, 12, 17]. But they all rely on computing recursively conditional expectation

functions which is known to be a difficult task in high dimension. Besides, the FBSDE approach is blind in

the sense that the forward process is not ensured to explore the most relevant space regions to approximate

efficiently the backward process of interest. On the theoretical side, the FBSDE representation of fully non-

linear PDEs still requires complex developments and is the subject of active research (see for instance [13]).

Branching diffusion processes are another way of providing a probabilistic representation of semi-linear

PDEs involving a specific form of non-linearity on the zero order term. We refer to [15] for the case of

superprocesses. This type of approach has been recently extended in [18, 19] to a more general class of

non-linearities on the zero order term, with the so-called marked branching process. One of the main advan-

tage of this approach compared to BSDEs is that it reduces in a forward algorithm without any regression

computation.

One numerical intuition motivating our interest in (possibly non-conservative) PDEs representation of

McKean type is the possibility to take advantage of the forward feature of this representation to bypass

the dimension problem by localizing the particles precisely in the regions of interest, although this point

will not be developed in the present paper. Another benefit of this approach is that it is potentially able to

represent fully nonlinear PDEs.

In this paper, for the considered class of nonconservative PDE, besides various theoretical results of

existence and uniqueness, we establish the so called propagation of chaos of an associated interacting particle

system and we develop a numerical scheme based on it. The convergence of this algorithm is proved
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by propagation of chaos and through the control of the time discretization error. Finally, some numerical

simulations illustrate the practical interest of this new algorithm.

The main contributions of this paper are twofold.

1. We provide a refined analysis of existence and/or uniqueness of a solution to (1.4) under a variety of

regularity assumptions on the coefficients Φ, g and Λ. This analysis faces two main difficulties. In the

first equation composing the system (1.4) the coefficients depend on the density u, itself depending on

Y . This is the standard situation already appearing in the context of classical McKean type equations

when u(t, ·) is characterized by the law of Yt, t ≥ 0. This situation can be recovered formally here

when the function Λ ≡ 0 and the mollifier K = δ0. In the second equation characterizing u in (1.4), for

a given process Y ∈ Cd := C([0, T ],Rd), u also appears on the right-hand-side (r.h.s) via the weighting

function Λ. This additional difficulty is specific to our extended framework since in the standard

McKean type equation, Λ ≡ 0 implies that u(t, ·) is explicitely defined by the law density of Yt.

In Section 3, one shows existence and uniqueness of strong solutions of (1.4) when Φ, g,Λ are Lips-

chitz. This result is stated in Theorem 3.10. The second equation of (1.4) can be rewritten as

u(t, y) =

∫

Cd

K(y − ωt) exp

{∫ t

0

Λ
(
s, ωs, u(s, ωs)

)
ds

}
dm(ω) , (1.6)

where m = mY is the law of Y on the canonical space Cd. In particular, given a law m on Cd, using

an original fixed point argument on stochastic processes Z of the type Zt = u(t,Xt) where X is the

canonical process, in Lemma 3.2, we first study the existence of u = um being solution of (1.6). A

careful analysis in Lemma 3.4 is carried on the functional (t, x,m) 7→ um(t, x): this associates to each

Borel probability measure m on Cd, the solution of (3.1), which is the second line of (1.4). In particular

that lemma describes carefully the dependence on all variables. Then we consider the first equation of

(1.4) using more standard arguments following Sznitman [31]. In Section 4, we show strong existence

of (1.4) when Φ, g are Lipschitz and Λ is only continuous, see Theorem 4.2. Indeed, uniqueness,

however, does not hold if Λ is only continuous, see Example 4.1. In Section 5, Theorem 5.1 states

existence in law in all cases when Φ, g,Λ are only continuous.

2. We introduce an interacting particle system associated to (1.4) and prove that the propagation of

chaos holds, under the assumptions of Section 3. This is the object of Section 7, see Theorem 7.1

and subsequent remarks. That theorem also states the convergence of the solution um of (1.6), when

m = SN (ξ) is the empirical measure of the particles to um0 , where m0 is the law of the solution of

(1.4), in the Lp, p = 2,+∞ mean error, in term of the number N of particles. We estimate in particular,

rates of convergence making use of a refined analysis of the Lipschitz properties of m 7→ um w.r.t.

various metrics on probability measures. This crucial theorem is an obligatory step in a complete

proof of the convergence of the stochastic particle algorithm: it distinguishes clearly the control of

the perturbation error induced by the approximation and the control of the propagation of this error

through the particle dynamical system. By our techniques, the proof of chaos propagation does not

rely on the exchangeability property of the particles. In Section (6) we show that u := um0 verifies

u := K∗v̄, where v̄ solves the PIDE (1.5). In Section 8, we propose an Euler discretization of the particle

system dynamics and prove (Proposition 8.1) the convergence of this discrete time approximation to

the continuous time interacting particle system by following the same lines of the propagation of

chaos analysis, see Theorem 7.1.
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The paper is organized as follows. After this introduction, we formulate the basic assumptions valid

along the paper. Section 3 is devoted to the existence and uniqueness problem when Φ, g,Λ are Lipschitz.

The propagation of chaos is discussed in Section 7. Sections 4 and 5 discuss the case when the coefficients

are non-Lipschitz. Section 6 establishes the link between (1.4) and the integro partial-differential equation

(1.5). Finally, Section 8 provides numerical simulations illustrating the performances of the interacting

particle system in approximating the PDE (1.1), in a specific case where the solution is explicitely known.

2 Notations and assumptions

Let us consider Cd := C([0, T ],Rd) metrized by the supremum norm ‖ · ‖∞, equipped with its Borel σ−
field B(Cd) = σ(Xt, t ≥ 0) (and Bt(Cd) := σ(Xu, 0 ≤ u ≤ t) the canonical filtration) and endowed with

the topology of uniform convergence, X the canonical process on Cd and Pk(Cd) the set of Borel probability

measures on Cd admitting a moment of order k ∈ N. For k = 0, P(Cd) := P0(Cd) is naturally the Polish space

(with respect to the weak convergence topology) of Borel probability measures on Cd naturally equipped

with its Borel σ-field B(P(Cd)). When d = 1, we often omit it and we simply denote C := C1.

We recall that the Wasserstein distance of order r and respectively the modified Wasserstein distance of order r

for r ≥ 2, between m and m′ in Pr(Cd), denoted by W r
T (m,m

′) (and resp. W̃ r
T (m,m

′)) are such that

(W r
t (m,m

′))r := inf
µ∈Π(m,m′)

{∫

Cd×Cd

sup
0≤s≤t

|Xs(ω)−Xs(ω
′)|rdµ(ω, ω′)

}
, t ∈ [0, T ] , (2.1)

(W̃ r
t (m,m

′))r := inf
µ∈Π̃(m,m′)

{∫

Cd×Cd

sup
0≤s≤t

|Xs(ω)−Xs(ω
′)|r ∧ 1 dµ(ω, ω′)

}
, t ∈ [0, T ] , (2.2)

where Π(m,m′) (resp. Π̃(m,m′)) denotes the set of Borel probability measures in P(Cd × Cd) with fixed

marginals m and m′ belonging to Pr(Cd) (resp. P(Cd) ). In this paper we will use very frequently the

Wasserstein distances of order 2. For that reason, we will simply denote Wt :=W 2
t (resp. W̃t := W̃ 2

t ).

Given N ∈ N⋆, l ∈ Cd, l1, · · · , lN ∈ Cd, a significant role in this paper will be played by the Borel measures

on Cd given by δl and
1

N

N∑

j=1

δlj .

Remark 2.1. Given l1, · · · , lN , l̃1, · · · , l̃N ∈ Cd, by definition of the Wasserstein distance we have, for all t ∈ [0, T ]

Wt


 1

N

N∑

j=1

δlj ,
1

N

N∑

j=1

δl̃j


 ≤ 1

N

N∑

j=1

sup
0≤s≤t

|ljs − l̃js|2 .

Cb(Cd) will denote the space of bounded, continuous real-valued functions on Cd, for which the supre-

mum norm will also be denoted by ‖ · ‖∞. In the whole paper, Rd will be equipped with the scalar product

· and |x| will denote the induced Euclidean norm for x ∈ Rd. Mf (R
d) is the space of finite, Borel measures

on Rd. S(Rd) is the space of Schwartz fast decreasing test functions and S ′(Rd) is its dual. Cb(Rd) is the

space of bounded, continuous functions on Rd, C∞
0 (Rd) is the space of smooth functions with compact sup-

port. C∞
b (Rd) is the space of bounded and smooth functions. C0(Rd) will represent the space of continuous

functions with compact support in Rd. W r,p(Rd) is the Sobolev space of order r ∈ N in (Lp(Rd), || · ||p),
with 1 ≤ p ≤ ∞. We denote by (φdn)n≥0 an usual sequence of mollifiers φdn(x) = 1

ǫdn
φd( x

ǫn
) where, φd is

a non-negative function, belonging to the Schwartz space whose integral is 1 and (ǫn)n≥0 a sequence of

strictly positive reals verifying ǫn −−−−−→
n −→ ∞

0. When d = 1, we will simply write φn := φ1n, φ := φ1.
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F(·) : f ∈ S(Rd) 7→ F(f) ∈ S(Rd) will denote the Fourier transform on the classical Schwartz space S(Rd)

such that for all ξ ∈ Rd,

F(f)(ξ) =
1√
2π

∫

Rd

f(x)e−iξ·xdx .

We will denote in the same manner the corresponing Fourier transform on S ′(Rd) .

A function F : [0, T ]×Rd×R → R will be said continuous with respect to (y, z) ∈ Rd×R (the space variables)

uniformly with respect to t ∈ [0, T ] if for every ε > 0, there is δ > 0, such that ∀(y, z), (y′, z′) ∈ Rd × R

|y − y′|+ |z − z′| ≤ δ =⇒ ∀t ∈ [0, T ], |F (t, y, z)− F (t, y′, z′)| ≤ ε. (2.3)

For any Polish space E, we will denote by B(E) its Borel σ-field. It is well-known that P(E) is also

a Polish space with respect to the weak convergence topology, whose Borel σ-field will be denoted by

B(P(E)) (see Proposition 7.20 and Proposition 7.23, Section 7.4 Chapter 7 in [9]).

For any fixed measured space (Ω,F), a map η : (Ω,F) −→ (P(E),B(P(E))) will be called random measure

(or random kernel) if it is measurable. We will denote by PΩ
2 (E) the space of square integrable random

measures, i.e., the space of random measures η such that E[η(E)2] <∞.

Remark 2.2. As highlighted in Remark 3.20 in [14] (see also Proposition 7.25 in [9]), previous definition is equivalent

to the two following conditions:

• for each ω̄ ∈ Ω, ηω̄ ∈ P(E),

• for all Borel set A ∈ B(P(E)), ω̄ 7→ ηω̄(A) is F -measurable.

Remark 2.3. Given Rd-valued continuous processes Y 1, · · · , Y n, the application
1

N

N∑

j=1

δY j is a random measure

on P(Cd). In fact δY j , 1 ≤ j ≤ N is a random measure by Remark 2.2.

As mentioned in the introduction K : Rd → R+ will be a mollifier such that
∫
Rd K(x)dx = 1. Given

a finite signed Borel measure γ on Rd, K ∗ γ will denote the convolution function x 7→ γ(K(x − ·)). In

particular if γ is absolutely continuous with density γ̇, then (K ∗ γ)(x) =
∫
Rd K(x− y)γ̇(y)dy. In this article,

the following assumptions will be used.

Assumption 1. 1. Φ and g are Lipschitz functions defined on [0, T ]×R
d×R taking values respectively in R

d×p

(space of d × p matrices) and Rd: there exist finite positive reals LΦ and Lg such that for any (t, y, y′, z, z′) ∈
[0, T ]× R

d × R
d × R× R, we have

|Φ(t, y′, z′)−Φ(t, y, z)| ≤ LΦ(|z′ − z|+ |y′ − y|) and |g(t, y′, z′)− g(t, y, z)| ≤ Lg(|z′ − z|+ |y′ − y|) .

2. Λ is a Borel real valued function defined on [0, T ]× Rd × R Lipschitz w.r.t. the space variables: there exists a

finite positive real, LΛ such that for any (t, y, y′, z, z′) ∈ [0, T ]× Rd × Rd × R× R, we have

|Λ(t, y, z)− Λ(t, y′, z′)| ≤ LΛ(|y′ − y|+ |z′ − z|) .

3. Φ, g and Λ are supposed to be uniformly bounded: there exist finite positive reals MΦ, Mg and MΛ such that,

for any (t, y, z) ∈ [0, T ]× Rd × R

(a)

|Φ(t, y, z)| ≤MΦ, |g(t, y, z)| ≤Mg,
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(b)

|Λ(t, y, z)| ≤MΛ .

4. K : Rd → R+ is integrable, Lipschitz, bounded and whose integral is 1: there exist finite positive reals MK

and LK such that for any (y, y′) ∈ Rd × Rd

|K(y)| ≤MK , |K(y′)−K(y)| ≤ LK |y′ − y| and
∫

Rd

K(x)dx = 1 .

5. ζ0 is a fixed Borel probability measure on Rd admitting a second order moment.

To simplify we introduce the following notations.

• V : [0, T ]× Cd × C → R defined for any pair of functions y ∈ Cd and z ∈ C, by

Vt(y, z) := exp

(∫ t

0

Λ(s, ys, zs)ds

)
for any t ∈ [0, T ] . (2.4)

• The real valued process Z such that Zs = u(s, Ys), for any s ∈ [0, T ], will often be denoted by u(Y ).

With these new notations, the second equation in (1.4) can be rewritten as

νt(ϕ) = E[(K ∗ ϕ)(Yt)Vt(Y, u(Y ))] , for any ϕ ∈ Cb(Rd,R) , (2.5)

where u(t, ·) = dνt
dx

.

Remark 2.4. Under Assumption 1. 3.(b), Λ is bounded. Consequently

0 ≤ Vt(y, z) ≤ etMΛ , for any (t, y, z) ∈ [0, T ]× R
d × R . (2.6)

Under Assumption 1. 2. Λ is Lipschitz. Then V inherits in some sense this property. Indeed, observe that for any

(a, b) ∈ R
2,

eb − ea = (b− a)

∫ 1

0

eαb+(1−α)adα ≤ esup(a,b)|b− a| . (2.7)

Then for any continuous functions y, y′ ∈ Cd = C([0, T ],Rd), and z, z′ ∈ C([0, T ],R), taking a =
∫ t

0
Λ(s, ys, zs)ds

and b =
∫ t

0 Λ(s, y
′
s, z

′
s)ds in the above equality yields

|Vt(y′, z′)− Vt(y, z)| ≤ etMΛ

∫ t

0

|Λ(s, y′s, z′s)− Λ(s, ys, zs)| ds

≤ etMΛLΛ

∫ t

0

(|y′s − ys|+ |z′s − zs|) ds . (2.8)

In Section 4, Assumption 1. will be replaced by the following.

Assumption 2. 1. All the items of Assumption 1 are in force excepted 2. which is replaced by the following.

2. Λ is a real valued function defined on [0, T ] × Rd × R continuous w.r.t. the space variables uniformly with

respect to the time variable, see e.g. (2.3).

Remark 2.5. The second item in Assumption 2. is fulfilled if the function Λ is continuous with respect to (t, y, z) ∈
[0, T ]× R

d × R.

In Section 5 we will treat the case when only weak solutions (in law) exist. In this case we will assume

the following.
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Assumption 3. All the items of Assumption 1. are in force excepted 5. and the items 1. and 2. which are replaced

by the following. Φ : [0, T ]× Rd × R −→ Rd×p, g : [0, T ]× Rd × R −→ Rd and Λ : [0, T ]× Rd × R → R are

continuous with respect to the space variables uniformly with respect to the time variable.

Definition 2.6. 1. We say that (1.4) admits strong existence if for any filtered probability space (Ω,F ,Ft,P)

equipped with an (Ft)t≥0-Brownian motion W , an F0-random variable Y0 distributed according to ζ0, there is

a couple (Y, u) where Y is an (Ft)t≥0-adapted process and u : [0, T ]× Rd → R, verifies (1.4).

2. We say that (1.4) admits pathwise uniqueness if for any filtered probability space (Ω,F ,Ft,P) equipped

with an (Ft)t≥0-Brownian motion W , an F0-random variable Y0 distributed according to ζ0, the following

holds. Given two pairs (Y 1, u1) and (Y 2, u2) as in item 1., verifying (1.4) such that Y 1
0 = Y 2

0 P-a.s. then

u1 = u2 and Y 1 and Y 2 are indistinguishable.

Definition 2.7. 1. We say that (1.4) admits existence in law (or weak existence) if there is a filtered probabil-

ity space (Ω,F ,Ft,P) equipped with an (Ft)t≥0-Brownian motion W , a pair (Y, u), verifying (1.4), where Y

is an (Ft)t≥0-adapted process and u is a real valued function defined on [0, T ]× Rd.

2. We say that (1.4) admits uniqueness in law (or weak uniqueness), if the following holds. Let (Ω,F ,Ft,P)

(resp. (Ω̃, F̃ , F̃t, P̃)) be a filtered probability space. Let (Y 1, u1) (resp. (Ỹ 2, ũ2)) be a solution of (1.4). Then

u1 = ũ2 and Y 1 and Ỹ 2 have the same law.

3 Existence and uniqueness of the problem in the Lipschitz case

In this section we will fix a probability space (Ω,F ,Ft,P) equipped with an (Ft)-Brownian motion (Wt).

We will proceed in two steps. We study first in the next section the second equation of (1.4) defining u.

Then we will address the main equation defining the process Y .

Later in this section, Assumption 1 will be in force, in particular ζ0 will be supposed to have a second

order moment.

3.1 Existence and uniqueness of a solution to the linking equation

This subsection relies only on items 2., 3.(b) and 4. of Assumption 1.

We remind that X will denote the canonical process X : Cd → Cd defined by Xt(ω) = ω(t), t ≥ 0, ω ∈ Cd.

For a given probability measure m ∈ P(Cd), let us consider the equation




u(t, y) =
∫
Cd K(y −Xt(ω))Vt(X(ω), u(X(ω)))dm(ω) , for all t ∈ [0, T ], y ∈ R

d , with

Vt(X(ω), u(X(ω))) = exp
(∫ t

0 Λ
(
s,Xs(ω), u(s,Xs(ω))

)
ds
)
.

(3.1)

This equation will be called linking equation: it constitutes the second line of equation (1.4). When Λ = 0,

i.e. in the conservative case, u(t, ·) = K ∗ mt, where mt is the marginal law of Xt under m. Informally

speaking, when K is the Delta Dirac measure, then u(t, ·) = mt.

Remark 3.1. Since Λ is bounded, andK Lipschitz, it is clear that if u := um is a solution of (3.1) then u is necessarily

bounded by a constant, only depending on MΛ,MK , T and it is Lipschitz with respect to the second argument with

Lipschitz constant only depending on LK ,MΛ, T .

We aim at proving by a fixed point argument the following result.
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Lemma 3.2. We assume the validity of items 2., 3.(b) and 4. of Assumption 1.

For a given probability measure m ∈ P(Cd), equation (3.1) admits a unique solution, um.

Proof. Let us introduce the linear space C1 of real valued continuous processes Z on [0, T ] (defined on the

canonical space Cd) such that

‖Z‖∞,1 := E
m

[
sup
t≤T

|Zt|
]
:=

∫

Cd

sup
0≤t≤T

|Zt(ω)|dm(ω) <∞ .

(C1, ‖ ·‖∞,1) is a Banach space. For any M ≥ 0, a well-known equivalent norm to ‖ ·‖∞,1 is given by ‖ ·‖M∞,1,

where ‖Z‖M∞,1 = Em [ supt≤T e−Mt|Zt| ]. Let us define the operator Tm : C1 → C([0, T ]×Rd,R) such that for

any Z ∈ C1,

Tm(Z)(t, y) :=

∫

Cd

K
(
y −Xt(ω)

)
Vt
(
X(ω), Z(ω)

)
dm(ω) . (3.2)

Then we introduce the operator τ : f ∈ C([0, T ] × Rd,R) 7→ τ(f) ∈ C1, where τ(f)t(ω) = f(t, ωt). We

observe that τ ◦ Tm is a map C1 → C1.

Notice that equation (3.1) is equivalent to

u = (Tm ◦ τ)(u). (3.3)

We first admit the existence and uniqueness of a fixed point Z ∈ C1 for the map τ ◦Tm. In particular we

have Z = (τ ◦ Tm)(Z). We can now deduce the existence/uniqueness for the function u for problem (3.3).

Concerning existence, we choose vm := Tm(Z). Since Z is a fixed-point of the map τ ◦Tm, by the definition

of vm we have

Z = τ(Tm(Z)), (3.4)

so that vm is a solution of (3.3).

Concerning uniqueness of (3.3), we consider two solutions of (3.1) v̄, ṽ, i.e. such that v̄ = (Tm ◦ τ)(v̄), ṽ =

(Tm ◦ τ)(ṽ). We set Z̄ := τ(v̄), Z̃ := τ(ṽ). Since v̄ = Tm(Z̄) we have Z̄ = τ(v̄) = τ(Tm(Z̄)). Similarly

Z̃ = τ(ṽ) = τ(Tm(Z̃)). Since Z̄ and Z̃ are fixed points of τ ◦ T , it follows that Z̄ = Z̃ dm a.e. Finally

v̄ = Tm(Z̄) = Tm(Z̃) = ṽ.

It remains finally to prove that τ ◦ Tm admits a unique fixed point, Z .

The upper bound (2.8) implies that for any pair (Z,Z ′) ∈ C1 × C1, for any (t, y) ∈ [0, T ]× Rd,

|Tm(Z ′)− Tm(Z)|(t, y) =

∣∣∣∣
∫

Cd

K(y −Xt(ω)) [Vt(X(ω), Z ′(ω))− Vt(X(ω), Z(ω))] dm(ω)

∣∣∣∣

≤ MKe
tMΛLΛ

∫

Cd

∫ t

0

|Z ′
s(ω)− Zs(ω)|ds dm(ω)

≤ MKe
TMΛLΛE

[∫ t

0

eMse−Ms|Z ′
s − Zs|ds

]

≤ MKe
TMΛLΛE

[∫ t

0

eMs sup
r≤t

e−Mr|Z ′
r − Zr|ds

]

≤ MKe
TMΛLΛ

eMt − 1

M
E

[
sup
r≤t

e−Mr|Z ′
r − Zr|

]

≤ MKe
TMΛLΛ

eMt − 1

M
‖Z ′ − Z‖M∞,1 .

Then considering (τ ◦ Tm)(Z ′)t = Tm((Z ′)(t,Xt) and (τ ◦ Tm)(Z)t = T (Z)(t,Xt), we obtain

sup
t≤T

e−Mt |(τ ◦ Tm)(Z ′)t − (τ ◦ Tm)(Z)t| = sup
t≤T

e−Mt |Tm(Z ′)(t,Xt)− Tm(Z)(t,Xt)|

≤ MKe
TMΛLΛ

1

M
‖Z ′ − Z‖M∞,1 .
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Taking the expectation yields |(τ ◦ Tm)(Z ′)t − (τ ◦ Tm)(Z)t‖M∞,1 ≤ MKe
TMΛLΛ

1
M
‖Z ′ − Z‖M∞,1. Hence, as

soon as M is sufficiently large, M > MKe
TMΛLΛ, (τ ◦ Tm) is a contraction on (C1, ‖ · ‖M∞,1) and the proof

ends by a simple application of the Banach fixed point theorem.

Remark 3.3. For (y,m) ∈ Rd × P(Cd), t 7→ um(t, y) is continuous. This follows by an application of Lebesgue

dominated convergence theorem in (3.1).

In the sequel, we will need a stability result on um solution of (3.1), w.r.t. the probability measure m.

The fundamental lemma treats this issue, again only supposing the validity of items 2., 3.(b) and 4. of

Assumption 1.

Lemma 3.4. We assume the validity of items 2., 3.(b) and 4. of Assumption 1.

Let u be a solution of (3.1). The following assertions hold.

1. For any measures (m,m′) ∈ P2(Cd)× P2(Cd), for all (t, y, y′) ∈ [0, T ]× Cd × Cd, we have

|um
(
t, y
)
− um

′(
t, y′

)
|2 ≤ CK,Λ(t)

[
|y − y′|2 + |Wt(m,m

′)|2
]
, (3.5)

where CK,Λ(t) := 2C′
K,Λ(t)(t + 2)(1 + e2tC

′
K,Λ(t)) with C′

K,Λ(t) = 2e2tMΛ(L2
K + 2M2

KL
2
Λt). In particular

the functions CK,Λ only depend on MK , LK ,MΛ, LΛ and t and is increasing with t.

2. For any measures (m,m′) ∈ P(Cd)× P(Cd), for all (t, y, y′) ∈ [0, T ]× Cd × Cd, we have

|um
(
t, y
)
− um

′(
t, y′

)
|2 ≤ CK,Λ(t)

[
|y − y′|2 + |W̃t(m,m

′)|2
]
, (3.6)

where CK,Λ(t) := 2e2tMΛ(max(LK , 2MK)2 + 2M2
K max(LΛ, 2MΛ)

2t).

3. The function (m, t, x) 7→ um(t, y) is continuous on P(Cd) × [0, T ] × Rd where P(Cd) is endowed with the

topology of weak convergence.

4. Suppose that K ∈W 1,2(Rd). Then for any (m,m′) ∈ P2(Cd)× P2(Cd), t ∈ [0, T ]

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + 2tCK,Λ(t))|Wt(m,m
′)|2 , (3.7)

where CK,Λ(t) := 2C′
K,Λ(t)(t+2)(1+ e2tC

′
K,Λ(t)) with C′

K,Λ(t) = 2e2tMΛ(L2
K +2M2

KL
2
Λt) and C̃K,Λ(t) :=

2e2tMΛ(2MKL
2
Λt(t+ 1) + ‖∇K‖22), ‖ · ‖2 being the standard L2(Rd) or L2(Rd,Rd)-norms.

In particular the functions C̃K,Λ only depend on MK , LK ,MΛ, LΛ and t and is increasing with t.

5. Suppose thatF(K) ∈ L1(Rd). Then there exists a constant C̄K,Λ(t) > 0 (depending only on t,MΛ, LΛ, ‖F(K)‖1)

such that for any random measure η : (Ω,F) −→ (P2(Cd),B(P(Cd))), for all (t,m) ∈ [0, T ]× P2(Cd)

E[‖uη(t, ·)− um(t, ·)‖2∞] ≤ C̄K,Λ(t) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] , (3.8)

where we recall that P(Cd) is endowed with the topology of weak convergence. We remark that the expectation

in both sides of (3.8) is taken w.r.t. the randomness of the random measure η.

Remark 3.5. a) By Corollary 6.13, Chapter 6 in [32], W̃T is a metric compatible with the weak convergence on

P(Cd).

b) The map dΩ2 : (ν, µ) 7→
√

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈ν − µ, ϕ〉|2] defines a (homogeneous) distance on PΩ
2 (Cd).
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c) Previous distance satisfies

dΩ2 (ν, µ) ≤
√
E[|W 1

T (ν, µ)|2] , (3.9)

where W 1
T is the 1-Wasserstein distance.

Indeed, for fixed ω̄ ∈ Ω, taking into account that (Cd, νω̄) and (Cd, µω̄) are Polish probability spaces, the first

equality of (i) in the Kantorovitch duality theorem, see Theorem 5.10 p.70 in [32], which in particular implies the

following. For any ϕ ∈ Cb(Cd) we have

|〈ν − µ, ϕ〉| ≤W 1
T (ν, µ),

which implies (3.9).

d) The map (ν, µ) 7→
√
E[|W 1

T (ν, µ)|2] defines a distance on PΩ
2 (Cd).

e) Item 1. of Lemma 3.4 is a consequence of item 2. For expository reasons, we have decided to start with the less

general case.

Proof of Lemma 3.4. We will prove successively the inequalities (3.5), (3.6), (3.7) and (3.8).

Let us consider (t, y, y′) ∈ [0, T ]× R
d × R

d.

• Proof of (3.5) . Let (m,m′) ∈ P2(Cd)× P2(Cd).

We have

|um(t, y)− um
′

(t, y′)|2 ≤ 2|um(t, y)− um(t, y′)|2 + 2|um(t, y′)− um
′

(t, y′)|2 . (3.10)

The first term on the r.h.s. of the above equality is bounded using the Lipschitz property of um

that derives straightforwardly from the Lipschitz property of the mollifier K and the boundedness

property of Vt (2.6):

|um(t, y′)− um(t, y)| =

∣∣∣∣
∫

Cd

[K(y −Xt(ω))−K(y′ −Xt(ω))] Vt(X(ω), um(X(ω)))dm(ω)

∣∣∣∣

≤ LKe
tMΛ |y − y′| . (3.11)

Now let us consider the second term on the r.h.s of (3.10). By Jensen’s inequality we get

|um(t, y′)− um
′

(t, y′)|2 =

∣∣∣∣
∫

Cd

K(y′ −Xt(ω))Vt
(
X(ω), um(X(ω))

)
dm(ω)

−
∫

Cd

K(y′ −Xt(ω
′))Vt

(
X(ω′), um

′

(X(ω′))
)
dm′(ω′)

∣∣∣∣
2

≤
∫

Cd×Cd

∣∣∣K(y′ −Xt(ω))Vt
(
X(ω), um(X(ω))

)

− K(y′ −Xt(ω
′))Vt

(
X(ω′), um

′

(X(ω′))
)∣∣∣

2

dµ(ω, ω′) , (3.12)

for any µ ∈ Π(m,m′). Let us consider four continuous functions x, x′ ∈ C([0, T ],Rd) and z, z′ ∈
C([0, T ],R). We have

|K(y′ − xt)Vt(x, z)−K(y′ − x′t)Vt(x
′, z′)|2 ≤ 2 |K(y′ − xt)−K(y′ − x′t)|

2 |Vt(x, z)|2

+2 |Vt(x, z)− Vt(x
′, z′)|2 |K(y′ − x′t)|2 . (3.13)
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Then, using the Lipschitz property of K and the upper bound (2.8) gives

|K(y′ − xt)Vt(x, z)−K(y′ − x′t)Vt(x
′, z′)|2 ≤ 2L2

Ke
2tMΛ |xt − x′t|2

+ 4M2
KL

2
Λe

2tMΛt

∫ t

0

[
|xs − x′s|2 + |zs − z′s|2

]
ds (3.14)

≤ C′
K,Λ(t)

[
(1 + t) sup

s≤t

|xs − x′s|2 +
∫ t

0

|zs − z′s|2 ds
]
,

where C′
K,Λ(t) = 2e2tMΛ(L2

K + 2M2
KL

2
Λt). Injecting the latter inequality in (3.12) yields

|um(t, y′)− um
′

(t, y′)|2 ≤ C′
K,Λ(t)

∫

Cd×Cd

[
(1 + t) sup

s≤t

|Xs(ω)−Xs(ω
′)|2

+

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds

]
dµ(ω, ω′) ,

Injecting the above inequality in (3.10) and using (3.11) yields

|um(t, y)− um
′

(t, y′)|2 ≤ 2C′
K,Λ(t)

[
|y − y′|2 + (1 + t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′)

+

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

]
, (3.15)

Replacing y (resp. y′) with Xt(ω) (resp. Xt(ω
′)) in (3.15), we get for all ω ∈ Cd (resp. ω′ ∈ Cd),

|um(t,Xt(ω))− um
′

(t,Xt(ω
′))|2 ≤ 2C′

K,Λ(t)
[
|Xt(ω)−Xt(ω

′)|2

+(1 + t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′)

+

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

]
.

(3.16)

Let us introduce the following notation

γ(s) :=

∫

Cd×Cd

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 dµ(ω, ω′) , for any s ∈ [0, T ].

Integrating each side of inequality (3.16) w.r.t. the variables (ω, ω′) according to µ, implies

γ(t) ≤ 2C′
K,Λ(t)

∫ t

0

γ(s)ds+ 2(t+ 2)C′
K,Λ(t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′) ,

for all t ∈ [0, T ]. In particular, observing that C′
K,Λ(a) is increasing in a, we have for fixed t ∈]0, T ] and

all a ∈ [0, t]

γ(a) ≤ 2C′
K,Λ(t)

∫ a

0

γ(s)ds+ 2(t+ 2)C′
K,Λ(t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′) .

Using Gronwall’s lemma yields

γ(t) :=

∫

Cd×Cd

|um(t,Xt(ω))− um
′

(t,Xt(ω
′))|2 dµ(ω, ω′)

≤ 2(t+ 2)C′
K,Λ(t)e

2tC′
K,Λ(t)

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′) .
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Injecting the above inequality in (3.15) implies

|um(t, y)−um′

(t, y′)|2 ≤ 2C′
K,Λ(t)(t+2)(1+e2tC

′
K,Λ(t))

[
|y − y′|2 +

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2dµ(ω, ω′)

]
.

The above inequality holds for any µ ∈ Π(m,m′), hence taking the infimum over µ ∈ Π(m,m′) con-

cludes the proof of (3.5).

• Proof of (3.6). Let (m,m′) ∈ P(Cd)×P(Cd). The proof of (3.6) follows at the beginning the same lines

as the one of (3.5), but the inequality (3.14) is replaced by

|K(y′ − xt)Vt(x, z)−K(y′ − x′t)Vt(x
′, z′)|2 ≤ 2 |K(y′ − xt)−K(y′ − x′t)|

2 |Vt(x, z)|2

+2 |Vt(x, z)− Vt(x
′, z′)|2 |K(y′ − x′t)|2

≤ 2e2tMΛ max(LK , 2MK)2(|xt − x′t|
2 ∧ 1)

+4M2
Ke

2tMΛ max(LΛ, 2MΛ)
2t

∫ t

0

(
|x′s − xs|2 ∧ 1

+ |zs − z′s|2
)
ds

≤ CK,Λ(t)

[
(1 + t)(sup

s≤t

|xs − x′s|2 ∧ 1) +

∫ t

0

|zs − z′s|2 ds
]
,

(3.17)

which implies

|um(t, y)− um
′

(t, y′)|2 ≤ 2CK,Λ(t)(t + 2)(1 + e2tCK,Λ(t))
[
|y − y′|2

+

∫

Cd×Cd

sup
s≤t

|Xs(ω)−Xs(ω
′)|2 ∧ 1 dµ(ω, ω′)

]
, (3.18)

where CK,Λ(t) := 2e2tMΛ(max(LK , 2MK)2 + 2M2
K max(LΛ, 2MΛ)

2t). This gives the analogue of (3.15)

and we conclude in the same way as for the previous item.

• Proof of the continuity of (m, t, x) 7→ um(t, x).

P(Cd)× [0, T ]×Rd being a separable metric space, we characterize the continuity through converging

sequences. We also recall that W̃T is a metric compatible with the weak convergence on P(Cd), see

Remark 3.5 a).

By (3.5), the application is continuous with respect to (m,x) uniformly with respect to time. Conse-

quently it remains to show that the map t 7→ um(t, x) is continuous for fixed (m,x) ∈ P(Cd)× Rd.

Let us fix (m, t0, x) ∈ P(Cd)× [0, T ]× Rd. Let (tn)n∈N be a sequence in [0, T ] converging to t0.

We define Fn as the real-valued sequence of measurable functions on Cd such that for all ω ∈ Cd,

Fn(ω) := K(x−Xtn(ω)) exp

(∫ tn

0

Λ(r,Xr(ω), u
m(r,Xr(ω))dr

)
. (3.19)

Each ω ∈ Cd being continuous, Fn converges pointwise to F : Cd → R defined by

F (ω) := K(x−Xt0(ω)) exp

(∫ t0

0

Λ(r,Xr(ω), u
m(r,Xr(ω))dr

)
. (3.20)

Since K and Λ are uniformly bounded, MKe
TMΛ is a uniform upper bound of the functions Fn. By

Lebesgue dominated convergence theorem, we conclude that

|um(tn, x)− um(t0, x)| =
∣∣∣∣
∫

Cd

Fn(ω)dm(ω)−
∫

Cd

F (ω)dm(ω)

∣∣∣∣ −−−−−→n→+∞
0 .
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This ends the proof.

• Proof of (3.7). Let (m,m′) ∈ P2(Cd)× P2(Cd).

Since K ∈ L2(Rd), by Jensen’s inequality, it follows easily that the functions x 7→ um(r, x) and x 7→
um

′

(r, x) belong to L2(Rd), for every r ∈ [0, T ]. Then, for any µ ∈ Π(m,m′),

‖um(t, ·)− um
′

(t, ·)‖22 =

∫

Rd

|um(t, y)− um
′

(t, y)|2dy

=

∫

Rd

∣∣∣∣
∫

Cd×Cd

[
K(y −Xt(ω))Vt(X(ω), um(X(ω)))−

K(y −Xt(ω
′))Vt(X(ω′), um

′

(X(ω′)))
]
dµ(ω, ω′)

∣∣∣
2

dy

≤
∫

Rd

∫

Cd×Cd

∣∣∣K(y −Xt(ω))Vt(X(ω), um(X(ω)))−

K(y −Xt(ω
′))Vt(X(ω′), um

′

(X(ω′)))
∣∣∣
2

dµ(ω, ω′) dy

=

∫

Cd×Cd

∫

Rd

∣∣∣K(y −Xt(ω))Vt(X(ω), um(X(ω)))−

K(y −Xt(ω
′))Vt(X(ω′), um

′

(X(ω′)))
∣∣∣
2

dy dµ(ω, ω′) , (3.21)

where the third inequality follows by Jensen’s and the latter inequality is justified by Fubini theorem.

We integrate now both sides of (3.13), with respect to the state variable y over Rd, for all (x, x′) ∈
Cd × Cd, (z, z′) ∈ C × C,
∫

Rd

|K(y − xt)Vt(x, z)−K(y − x′t)Vt(x
′, z′)|2 dy ≤ 2

∫

Rd

|K(y − xt)−K(y − x′t)|2|Vt(x, z)|2 dy

+2

∫

Rd

|Vt(x, z)− Vt(x
′, z′)|2|K(y − x′t)|2 dy. (3.22)

We remark now that by classical properties of Fourier transform, since K ∈ L2(Rd), we have

∀ (x, ξ) ∈ R
d × R

d, F(Kx)(ξ) = e−iξ·xF(K)(ξ) ,

where in this case, the Fourier transform operator F acts from L2(Rd) to L2(Rd) and Kx : ȳ ∈ Rd 7→
K(ȳ − x). Since K ∈ L2(Rd), Plancherel’s theorem gives, for all (ȳ, x, x′) ∈ Rd × Cd × Cd,

∫

Rd

|K(ȳ − xt)−K(ȳ − x′t)|2dȳ =

∫

Rd

|Kxt
(ȳ)−Kx′

t
(ȳ)|2dȳ

=

∫

Rd

|e−iξ·xtF(K)(ξ)− e−iξ·x′
tF(K)(ξ)|2dξ

=

∫

Rd

|F(K)(ξ)|2 |e−iξ·xt − e−iξ·x′
t |2dξ

≤
∫

Rd

|F(K)(ξ)|2 |ξ · (xt − x′t)|2dξ

≤ |xt − x′t|2
∫

Rd

|F(K)(ξ)|2 |ξ|2dξ

= |xt − x′t|2
∫

Rd

|F(K)(ξ)ξ|2dξ

= |xt − x′t|2
∫

Rd

|F(∇K)(ξ)|2dξ

= |xt − x′t|2‖∇K‖22 . (3.23)
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Injecting this bound into (3.22), taking into account (2.8) yields
∫

Rd

|K(y − xt)Vt(x, z)−K(y − x′t)Vt(x
′, z′)|2 dy ≤ 2‖∇K‖22 |xt − x′t|2 exp(2tMΛ)

+ 2MK |Vt(x, z)− Vt(x
′, z′)|2

≤ 2e2tMΛ‖∇K‖22|xt − x′t|2

+4MKL
2
Λe

2tMΛ t

∫ t

0

[
|xs − x′s|2 + |zs − z′s|2

]
ds

≤ 2e2tMΛ(2MKL
2
Λt

2 + ‖∇K‖22) sup
0≤r≤t

|xr − x′r|2

+4MKL
2
Λe

2tMΛ t

∫ t

0

|zs − z′s|2 ds

≤ C̃K,Λ(t)

[
sup

0≤r≤t

|xr − x′r|2 +
∫ t

0

|zs − z′s|2 ds
]
,

(3.24)

for all (x, x′) ∈ Cd × Cd and (z, z′) ∈ C × C, with C̃K,Λ(t) := 2e2tMΛ(2MKL
2
Λt(t+ 1) + ‖∇K‖22).

Inserting (3.24) into (3.21), after substituting X(ω) with x, X(ω′) with x′, z with um(X(ω)) and z′ with

um
′

(X(ω′)), for any µ ∈ Π(m,m′), we obtain the inequality

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)

{∫

Cd×Cd

sup
0≤r≤t

|Xr(ω)−Xr(ω
′)|2 dµ(ω, ω′)

+

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

}
. (3.25)

Since inequality (3.5) is verified for all y ∈ Rd , s ∈ [0, T ], we obtain for all ω, ω′ ∈ Cd

|um
(
s,Xs(ω)

)
− um

′(
s,Xs(ω

′)
)
|2 ≤ CK,Λ(s)

[
|Xs(ω)−Xs(ω

′)|2 + |Ws(m,m
′)|2
]

≤ CK,Λ(s)

[
sup

0≤r≤s

|Xr(ω)−Xr(ω
′)|2 + |Ws(m,m

′)|2
]
.

Integrating each side of the above inequality with respect to the time variable s and the measure

µ ∈ Π(m,m′) and observing that CK,Λ(s) is increasing in s yields

I :=

∫

Cd×Cd

∫ t

0

|um(s,Xs(ω))− um
′

(s,Xs(ω
′))|2 ds dµ(ω, ω′)

≤ CK,Λ(t)t

[∫

Cd×Cd

sup
0≤r≤t

|Xr(ω)−Xr(ω
′)|2 dµ(ω, ω′) + |Wt(m,m

′)|2
]
. (3.26)

By injecting inequality (3.26) in the right-hand side of inequality (3.25), we obtain

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + tCK,Λ(t))

∫

Cd×Cd

sup
0≤r≤t

|Xr(ω)−Xr(ω
′)|2dµ(ω, ω′)

+tC̃K,Λ(t)CK,Λ(t)|Wt(m,m
′)|2 . (3.27)

By taking the infimum over µ ∈ Π(m,m′) on the right-hand side, we obtain

‖um(t, ·)− um
′

(t, ·)‖22 ≤ C̃K,Λ(t)(1 + 2tCK,Λ(t))|Wt(m,m
′)|2 . (3.28)

• Proof of (3.8).

By the hypothesis 4. in Assumption 1, K ∈ L1(Rd). Given a function g : [0, T ] × Rd → C, (s, x) 7→
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g(s, x) , we will often denote its Fourier transform in the space variable x by (s, ξ) 7→ F(g)(s, ξ) instead

of Fg(s, ·)(ξ). Then for (ω̄, s, ξ) ∈ Ω × [0, T ]× Rd, the Fourier transform of the functions uηω̄ and um

are given by

F(uηω̄ )(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω) exp

(∫ s

0

Λ
(
r,Xr(ω), u

ηω̄(r,Xr(ω))
)
dr

)
dηω̄(ω) (3.29)

F(um)(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω) exp

(∫ s

0

Λ
(
r,Xr(ω), u

m(r,Xr(ω))
)
dr

)
dm(ω) . (3.30)

To simplify notations in the sequel, we will often use the convention

V ν
r (y) := Vr(y, u

ν(y)) = exp

(∫ r

0

Λ
(
θ, yθ, u

ν(θ, yθ)
)
dθ

)
,

where uν is defined in (3.1), with m = ν.

In this way, relations (3.29) and (3.30) can be re-written as

F(uηω̄ )(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω)

(3.31)

F(um)(s, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xs(ω)V m
s (X(ω))dm(ω) ,

for (ω̄, s, ξ) ∈ Ω× [0, T ]× Rd.

For a function f ∈ L1(Rd) such that F(f) ∈ L1(Rd), the inversion formula of the Fourier transform is

valid and implies

f(x) =
1√
2π

∫

Rd

F(f)(ξ)eiξ·xdξ, x ∈ R
d . (3.32)

f is obviously bounded and continuous taking into account Lebesgue dominated convergence theo-

rem. Moreover

‖f‖∞ ≤ 1√
2π

‖F(f)‖1, (3.33)

where we remind that ‖·‖1 denotes the L1(Rd)-norm. As F(K) belongs to L1(Rd), from (3.33) applied

to the function f = uηω̄ (s, ·)− um(s, ·) with fixed ω̄ ∈ Ω, s ∈ [0, T ], we get

E[‖uη(s, ·)− um(s, ·)‖2∞] ≤ 1√
2π

E[‖F(uη)(s, ·)−F(um)(s, ·)‖21]

≤ 1√
2π

E

[(∫

Rd

|F(uηω̄ )(s, ξ)−F(um)(s, ξ)|dξ
)2
]
, (3.34)

where we recall that E is taken w.r.t. to dP(ω̄).

The terms intervening in the expression above are measurable. This can be justified by Fubini-Tonelli

theorem and the fact that (ω̄, s, x) 7→ uηω̄(s, x) is measurable from (Ω × [0, T ] × Rd,F ⊗ B([0, T ]) ⊗
B(Rd)) to (R,B(R)). We prove the latter point. By item 3. of this Lemma, we recall that the function

(m, t, x) 7→ um(t, x) is continuous on P(Cd) × [0, T ] × Rd and so measurable from (P(Cd) × [0, T ] ×
Rd,B(P(Cd))⊗B([0, T ])⊗B(Rd)) to (R,B(R)). The application (ω̄, t, x) 7→ (ηω̄ , t, x) being measurable

from (Ω× [0, T ]× Rd,F ⊗ B([0, T ]⊗B(Rd))) to (P(Cd)⊗B([0, T ])⊗ B(Rd)), by composition the map

(ω̄, s, x) 7→ uηω̄(s, x) is measurable. By Fubini-Tonelli theorem (ω̄, s, ξ) 7→ F(uηω̄ )(s, ξ)) is measurable

from (Ω × [0, T ] × Rd,F ⊗ B([0, T ]) ⊗ B(Rd) to (C,B(C)) and (s, ξ) 7→ um(s, ξ) is measurable from

([0, T ]× Rd,B([0, T ]⊗ Rd) to (R,B(R).
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We are now ready to bound the right-hand side of (3.34). For all (ω̄, s) ∈ Ω× [0, T ], by (3.31)

|F(uηω̄ )(s, ξ)−F(um)(s, ξ)| ≤ |F(K)(ξ)|
∣∣∣∣
∫

Cd

e−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω)−

∫

Cd

e−iξ·Xs(ω)V ηω̄
s (X(ω))dm(ω)

∣∣∣∣

+ |F(K)(ξ)|
∣∣∣∣
∫

Cd

e−iξ·Xs(ω)V ηω̄
s (X(ω))dm(ω)−

∫

Cd

e−iξ·Xs(ω)V m
s (X(ω))dm(ω)

∣∣∣∣ ,

(3.35)

which implies

(∫

Rd

|F(uηω̄ )(s, ξ)−F(um)(s, ξ)|dξ
)2

≤
(∫

Rd

|F(K)(ξ)||As,ω̄(ξ)|dξ +
∫

Rd

|F(K)(ξ)||Bs,ω̄(ξ)|dξ
)2

≤ 2(I1s,ω̄ + I2s,ω̄) , (3.36)

where {
I1s,ω̄ :=

(∫
Rd |F(K)(ξ)||As,ω̄(ξ)|dξ

)2

I2s,ω̄ :=
(∫

Rd |F(K)(ξ)||Bs,ω̄(ξ)|dξ
)2

,
(3.37)

and for all ω̄ ∈ Ω, s ∈ [0, T ]

{
As,ω̄(ξ) :=

∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω)−

∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))dm(ω)

Bs,ω̄(ξ) :=
∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))dm(ω)−

∫
Cd e

−iξ·Xs(ω)V m
s (X(ω))dm(ω) .

(3.38)

We observe that (ω̄, s, ξ) 7→ As,ω̄(ξ) and (ω̄, s, ξ) 7→ Bs,ω̄(ξ) are measurable. Indeed, the map

(ω, ω̄, ξ) 7→ e−iξ·Xs(ω)V ηω̄
s (X(ω)) is Borel. By Remark 2.2 we can easily show that (ω̄, s, ξ) 7→ ηω̄(ω)

is (still) a random measure when Ω is replaced by [0, T ] × Rd × Ω. Proposition 3.3, Chapter 3. of

[14] tell us that (ω̄, s, ξ) 7→
∫
Cd e

−iξ·Xs(ω)V ηω̄
s (X(ω))dηω̄(ω) is measurable. By use of Fubini’s theorem

mentioned, measurability of A,B follows.

Regarding As,ω̄, let ϕs,ξ,ω̄ denote the function defined by y ∈ Cd 7→ e−iξ·ysV ηω̄
s (y). Then, one can write

As,ω̄ = 〈ηω̄ −m,ϕs,ξ,ω̄〉, where 〈·, ·〉 denotes the pairing between measures and bounded, continuous

functionals. ϕs,ξ,ω̄ is clearly bounded by esMΛ ; inequalities (2.8) and (3.5) imply the continuity of

ϕs,ξ,ω̄ on (Cd, ‖ · ‖∞), for fixed (ω̄, s, ξ) ∈ Ω× [0, T ]×Rd. By Cauchy-Schwarz inequality we obtain for

all ω̄ ∈ Ω, s ∈ [0, T ]

I1s,ω̄ ≤ ‖F(K)‖1
(∫

Rd

|F(K)(ξ)||As,ω̄ |2dξ
)

≤ ‖F(K)‖1
(∫

Rd

|F(K)(ξ)||〈ηω̄ −m,ϕs,ξ,ω̄〉|2dξ
)
. (3.39)

Since the right-hand side of (3.39) is measurable, taking expectation w.r.t. dP(ω̄) in both sides yields

E[I1s ] ≤ ‖F(K)‖1
(∫

Rd

|F(K)(ξ)| E[|〈η −m,ϕs,ξ,·〉|2] dξ
)

≤ e2sMΛ‖F(K)‖1



∫

Rd

|F(K)(ξ)| sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2]dξ




≤ e2sMΛ‖F(K)‖21 sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] . (3.40)
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Concerning the second term Bs,ω̄, for all (s, ξ) ∈ [0, T ]× Rd,

|Bs,ω̄(ξ)|2 =

∣∣∣∣
∫

Cd

e−iξ·Xs(ω)
(
V ηω̄
s (X(ω))− V m

s (X(ω))
)
dm(ω)

∣∣∣∣
2

≤
∫

Cd

|V ηω̄
s (X(ω))− V m

s (X(ω))|2 dm(ω)

≤ e2sMΛL2
Λ

∫

Cd

∣∣∣∣
∫ s

0

uηω̄(r,Xr(ω))− um(r,Xr(ω))dr

∣∣∣∣
2

dm(ω) , by (2.8)

≤ se2sMΛL2
Λ

∫

Cd

∫ s

0

|uηω̄ (r,Xr(ω))− um(r,Xr(ω))|2 dr dm(ω)

≤ se2sMΛL2
Λ

∫ s

0

‖uηω̄(r, ·)− um(r, ·)‖2∞ dr , (3.41)

where we remind that functions (r, x, ω̄) ∈ [0, T ]×Rd×Ω 7→ uηω̄(r, x) and (r, x) ∈ [0, T ]×Rd 7→ um(r, x)

are uniformly bounded.

Taking into account (3.41), the measurability of the function (ω̄, r) ∈ Ω×[0, T ] 7→ ‖uηω̄(r, ·)−um(r, ·)‖2∞
and the Fubini theorem imply

E[I2s ] ≤ E



(∫

Rd

|F(K)(ξ)| sup
ξ∈Rd

|Bs,·(ξ)|dξ
)2



≤ E[ sup
ξ∈Rd

|Bs,·(ξ)|2 ‖F(K)‖21]

≤ se2sMΛL2
Λ‖F(K)‖21

∫ s

0

E[‖uη(r, ·)− um(r, ·)‖2∞]dr . (3.42)

Taking the expectation of both sides in (3.36), we inject (3.40) and (3.42) in the expectation of the

right-hand side of (3.36) so that (3.34) gives for all s ∈ [0, T ]

E
[
‖uη(s, ·)− um(s, ·)‖2∞

]
≤ C2(s)

∫ s

0

E[‖uη(r, ·)− um(r, ·)‖2∞]dr

+C1(s) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2], (3.43)

where C1(s) := 1√
2π
esMΛ‖F(K)‖21 and C2(s) := 1√

2π
se2sMΛL2

Λ‖F(K)‖21. On the one hand, since the

functions uη and um are uniformly bounded, E[‖uη(s, ·)− um(s, ·)‖∞2
] is finite. On the other hand,

observing that a 7→ C1(a) and a 7→ C2(a) are increasing, we have for all s ∈]0, T ], a ∈ [0, s]

E
[
‖uη(a, ·)− um(a, ·)‖2∞

]
≤ C2(s)

∫ a

0

E[‖uη(r, ·)− um(r, ·)‖2∞]dr + C1(s) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] .

By Gronwall’s lemma, we finally obtain

∀ s ∈ [0, T ], E
[
‖uη(s, ·)− um(s, ·)‖2∞

]
≤ C1(s)e

sC2(s) sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈η −m,ϕ〉|2] . (3.44)

To conclude this part, we want to highlight some properties of the function um, which will be used in

Section 7. In fact, the map (m, t, x) ∈ P2(Cd) × [0, T ] × Rd 7→ um(t, x) has an important non-anticipating

property. We begin by defining the notion of induced measure. For the rest of this section, we fix t ∈ [0, T ],

mt ∈ P(Cd
t ).
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Definition 3.6. Given a non-negative Borel measure m on (Cd,B(Cd)). From now on, mt will denote the (unique)

induced measure on (Cd
t ,B(Cd

t )) (with Cd
t := C([0, t],Rd)) by

∫

Cd
t

F (φ)mt(dφ) =

∫

Cd

F (φ|[0,t])m(dφ),

where F : Cd
t −→ R is bounded and continuous.

Remark 3.7. Let t ∈ [0, T ],m = δξ , ξ ∈ Cd. The induced measure, mt, on Cd
t is δ(ξr |0≤r≤t).

The same construction as the one carried on in Lemma 3.2 allows us to define the unique solution to

umt(s, y) =
∫
Cd
t
K(y −Xs(ω)) exp

(∫ s

0 Λ(r,Xr(ω), u
mt(r,Xr(ω)))dr

)
mt(dω) ∀s ∈ [0, t] . (3.45)

Proposition 3.8. Under the assumption of Lemma 3.2, we have

∀(s, y) ∈ [0, t]× R
d, um(s, y) = umt(s, y).

Proof. By definition of mt, it follows that um(s, y)|[0,t]×Rd is a solution of (3.45). Invoking the uniqueness of

(3.45) ends the proof.

Corollary 3.9. Let N ∈ N, ξ1, · · · , ξi, · · · , ξN be (Gt)-adapted continuous processes, where G is a filtration (defined

on some probability space) fulfilling the usual conditions. Let m(dω) = 1
N

∑N
i=1 δξi(dω). Then, (um(t, y)) is a

(Gt)-adapted random field, i.e. for any (t, y) ∈ [0, T ]× Rd, the process is (Gt)-adapted.

3.2 Existence and uniqueness of the solution to the stochastic differential equations

For a given m ∈ P2(Cd), um is well-defined according to Lemma 3.2. Let Y0 ∼ ζ0. Then we can consider the

SDE

Yt = Y0 +
∫ t

0
Φ(s, Ys, u

m(s, Ys))dWs +
∫ t

0
g(s, Ys, u

m(s, Ys))ds , for any t ∈ [0, T ], (3.46)

which constitutes the first equation of (1.4). Thanks to Assumption 1 and Lemma 3.4 implying the Lipschitz

property of um w.r.t. the space variable (uniformly in time), (3.46) admits a unique strong solution Y m. We

define the application Θ : P2(Cd) → P2(Cd) such that Θ(m) := L(Y m). The aim of the present section is to

prove, following Sznitman [31], by a fixed point argument on Θ the following result.

Theorem 3.10. Under Assumption 1, the McKean type SDE (1.4) admits the following properties.

1. Strong existence and pathwise uniqueness;

2. existence and uniqueness in law.

The proof of the theorem needs the lemma below. Given two reals a, b we will denote in the sequel

a ∧ b := min(a, b).

Lemma 3.11. Let r : [0, T ] 7→ [0, T ] be a non-decreasing function such that r(s) ≤ s for any s ∈ [0, T ]. Let

U : (t, y) ∈ [0, T ]× Cd → R (respectively U ′ : (t, y) ∈ [0, T ]× Cd → R), be a given Borel function such that for all

t ∈ [0, T ], there is a Borel map Ut : C([0, t],Rd) → R (resp. U ′

t : C([0, t],Rd) → R) such that U(t, ·) = Ut(·) (resp.

U ′(t, ·) = U ′
t(·)).

Then the following two assertions hold.
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1. Consider Y (resp. Y ′) a solution of the following SDE for v = U (resp. v = U ′):

Yt = Y0 +
∫ t

0
Φ(r(s), Yr(s), v(r(s), Y·∧r(s)))dWs +

∫ t

0
g(r(s), Yr(s), v(r(s), Y·∧r(s)))ds , for any t ∈ [0, T ] ,

(3.47)

where, we emphasize that for all θ ∈ [0, T ], Z·∧θ := {Zu, 0 ≤ u ≤ θ} ∈ C([0, θ],Rd) for any continuous

process Z . For any a ∈ [0, T ], we have

E[sup
t≤a

|Y ′
t − Yt|2] ≤ CΦ,g(T )E

[∫ a

0

|U(r(t), Y·∧r(t))− U ′(r(t), Y ′
·∧r(t))|2dt

]
, (3.48)

where CΦ,g(T ) = 12(4L2
Φ + TL2

g)e
12T (4L2

Φ+TL2
g).

2. Suppose moreover that Φ and g are globally Lipschitz w.r.t. the time and space variables i.e. there exist some

positive constants LΦ and Lg such that for any (t, t′, y,′ y′, z, z′) ∈ [0, T ]2 × R2d × R2

{
|Φ(t, y, z)− Φ(t′, y′, z′)| ≤ LΦ(|t− t′|+ |y − y′|+ |z − z′|)
|g(t, y, z)− g(t′, y′, z′)| ≤ Lg(|t− t′|+ |y − y′|+ |z − z′|) .

(3.49)

Let r1, r2 : [0, T ] 7→ [0, T ] being two non-decreasing functions verifying r1(s) ≤ s and r2(s) ≤ s for any

s ∈ [0, T ]. Let Y (resp. Y ′) be a solution of (3.47) for v = U and r = r1 (resp. v = U ′ and r = r2). Then for

any a ∈ [0, T ], the following inequality holds:

E[sup
t≤a

|Y ′
t − Yt|2] ≤ CΦ,g(T )

(
‖r1 − r2‖22 +

∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E

[∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt
])

, (3.50)

where ‖ · ‖2 is the L2([0, T ])-norm.

Proof. 1. Let us consider the first assertion of Lemma 3.11. Let Y (resp. Y ′) is solution of (3.47) with

associated function U (resp. U ′). Let us fix a ∈]0, T ]. We have

Yθ − Y ′
θ = αθ + βθ, θ ∈ [0, a], (3.51)

where

αθ :=

∫ θ

0

(
Φ(r(s), Yr(s),U(r(s), Y·∧r(s)))− Φ(r(s), Y ′

r(s),U ′(r(s), Y ′
·∧r(s)))

)
dWs

βθ :=

∫ θ

0

(
g(r(s), Yr(s),U(r(s), Y·∧r(s)))− g(r(s), Y ′

r(s),U ′(r(s), Y ′
·∧r(s)))

)
ds .

By Burkholder-Davis-Gundy (BDG) inequality, we obtain

E sup
θ≤a

|αθ|2 ≤ 4E

[∫ a

0

∣∣∣Φ(r(s), Yr(s),U(r(s), Y·∧r(s)))− Φ(r(s), Y ′
r(s),U ′(r(s), Y ′

·∧r(s)))
∣∣∣
2

ds

]

= 4

∫ a

0

E

[∣∣∣Φ(r(s), Yr(s),U(r(s), Y·∧r(s)))− Φ(r(s), Y ′
r(s),U ′(r(s), Y ′

·∧r(s)))
∣∣∣
2
]
ds

≤ 8L2
Φ

∫ a

0

E

[∣∣∣U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))

∣∣∣
2
]
ds+ 8L2

Φ

∫ a

0

E

[
|Yr(s) − Y ′

r(s)|2
]
ds .

(3.52)
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Concerning β in (3.51), by Cauchy-Schwarz inequality, we get

E sup
θ≤a

|βθ|2 ≤ aE

[∫ a

0

|g(r(s), Yr(s),U(r(s), Y·∧r(s)))− g(r(s), Y ′
r(s),U ′(r(s), Y ′

·∧r(s)))|2ds
]

≤ 2aL2
gE

[∫ a

0

|U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))|2ds

]
+ 2aL2

g

∫ a

0

E

[
|Yr(s) − Y ′

r(s)|2
]
ds .

(3.53)

Gathering (3.53) together with (3.52) and using the fact that r(s) ≤ s, implies

E[sup
θ≤a

|Y ′
θ − Yθ|2] ≤ 4(4L2

Φ + TL2
g)

(
E[

∫ a

0

|U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))|2ds]

+

∫ a

0

E[|Yr(s) − Y ′
r(s)|2] ds

)

≤ 4(4L2
Φ + TL2

g)

(
E[

∫ a

0

|U(r(s), Y·∧r(s))− U ′(r(s), Y ′
·∧r(s))|2ds]

+

∫ a

0

E[sup
θ≤s

|Yθ − Y ′
θ |2] ds

)
,

for any a ∈ [0, t].

We conclude the proof by applying Gronwall’s lemma.

2. Consider now the second assertion of Lemma (3.11). Following the same lines as the proof of assertion

1. and using the Lipschitz property of Φ and g w.r.t. to both the time and space variables (3.49), we

obtain the inequality

E[sup
t≤a

|Y ′
t − Yt|2] ≤ 12(4L2

Φ + TL2
g)

(∫ a

0

|r1(t)− r2(t)|2dt+
∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E[

∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt] +
∫ a

0

E[|Yr1(t) − Y ′
r1(t)

|2] dt
)

≤ 12(4L2
Φ + TL2

g)

(
‖r1 − r2‖22 +

∫ a

0

E[|Y ′
r1(t)

− Y ′
r2(t)

|2]dt

+E[

∫ a

0

|U(r1(t), Y·∧r1(t))− U ′(r2(t), Y
′
·∧r2(t)

)|2dt] +
∫ a

0

E[sup
s≤t

|Ys − Y ′
s |2] dt

)
.

Applying again Gronwall’s lemma concludes the proof.

Proof of Theorem 3.10. Let us consider two probability measures m and m′ in P2(Cd). We are interested in

proving that Θ is a contraction for the Wasserstein metric. Let u := um, u′ := um
′

be solutions of (3.1) related

to m and m′. Let Y be the solution of (3.46) and Y ′ be the solution of (3.46) with m′ replacing m.

By definition of the Wasserstein metric (2.1)

|WT (Θ(m),Θ(m′))|2 ≤ E[sup
t≤T

|Y ′
t − Yt|2] . (3.54)

Hence, we control |Y ′
t − Yt|. To this end, we will use Lemma 3.11.

By usual BDG and Cauchy-Schwarz inequalities, as for example Theorem 2.9, Section 5.2, Chapter 5 in

[21] there exists a positive real C0 depending on (T,MΦ,Mg) such that E[supt≤T |Yt|2] ≤ C0

(
1 + E[|Y0|2]

)
.

Using Lemma 3.11 and Lemma 3.4 by applying successively inequality (3.48) and inequality (3.5) yields

E[sup
t≤a

|Y ′
t − Yt|2] ≤ C

[∫ a

0

E[sup
s≤t

|Y ′
s − Ys|2]dt+

∫ a

0

|Wt(m,m
′)|2dt

]
, (3.55)

21



for any a ∈ [0, T ], where C = CΦ,g(T )CK,Λ(T ).

Applying Gronwall’s lemma to (3.55) yields

E[sup
t≤a

|Yt − Y ′
t |2] ≤ CeCT

∫ a

0

|Ws(m,m
′)|2ds . (3.56)

Then recalling (3.54), this finally gives

|Wa(Θ(m),Θ(m′))|2 ≤ CeCT

∫ a

0

|Ws(m,m
′)|2ds, a ∈ [0, T ]. (3.57)

We end the proof of item 1. by classical fixed point argument, similarly to the one of Chapter 1, section 1 of

Sznitman [31].

Concerning item 2. it remains to show uniqueness in law for (1.4). Let (Y 1,m1), (Y 2,m2) be two solutions

of (1.4) on possibly different probability spaces and different Brownian motions, and different initial con-

ditions distributed according to ζ0. Given m ∈ P2(Cd), we denote by Θ(m) the law of Ȳ , where Ȳ is the

(strong) solution of

Ȳt = Ȳ 1
0 +

∫ t

0

Φ(s, Ȳs, u
m(s, Ȳs))dWs +

∫ t

0

g(s, Ȳs, u
m(s, Ȳs))ds , (3.58)

on the same probability space and same Brownian motion on which Y 1 lives. Since um
2

is fixed, Ȳ 2 is

solution of a classical SDE with Lipschitz coefficients for which pathwise uniqueness holds. By Yamada-

Watanabe theorem, Y 2 and Ȳ 2 have the same distribution. Consequently, Θ(m2) = L(Ȳ 2) = L(Y 2) = m2.

It remains to show that Y 1 = Ȳ 2 in law, i.e. m1 = m2. By the same arguments as for the proof of 1., we get

(3.57), i.e. for all a ∈ [0, T ],

|Wa(L(Y 1),L(Ȳ 2))|2 = |Wa(Θ(m1),Θ(m2))|2 ≤ CeCT

∫ a

0

|Ws(m
1,m2)|2ds.

Since Θ(m1) = m1 and Θ(m2) = m2, by Gronwall’s lemma m1 = m2 and finally Y 1 = Ȳ 2 (in law). This

concludes the proof of Proposition 3.10.

4 Strong Existence under weaker assumptions

Let us fix a filtered probability space (Ω,F , (Ft)t≥0,P) equipped with a p dimensional (Ft)t≥0-Brownian

motion (Wt)t≥0.

In this section Assumption 2 will be in force. In particular, we suppose that ζ0 is a Borel probability measure

having a second order moment.

Before proving the main result of this part, we remark that in this case, uniqueness fails for (1.4). To

illustrate this, we consider the following counterexample, which is even valid for d = 1.

Example 4.1. Consider the case Φ = g = 0, X0 = 0 so that ζ0 = δ0. This implies that Xt ≡ 0 is a strong solution

of the first line of (1.4). Since u(0, .) = (K ∗ ζ0)(·), we have u(0, ·) = K .

A solution u of the second line equation of (1.4), will be of the form

u(t, y) = K(y) exp

(∫ t

0

Λ(r, 0, u(r, 0))dr

)
, (4.1)

for some suitable Λ fulfilling Assumption 2. 2. We will in fact consider Λ independent of the time and β(u) :=

Λ(0, 0, u). Without restriction of generality we can suppose K(0) = 1. We will show that the second line equation
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of (1.4) is not well-posed for some particular choice of β.

Now (4.1) becomes

u(t, y) = K(y) exp

(∫ t

0

β(u(r, 0))dr

)
. (4.2)

By setting y = 0, we get φ(t) := u(t, 0) and in particular, necessarily we have

φ(t) = exp

(∫ t

0

β(φ(r))dr

)
. (4.3)

A solution u given in (4.2) is determined by setting u(t, y) = K(y)φ(t). Now, we choose the function β such that for

given constants α ∈ (0, 1) and C > 1,

β(r) =





|r − 1|α , if r ∈ [0, C]

|C − 1|α , if r ≥ C

1 , if r ≤ 0 .

(4.4)

β is clearly a bounded, uniformly continuous function verifying β(1) = 0 and β(r) 6= 0, for all r 6= 1.

We define F : R −→ R, by F (u) =
∫ u

1
1

rβ(r)dr. F is strictly positive on (1,+∞), and it is a homeomorphism

from [1,+∞) to R+, since
∫ +∞
1

1
rβ(r)dr = ∞.

On the one hand, by setting φ(t) := F−1(t), for t > 0, we observe that φ verifies φ′(t) = φ(t)β(φ(t)), t > 0 and

so φ is a solution of (4.3).

On the other hand, the function φ ≡ 1 also satisfies (4.3), with the same choice of Λ, related to β. This shows the

non-uniqueness for the second equation of (1.4).

The main theorem of this section states however the existence (even though non-uniqueness) for (1.4),

when the coefficients Φ and g of the SDE are Lipschitz in (x, u).

Theorem 4.2. We suppose the validity of Assumption 2. (1.4) admits strong existence.

The proof goes through several steps. We begin by recalling a lemma, stated in Problem 4.12 and Remark

4.13 page 64 in [21].

Lemma 4.3. Let (Pn)n≥0 be a sequence of probability measures on Cd converging in law to some probability P. Let

(fn)n≥0 be a uniformly bounded sequence of real-valued, continuous functions defined on Cd, converging uniformly

on every compact subset to some continuous f . Then
∫

Cd

fn(ω)dPn(ω) −−−−−−→
n → +∞

∫

Cd

f(ω)dP(ω) .

Remark 4.4. We will apply several times Lemma 4.3. We will verify its assumptions showing that the sequence (fn)

converges uniformly on each bounded ball of Cd. This will be enough since every compact of Cd is bounded.

We emphasize that the hypothesis of uniform convergence in Lemma 4.3 is crucial, see Remark 9.1.

We formulate below an useful Remark, which follows by a simple application of Lebesgue dominated

convergence theorem. It will be often used in the sequel.

Remark 4.5. Let Λ : [0, T ] × Rd × R −→ R be a Borel bounded function such that for almost all t ∈ [0, T ]

Λ(t, ·, ·) is continuous. The function F : [0, T ] × Cd × C −→ R, x0 ∈ R, defined by F (t, y, z) = K(x0 −
yt) exp

(∫ t

0 Λ(r, yr, zr)dr
)

is continuous.

Lemma 4.6. Let (Λn)n∈N be a sequence of Borel uniformly bounded functions defined on [0, T ]×Rd ×R, such that

for every n, Λn(t, ·, ·) is continuous. Assume the existence of a Borel function Λ : [0, T ] × Rd × R → R such that,
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for almost all t ∈ [0, T ],
[
Λn(t, ., .) − Λ(t, ., .)

]
−−−−−−→
n → +∞

0, uniformly on each compact of Rd × R. Let x0 ∈ Rd, we

denote by Fn, F : [0, T ]× Cd × C → R, the maps

Fn(t, y, z) := K(x0 − yt) exp

(∫ t

0

Λn(r, yr, zr)

)
and F (t, y, z) := K(x0 − yt) exp

(∫ t

0

Λ(r, yr, zr)

)
.

Then for every M > 0, Fn converges to F when n goes to infinity uniformly with respect to (t, y, z) ∈ [0, T ] ×
Bd(O,M)×B1(O,M), with Bk(O,M) := {y ∈ Ck, ||y||∞ := supu∈[0,T ] |yu| ≤M} for k ∈ N⋆.

Proof. We want to evaluate ||Fn − F ||∞,M := sup
(t,y,z)∈[0,T ]×Bd(O,M)×B1(O,M)

|Fn(t, y, z)− F (t, y, z)|.

Since (Λn)n≥0 are uniformly bounded, there is a constant MΛ such that

∀r ∈ [0, T ], sup
(y′,z′)∈Bd(O,M)×B1(O,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)| ≤ 2MΛ.

By use of (2.7), we obtain for all (t, y, z) ∈ [0, T ]×Bd(O,M)×B1(O,M),

|Fn(t, y, z)− F (t, y, z)| ≤MK exp(MΛ)

∫ t

0

sup
(y′,z′)∈Bd(O,M)×B1(O,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)|dr, (4.5)

which implies

||Fn − F ||∞,M ≤MK exp(MΛ)

∫ T

0

sup
(y′,z′)∈Bd(O,M)×B1(O,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)|dr. (4.6)

By Lebesgue’s dominated convergence theorem, we have

∫ T

0

sup
(y′,z′)∈Bd(O,M)×B1(O,M)

|Λn(r, y
′
r, z

′
r)− Λ(r, y′r, z

′
r)| dr −→ 0 ,

which concludes the proof.

Lemma 4.7. Let Λn,Λ be as stated in Lemma 4.6. Let (Y n)n∈N be a sequence of continuous processes. We set

Zn := un(. , Y
n) where for any (t, x) ∈ [0, T ]× Rd

{
un(t, x) :=

∫
Cd K(x−Xt(ω)) exp

{∫ t

0 Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn(ω)

mn := L(Y n) .
(4.7)

Suppose moreover that νn := L((Y n, Zn)) converges in law to some probability measure ν on Cd × C. Then un

pointwisely converges as n goes to infinity to some limiting function u : [0, T ]× Rd → R such that for all (t, x) ∈
[0, T ]× Rd,

u(t, x) :=

∫

Cd×C
K(x−Xt(ω)) exp

{∫ t

0

Λ
(
r,Xr(ω), X

′
r(ω

′)
)
dr

}
dν(ω, ω′) . (4.8)

Remark 4.8. (un)n≥0 is uniformly bounded by MK exp(MΛT ).

Proof. Observe that un(t, x) =
∫
Cd×C K(x − Xt(ω)) exp

{∫ t

0
Λn

(
r,Xr(ω), X

′
r(ω

′)
)
dr
}
dνn(ω, ω′). Let us fix

t ∈ [0, T ], x ∈ Rd. Let us introduce the sequence of real valued functions (fn)n∈N and f defined on Cd × C
such that

fn(y, z) = K(x− yt) exp

{∫ t

0

Λn

(
r, yr, zr

)
dr

}
and f(y, z) = K(x− yt) exp

{∫ t

0

Λ
(
r, yr, zr

)
dr

}
.

By Remark 4.5, fn and f are continuous.

By Lemma 4.6, it follows that fn −−−−−−→
n −→ +∞

f uniformly on each closed ball (and therefore also for each

compact subset) of Cd × C. Then applying Lemma 4.3 and Remark 4.4, with Cd × C, P = ν, Pn = νn allows

to conclude.
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In fact, the pointwise convergence of (un)n≥0 can be reinforced.

Proposition 4.9. Suppose that the same assumptions as in Lemma 4.7 hold.

Then the sequence (un) introduced in Lemma 4.7 also converges uniformly to u : [0, T ] × Rd → R defined in

(4.8), on each compact of [0, T ]× Rd. In particular u is continuous.

Proof. We fix a compact C of Rd. The restrictions of un to [0, T ]× C are uniformly bounded. Provided we

prove that the sequence un|[0,T ]×C is equicontinuous, Ascoli-Arzela theorem would imply that the set of

restrictions of un to [0, T ]× C is relatively compact with respect to uniform convergence norm topology.

To conclude, given a subsequence (unk
) it is enough to extract a subsubsequence converging to u. Since

the set of restrictions of unk
to C is relatively compact, there is a function v : [0, T ]× C → R to which unk

converges uniformly on [0, T ]×C. Since, by Lemma 4.7, un converges pointwise to u, obviously v coincides

with u on [0, T ]× C.

It remains to show the equicontinuity of the sequence (un) on [0, T ]× C. We do this below.

Let ε′ > 0. We need to prove that ∃δ, η > 0, ∀(t, x), (t′, x′) ∈ [0, T ]× C,

|t− t′| < δ, |x− x′| < η =⇒ ∀n ∈ N, |un(t, x) − un(t
′, x′)| < ε′. (4.9)

We start decomposing as follows:

|un(t, x) − un(t
′, x′)| ≤ |(un(t, x)− un(t, x

′))|+ |(un(t, x′)− un(t
′, x′))|. (4.10)

As far as the first term in the right-hand side of (4.10) is concerned, we have

|un(t, x)− un(t, x
′)| ≤

∫
Cd |K(x−Xt(ω))−K(x′ −Xt(ω))| exp(MΛT )dm

n(ω),

≤ exp(MΛT )LK |x− x′|,
(4.11)

where the constant MΛ is an uniform upper bound of (|Λn|, n ≥ 0).

We choose η = ε′

3 exp(MΛT )LK
to obtain that

|(un(t, x)− un(t, x
′))| ≤ ε′

3
, (4.12)

for x, x′ ∈ C such that |x− x′| < η and t ∈ [0, T ].

Regarding the second one we have

|un(t, x′)− un(t
′, x′)| ≤ B1 +B2, (4.13)

where

B1 :=
∣∣∣
∫
Cd

[
K(x′ −Xt(ω))−K(x′ −Xt′(ω))

]
exp

{∫ t

0 Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn((ω))

∣∣∣
B2 :=

∣∣∣
∫
Cd K(x′ −Xt′(ω))

[
exp

{∫ t

0
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
−

exp
{∫ t′

0
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
} ]
dmn(ω)

∣∣∣
(4.14)

We first estimate B1. We fix ε > 0. Let us introduce the continuous functional Cd −→ C([0, T ] × C,R)

given by

F : η 7→
(
(t, x′) ∈ [0, T ]× R

d 7→ K(x′ − ηt)
)
,

where we denote by C([0, T ] × C,R) the linear space of real valued continuous functions on [0, T ] × C,

equipped with the usual sup-norm topology. Since (Y n)n∈N converges in law, the sequence of r.v.
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(Rn
t,x′ := F (Y n)(t, x′), (t, x′) ∈ [0, T ]×C)n∈N indexed on [0, T ]×C, also converges in law. In particular, the

sequence of their corresponding laws are tight.

An easy adaptation of Theorem 7.3 page 82 in [10] (and the first part of its proof) to the case of random

fields shows the existence of δε > 0 such that

∀n ∈ N, P(Ωn
ε,δε

) ≤ ε , (4.15)

where Ωn
ε,δε

:=




ω̄ ∈ Ω

∣∣∣ sup
(t,t′)∈[0,T ]2,|t−t′|≤δε

(x,x′)∈C2,|x−x′|≤δε

|K(x− Y n
t (ω̄))−K(x′ − Y n

t′ (ω̄))| ≥ ε





.

In the sequel of the proof, for simplicity we will simply write Ωn
ε := Ωn

ε,δε
. Suppose that |t− t′| ≤ δε.

Then, for all x′ ∈ C

B1 =
∣∣∣E
[(
K(x′ − Y n

t )−K(x′ − Y n
t′ )
)
exp

{∫ t

0

Λ(r, Y n
r , u

n(r, Y n
r ))
}]∣∣∣

≤ exp(MΛT )E
[
|K(x′ − Y n

t )−K(x′ − Y n
t′ )|
]

= exp(MΛT ) (I1(ε, n) + I2(ε, n)) , (4.16)

where

I1(ε, n) := E

[
|K(x′ − Y n

t )−K(x′ − Y n
t′ )| 1Ωn

ε

]
(4.17)

I2(ε, n) := E

[
|K(x′ − Y n

t )−K(x′ − Y n
t′ )| 1(Ωn

ε )
c

]
. (4.18)

We have

I1(ε, n) ≤ 2MKP(Ωn
ε ) ≤ 2MKε , (4.19)

and

I2(ε, n) ≤ εP((Ωn
ε )

c) ≤ ε . (4.20)

At this point, we have shown that for |t− t′| ≤ δε, x′ ∈ C,

B1 ≤ ε(2MK + 1) exp(MΛT ) . (4.21)

We can now choose ε := ε′

3(2MK+1) exp(−MΛT ) so that B1 ≤ ε′

3 .

Concerning the term B2, using (2.7), we have

B2 ≤
∫
Cd |K(x′ −Xt′(ω))|

∣∣∣ e
{∫

t
0
Λn

(
r,Xr(ω),un(r,Xr(ω))

)
dr

}

− e

{∫
t′

0
Λn

(
r,Xr(ω),un(r,Xr(ω))

)
dr

}∣∣∣dmn(ω)

≤ MK exp(MΛ)
∫
Cd dm

n(ω)
∣∣∣
∫ t′

t
Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
∣∣∣

≤ MK exp(MΛ)MΛ|t− t′| .
(4.22)

We choose δ = min(δǫ,
ε′

3MKMΛ exp(MΛ) ). For |t − t′| < δ, we have B2 ≤ ε′

3 . By additivity B1 + B2 ≤ 2ε′

3 and

finally, taking into account (4.12) and (4.13), (4.9) is verified. This concludes the proof of Proposition 4.9.

Regarding the limit in Lemma 4.7, we can be more precise by using once again Lemma 4.3 and Remark

4.4.
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Proposition 4.10. Let Λn,Λ be as in Lemma 4.6. Let (Y n) be a sequence of Rd−valued continuous processes, whose

law is denoted by mn. Let un : [0, T ]× Rd → R as in (4.7). Let Zn
t := un(t, Y

n
t ), t ∈ [0, T ].

We suppose that (Y n, Zn) converges in law.

Then (un) converges uniformly on each compact to some continuous u : [0, T ]× Rd → R which fulfills

u(t, η) =

∫

Cd

K(η −Xt(ω)) exp
( ∫ t

0

Λ(r,Xr(ω), u(r,Xr(ω)))dr
)
dm(ω), (4.23)

where m is the limit of (mn)n≥0.

Proof. Without loss of generality, the proof below is written with d = 1. By Lemma 4.7, the left-hand side

of (4.7) converges pointwise to u, where u is defined in (4.8). By Proposition 4.9 the convergence holds

uniformly on each compact and u is continuous. It remains to show that u fulfills (4.23). For this we will

take the limit of the right-hand side (r.h.s) of (4.7) and we will show that it gives the r.h.s of (4.23). For

n ∈ N, (r, x) ∈ [0, T ]× R, we set

Λ̃n(r, x) := Λn(r, x, un(r, x)) (4.24)

Λ̃(r, x) := Λ(r, x, u(r, x)). (4.25)

We fix (t, η) ∈ [0, T ]× R. In view of applying Lemma 4.3, we define fn, f : C → R such that

fn(y) = K(η − yt) exp
( ∫ t

0

Λ̃n(r, yr)dr
)

f(y) = K(η − yt) exp
( ∫ t

0

Λ̃(r, yr)dr
)
.

We also set Pn := mn. Since (Y n, Zn) converges in law to ν, mn converges weakly tom. Moreover, since

|Λ̃n| are uniformly bounded with upper bound MΛ, (fn) are also uniformly bounded.

The maps (fn) are continuous by Remark 4.5, and also the function f since, u is continuous on [0, T ]×R.

Taking into account Remark 4.4, we will show that fn → f uniformly on each ball of C.

Let us fix M > 0 and denote B1(O,M) := {y ∈ C, ||y||∞ := sups∈[0,T ] |ys| ≤ M}. For any locally

bounded function φ : [0, T ]× R → R, we set ||φ||∞,M := sups∈[0,T ],ξ∈[−M,M ] |φ(s, ξ)|. Let ε > 0.

Since un → u uniformly on [0, T ]× [−M,M ], there exists n0 ∈ N such that,

n ≥ n0 =⇒ ||un − u||∞,M < ε . (4.26)

The sequence un|[0,T ]×[−M,M ] is uniformly bounded. Let IM be a compact interval including the subset

{un(s, x) | (s, x) ∈ [0, T ]× [−M,M ]}.

For all (s, x) ∈ [0, T ]× [−M,M ],

|Λ̃n(s, x)− Λ̃(s, x)| = |Λn(s, x, un(s, x)) − Λ(s, x, u(s, x))|
≤ |Λn(s, x, un(s, x)) − Λ(s, x, un(s, x))| + |Λ(s, x, un(s, x)) − Λ(s, x, u(s, x))|
:= I1(n, s, x) + I2(n, s, x) .

(4.27)

Concerning I1, since for almost all s ∈ [0, T ], Λn(s, ·, ·) −−−−→
n → ∞

Λ(s, ·, ·) uniformly on [−M,M ] × IM , we

have for x ∈ [−M,M ],

0 ≤ I1(n, s, x) ≤ sup
x∈[−M,M ],ξ∈IM

|Λn(s, x, ξ)− Λ(s, x, ξ)| −−−−→
n → ∞

0 ds-a.e. ,
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from which we deduce

sup
x∈[−M,M ]

I1(n, s, x) −−−−→
n → ∞

0 ds-a.e. (4.28)

Now, we treat the term I2. Taking into account (4.26), we get for n ≥ n0 (n0 depending on ε),

0 ≤ sup
s∈[0,T ],x∈[−M,M ]

I2(n, s, x) ≤ sup
s∈[0,T ],x∈[−M,M ],|ξ1−ξ2|≤ε

|Λ(s, x, ξ1)− Λ(s, x, ξ2)| (4.29)

We take the lim sup on both sides of (4.29), which gives,

lim sup
n−→∞

sup
s∈[0,T ],x∈[−M,M ]

I2(n, s, x) ≤ S(ε), (4.30)

where S(ε) := sups∈[0,T ],x∈[−M,M ],|ξ1−ξ2|≤ε |Λ(s, x, ξ1) − Λ(s, x, ξ2)|. Summing up (4.28), (4.30) and taking

into account (4.27), we get,

0 ≤ lim sup
n→∞

sup
x∈[−M,M ]

|Λ̃n(s, x)− Λ̃(s, x)| ≤ S(ε) ds-a.e. (4.31)

Since Λ satisfies Assumption 2, the uniform continuity of (x, ξ) ∈ R×R 7→ Λ(s, x, ξ) (uniformly with respect

to s) holds and limε−→0 S(ε) = 0.

Finally,

sup
x∈[−M,M ]

|Λ̃n(s, x)− Λ̃(s, x)| −−−−→
n → ∞

0 ds-a.e. (4.32)

Now, for n > n0 we obtain

supy∈B1(0,M) |fn(y)− f(y)| ≤ MK exp(MΛT )
∫ T

0
supx∈[−M,M ] |Λ̃n(r, x)− Λ̃(r, x)|dr. (4.33)

Since (Λ̃n),Λ are uniformly bounded, (4.32) and Lebesgue’s dominated convergence theorem, the right-

hand side of (4.33) goes to 0 when n −→ 0. This shows that fn −→ f uniformly on B1(O,M).

We can now apply Lemma 4.3 (with Pn and fn defined above) to obtain, for n −→ ∞,

∫

C
K(η −Xt(ω)) exp

(∫ t

0

Λn(r,Xr(ω), un(r,Xr(ω)))dr

)
dmn(ω)

converges to ∫

C
K(η −Xt(ω)) exp

(∫ t

0

Λ(r,Xr(ω), u(r,Xr(ω)))dr

)
dm(ω),

which finally proves (4.23) and concludes the proof of Proposition 4.10.

At this point we state simple technical lemma concerning strong convergence of solutions of stochastic

differential equations.

Lemma 4.11. Let R0 be a square integrable random variable on some filtered probability space, equipped with a p

dimensional Brownian motion W . Let an : [0, T ] × Rd −→ Rd×p and bn : [0, T ] × Rd −→ Rd Borel functions

verifying the following.

• ∃L > 0, for all (x, y) ∈ Rd × Rd, supn≥0 |an(t, x)− an(t, y)|+ supn≥0 |bn(t, x)− bn(t, y)| ≤ L|x− y|;

• ∃c > 0, for all x ∈ Rd, supn≥0(|an(t, x)|+ |bn(t, x)|) ≤ c(1 + |x|);
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• (an), (bn) converge pointwise respectively to Borel functions a : [0, T ]×Rd → Rd×p and b : [0, T ]×Rd → Rd.

Then there exists a unique strong solution of
{
dYt = a(t, Yt)dWt + b(t, Yt)dt

Y0 = R0, .
(4.34)

Moreover, let for each n, let the strong solution Xn (which of course exists) of

{
dY n

t = an(t, Y
n
t )dWt + bn(t, Y

n
t )dt

Y n
0 = R0.

(4.35)

Then,

sup
t≤T

|Y n
t − Yt| L2

−−−−−−→
n −→ +∞

0.

Proof. The existence and uniqueness of Y follows because a, b are Lipschitz with linear growth.

The proof of the convergence is classical: it relies on BDG and Jensen inequalities together with Gronwall’s

lemma.

Now, we are able to prove the main result of this section.

Proof of Theorem 4.2. Let Y0 be a r.v. distributed according to ζ0. We set

Λn : (t, x, ξ) ∈ [0, T ]× R
d × R 7→ Λn(t, x, ξ) :=

∫

Rd×R

φdn(x− x1)φn(ξ − ξ1)Λ(t, x1, ξ1)dx1dξ1, (4.36)

where (φn)n≥0 is a usual mollifier sequence converging (weakly) to the Dirac measure. Thanks to the

classical properties of the convolution, we know that Λ being bounded implies

∀n ∈ N, ||Λn||∞ ≤ ||φdn||L1 ||φn||L1 ||Λ||∞ = ||Λ||∞. For fixed n ∈ N, φn is Lipschitz so that (4.36) says that Λn

is also Lipschitz. Then, for fixed n ∈ N, according to Assumption 2, Φ, g, Λn are Lipschitz and uniformly

bounded, we can apply the results of Section 3 (see Theorem 3.10) to obtain the existence of a pair (Y n, un)

such that 



dY n
t = Φ(t, Y n

t , un(t, Y
n
t ))dWt + g(t, Y n

t , un(t, Y
n
t ))dt

Y n
0 = Y0,

un(t, x) = E[K(x− Y n
t ) exp

( ∫ t

0
Λn(r, Y

n
r , un(r, Y

n
r ))dr

)
].

(4.37)

Since Λn is uniformly bounded and {Y n
0 } are obviously tight, Lemma 9.3 in the Appendix gives the

existence of a subsequence (nk) such that (Y nk , unk
(·, Y nk· )) converges in law to some probability measure

ν on Cd ×C. By Assumption 2, for all t ∈ [0, T ], Λn(t, ·, ·) converges to Λ(t, ·, ·), uniformly on every compact

subset of Rd × R.

In view of applying Proposition 4.10, we set Znk

t := unk
(t, Y nk

t ) and mnk := L(Y nk). We know that

(Λnk
),Λ satisfy the hypotheses of Lemma 4.6. On the other hand (Y nk , Znk) converges in law to ν. So we

can apply Proposition 4.10, which says that (unk
) converges uniformly on each compact to some u which

verifies (4.23), where m is the first marginal of ν. In particular we emphasize that the sequence (Y nk)

converges in law to m.

We continue the proof of Theorem 4.2 concentrating on the first line of (1.4).

We set, for all (t, x) ∈ [0, T ]× Rd, k ∈ N,

29



ak(t, x) := Φ(t, x, unk
(t, x))

bk(t, x) := g(t, x, unk
(t, x))

a(t, x) := Φ(t, x, u(t, x))

b(t, x) := g(t, x, u(t, x)) .

(4.38)

Here, the functions un being fixed, the first equation of (4.37) is a classical SDE, whose coefficients depend

on the (deterministic) continuous function un. By Remark 3.1, the functions un appearing in (4.37) are

Lipschitz with respect to the second argument and bounded. This implies that the coefficients ak, bk are

Lipschitz (with constant not depending on k) and uniformly bounded.

Since (unk
) converges pointwise to u, then (ak), (bk) converges pointwise respectively to a, b where

a(t, x) = Φ(t, x, u(t, x)), b(t, x) = g(t, x, u(t, x)).

Consequently, we can apply Lemma 4.11 with the sequence of classical SDEs
{
dY nk

t = ak(t, Y
nk

t )dWt + bk(t, Y
nk

t )dt

Y nk

0 = Y0,
(4.39)

to obtain

sup
t≤T

|Y nk

t − Yt|
L2(Ω)−−−−−−→

k −→ +∞
0,

where Y is the (strong) solution to the classical SDE




dZt = a(t, Zt)dWt + b(t, Zt)dt

Z0 = Y0

a(t, x) = Φ(t, x, u(t, x))

b(t, x) = g(t, x, u(t, x)) .

(4.40)

We remark that Y verifies the first equation of (1.4) and the corresponding u fulfills (4.23). To conclude the

proof of Theorem 4.2 it remains to identify the law of Y with m. Since Y nk converges strongly, then the

laws mnk of Y nk converge to the law of Y , which by Proposition 4.10, coincides necessarily to m.

5 Weak Existence when the coefficients are continuous

In this section we consider again (1.4) i.e. problem




Yt = Y0 +
∫ t

0
Φ(r, Yr, u(r, Yr))dWr +

∫ t

0
g(r, Yr, u(r, Yr))dr , with Y0 ∼ ζ0 ,

u(t, x) =
∫
Cd dm(ω)

[
K(x−Xt(ω)) exp

{∫ t

0 Λ
(
r,Xr(ω), u(r,Xr(ω))

)
dr
}]

, for (t, x) ∈ [0, T ]× Rd

L(Y ) = m ,

(5.41)

but under weaker conditions on the coefficients Φ, g,Λ and initial condition ζ0. In that case the existence or

the well-posedness will only be possible in the weak sense, i.e., not on a fixed (a priori) probability space.

The aim of this section is to show weak existence for problem (5.41), in the sense of Definition 2.7 under As-

sumption 3. The idea consists here in regularizing the functions Φ and g and truncating the initial condition

ζ0 to use existence result stated in Section 4, i.e. Theorem 4.2.

Theorem 5.1. Under Assumption 3, the problem (1.4) admits existence in law, i.e. there is a solution (Y, u) of (5.41)

on a suitable probability space equipped with a Brownian motion.
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Proof. We consider the following mollifications (resp. truncations) of the coefficients (resp. the initial con-

dition).
Φn : (t, x, ξ) ∈ [0, T ]× Rd × R 7→

∫
Rd×R

φdn(x− r′)φn(ξ − r)Φ(t, r′, r)dr′dr

gn : (t, x, ξ) ∈ [0, T ]× Rd × R 7→
∫
Rd×R

φdn(x− r′)φn(ξ − r)g(t, r′, r)dr′dr

∀ϕ ∈ Cb(Rd),
∫
Rd ζ

n
0 (dx)ϕ(x) =

∫
Rd ζ0(dx)(−n ∨ ϕ(x)) ∧ n .

(5.42)

We fix a filtered probability space (Ω,F ,P) equipped with an (Ft)t≥0-Brownian motion W . First of all, we

point out the fact that the function Λ satisfies the same assumptions as in Section 4. On the one hand, by

(5.42), since φn belongs to S(Rd), Φn and gn are uniformly bounded and Lipschitz with respect to (x, ξ)

uniformly w.r.t. t for each n ∈ N. Also ζn0 admits a second moment and (ξn0 ) weakly converges to ξ0. On

the other hand For each n, let Y n
0 be a (square integrable) r.v. distributed according to ζn0 . By Theorem 4.2,

there is a pair (Y n, un) fulfilling (1.4) with Φ, g, ζ0 replaced by Φn, gn, ζ
n
0 . In particular we have





Y n
t = Y n

0 +
∫ t

0 Φn(r, Y
n
r , un(r, Y

n
r ))dWr +

∫ t

0 gn(r, Y
n
r , un(r, Y

n
r ))dr , with Y n

0 ∼ ζn0 ,

un(t, x) =
∫
Cd dm

n(ω)
[
K(x−Xt(ω)) exp

{∫ t

0
Λ
(
r,Xr(ω), un(r,Xr(ω))

)
dr
}]

, for (t, x) ∈ [0, T ]× Rd ,

L(Y n) = mn.

(5.43)

Remark 5.2. Similarly to Remark 4.8 (|un|)n≥0 is uniformly bounded by MK exp(MΛT ).

SettingZn := un(·, Y n))), in the sequel, we will denote by νn the Borel probability defined by L(Y n, Zn).

The same notation will be kept after possible extraction of subsequences.

Since (ζn0 )n∈N weakly converges to ζ0, it is tight. By Remark 5.2 and Lemma 9.3, there is a subsequence

{νnk} which weakly converges to some Borel probability ν on Cd × C. For simplicity we replace in the

sequel the subsequence (nk) by (n). Let (Y n) be the sequence of processes solving (5.43). We remind that

mn denote their law. The final result will be established once we will have proved the following statements,

a) un converges to some (continuous) function u : [0, T ]×R
d → R, uniformly on each compact of [0, T ]×R

d,

which verifies

∀(t, x) ∈ [0, T ]× R
d, u(t, x) =

∫

Cd

K(x−Xt(ω)) exp

{∫ t

0

Λ
(
r,Xr(ω), u(r,Xr(ω)))

)
dr

}
dm(ω)

where m is the limit of the laws of Y n.

b) The processes Y n converge in law to Y , where Y is a solution, in law, of
{

Yt = Y0 +
∫ t

0 Φ(r, Yr, u(r, Yr))dWr +
∫ t

0 g(r, Yr, u(r, Yr))dr

Y0 ∼ ζ0 .
(5.44)

Step a) is a consequence of Proposition 4.10 with for all n ∈ N, Λn ≡ Λ.

To prove the second step b), we will pass to the limit in the first equation of (5.43). To this end, let us denote

by C2
0 (R

d), the space of C2(Rd) functions with compact support. Without loss of generality, we suppose

d = 1. We will prove that m is a solution to the martingale problem (in the sense of Stroock and Varadhan,

see chapter 6 in [30]) associated with the first equation of (5.41). In fact we will show that
{

∀ϕ ∈ C2
0 (R), t ∈ [0, T ], Mt := ϕ(Xt)− ϕ(X0)−

∫ t

0
(Arϕ)(Xr)dr, is a FX

t -martingale, where

(FX
t , t ∈ [0, T ]) is the canonical filtration generated by X,

(5.45)
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where we denote Arϕ)(x) =
1
2Φ

2(r, x, u(r, x)))ϕ′′(x) + g(r, x, u(r, x))ϕ′(x), r ∈ [0, T ], x ∈ Rd.

Let 0 ≤ s < t ≤ T fixed, F : C([0, s],R) → R continuous and bounded. Indeed, we will show

∀ϕ ∈ C2
0 (R), E

m
[(
ϕ(Xt)− ϕ(X0)−

∫ t

0 (Arϕ)(Xr)dr
)
F (Xr, r ≤ s)

]
= 0 (5.46)

We remind that, for n ∈ N, by definition, mn is the law of the strong solution Y n of

Y n
t = Y n

0 +

∫ t

0

Φn(r, Y
n
r , un(r, Y

n
r ))dWr +

∫ t

0

gn(r, Y
n
r , un(r, Y

n
r ))dr ,

on a fixed underlying probability space (Ω,F ,P) with related expectation E.

Then, by Itô’s formula, we easily deduce that ∀n ∈ N,

E

[(
ϕ(Y n

t )− ϕ(Y n
s )−

∫ t

s

(
1

2
Φ2

n(r, Y
n
r , un(r, Y

n
r ))ϕ′′(Y n

r ) + gn(r, Y
n
r , un(r, Y

n
r ))ϕ′(Xn

r )

)
dr

)
F (Y n

r , r ≤ s)

]
= 0 .

(5.47)

Transferring this to the canonical space C and to the probability mn gives

E
mn

[(
ϕ(Xt)− ϕ(Xs)−

∫ t

s

(
1

2
Φ2

n(r,Xr, un(r,Xr))ϕ
′′(Xr) + gn(r,Xr, un(r,Xr))ϕ

′(Xr)

)
dr

)
F ((Xu, 0 ≤ u ≤ s))

]
= 0.

(5.48)

From now on, we are going to pass to the limit when n −→ +∞ in (5.48) to obtain (5.45). Thanks to the

weak convergence of the sequence mn, for ϕ ∈ C2
0 (R

d), we have immediately

E
mn [(ϕ(Xt)− ϕ(Xs))F (Xu, 0 ≤ u ≤ s)]− E

m[(ϕ(Xt)− ϕ(Xs))F (Xu, 0 ≤ u ≤ s)] −−−−−→
n −→ ∞

0. (5.49)

It remains to show,





limn−→∞ Emn [Hn(X)F (Xu, 0 ≤ u ≤ s)] = Em[H(X)F (Xu, 0 ≤ u ≤ s)],

with Hn(α) :=
∫ t

s
(12Φ

2
n(r, αr, un(r, αr))ϕ

′′(αr) + gn(r, αr , un(r, αr))ϕ
′(αr)dr,

H(α) :=
∫ t

s
(12Φ

2(r, αr, u(r, αr))ϕ
′′(αr) + g(r, αr, u(r, αr))ϕ

′(αr)dr .

(5.50)

In order to show that Emn [Hn(X)F ]− E
m[H(X)F ] goes to zero, we will apply again Lemma 4.3.

As we have mentioned above, F is continuous and bounded. Similarly as for Remark 4.5, the proof of the

continuity of H (resp. Hn) makes use of the continuity of Φ, g, ϕ′′, ϕ′ (resp. Φn, gn,ϕ′′, ϕ′) and Lebesgue

dominated convergence theorem.

Taking into account Remark 4.4, it is enough to prove the uniform convergence of Hn : C −→ R to

H : C −→ R on each ball of C. This relies on the uniform convergence of Φn(t, ·, ·) (resp. gn(t, ·, ·) ) to

Φ(t, ·, ·) (resp. g(t, ·, ·) ) on every compact subset R × R, for fixed t ∈ [0, T ]. Since the sequence (mn)

converges weakly, finally Lemma 4.3 allows to conclude (5.50).

6 Link with nonlinear Partial Differential Equation

From now on, in all the sequel, to simplify notations, we will often use the notation ft(·) = f(t, ·) for

functions f : [0, T ]× E −→ R, E being some metric space.

In the following, we suppose again the validity of Assumption 3.

Here F(·) : f ∈ S(Rd) 7→ F(f) ∈ S(Rd) denotes the Fourier transform on the classical Schwartz space

S(Rd). We will indicate in the same manner the Fourier transform on S ′(Rd). In this section, we want to
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link the nonlinear SDE (1.4) to a partial integro-differential equation (PIDE) that we have to determine. We

start by considering problem (1.4) written under the following form:




Yt = Y0 +
∫ t

0
Φ(s, Ys, u

m
s (Ys))dWs +

∫ t

0
g(s, Ys, u

m
s (Ys))ds, Y0 ∼ ζ0

umt (x) =
∫
Cd K(x−Xt(ω)) exp

{∫ t

0 Λ
(
r,Xr(ω), u

m
r (Xr(ω)))

)
dr
}
dm(ω)

L(Y ) = m ,

(6.1)

recalling that Vt
(
Y, um(Y )

)
= exp

( ∫ t

0 Λs(Ys, u
m
s (Ys))ds

)
.

Suppose that K is formally the Dirac measure at zero. In this case, the solution of (6.1) is also a solution

of (1.3). Let ϕ ∈ S(Rd). Applying Itô formula to ϕ(Yt) we can easily show that the function v, density

of the measure ν defined in (1.3), is a solution in the distributional sense of the PDE (1.1). For K being

a mollifier of the Dirac measure, applying the same strategy, we cannot easily identify the deterministic

problem solved by um, e.g. PDE or PIDE.

For that reason we begin by establishing a correspondence between (6.1) and another McKean type

stochastic differential equation, i.e.




Yt = Y0 +
∫ t

0 Φ(s, Ys, (K ∗ γm)(s, Ys))dWs +
∫ t

0 g(s, Ys, (K ∗ γm)(s, Ys))ds, Y0 ∼ ζ0

γmt is the measure defined by, for all ϕ ∈ Cb(Rd)

γmt (ϕ) := 〈γmt , ϕ〉 :=
∫
Cd ϕ(Xt(ω))Vt(X, (K ∗ γm)(X))dm(ω)

L(Y ) = m ,

(6.2)

where we recall the notations (K ∗ γ)(s, ·) := (K ∗ γs)(·) and
∫
Rd ϕ(x)γ

m
t (dx) := γmt (ϕ) .

Theorem 6.1. We suppose the validity of Assumption 3. The existence of the McKean type stochastic differential

equation (6.1) is equivalent to the one of (6.2). More precisely, given a solution (Y, γm) of (6.2), (Y, um), with

um = K ∗ γm, is a solution of (6.1) and if (Y, um) is a solution (6.1), there exists a Borel measure γm such that

(Y, γm) is solution of (6.2).

In addition, if the measurable set {ξ ∈ Rd|F(K)(ξ) = 0} is Lebesgue negligible, (6.1) and (6.2) are equivalent, i.e.,

the measure γm is uniquely determined by um and conversely.

Proof. Let ((Yt, t ≥ 0), um) be a solution of (6.1). Let us fix t ∈ [0, T ].

Since K ∈ L1(Rd), the Fourier transform applied to the function um(t, ·) gives

F(um)(t, ξ) = F(K)(ξ)

∫

Cd

e−iξ·Xt(ω) exp

(∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω)))

)
dm(ω) . (6.3)

By Lebesgue dominated convergence theorem, the function

fm : ξ ∈ R
d 7→ f(ξ) :=

∫

Cd

e−iξ·Xt(ω) exp

(∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω)))

)
dm(ω) ,

is clearly continuous on R
d. Since Λ is bounded, fm is also bounded. Let (ak)k=1,··· ,d be a sequence of

complex numbers and (xk)k=1··· ,d ∈ (Rd)d. Remarking that for all ξ ∈ Rd

d∑

k=1

d∑

p=1

akāpe
−iξ·(xk−xp) =

(
d∑

k=1

ake
−iξ·xk

)(
d∑

p=1

ape−iξ·xp

)
=

∣∣∣∣∣

d∑

k=1

ake
−iξ·xk

∣∣∣∣∣

2

,

it is clear that fm is non-negative definite. Then, by Bochner’s theorem (see Theorem 24.9 Chapter I.24 in

[27]), there exists a finite non-negative Borel measure µt on R
d such that for all ξ ∈ R

d

fm(ξ) =
1√
2π

∫

Rd

e−iξ·θµm
t (dθ) . (6.4)

33



We want to show that γmt := µm
t fulfills the third line equation of (6.2).

Since µm
t is a finite (non-negative) Borel measure, it is a Schwartz (tempered) distribution such that

F−1(fm) = µm
t and ∀ψ ∈ S(Rd),

∣∣∣∣
∫

Rd

ψ(x)µm
t (dx)

∣∣∣∣ ≤ ‖ψ‖∞µm
t (Rd) <∞ .

On the one hand, equalities (6.3) and (6.4) give

F(um)(t, ·) = F(K)F(µm
t ) =⇒ um(t, ·) = K ∗ µm

t . (6.5)

On the other hand, for all ψ ∈ S(Rd),

〈µm
t , ψ〉 = 〈F−1(fm), ψ〉

= 〈fm,F−1(ψ)〉

=

∫

Rd

F−1(ψ)(ξ)

(∫

Cd

e−iξ·Xt(ω) exp(

∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω))))dm(ω)

)
dξ

=

∫

Cd

(∫

Rd

F−1(ψ)(ξ)e−iξ·Xt(ω)dξ

)
exp

(∫ t

0

Λ(r,Xr(ω), u
m
r (Xr(ω)))

)
dm(ω)

=

∫

Cd

(∫

Rd

F−1(ψ)(ξ)e−iξ·Xt(ω)dξ

)
exp

(∫ t

0

Λ(r,Xr(ω), (K ∗ µm
r )(Xr(ω)))

)
dm(ω)

=

∫

Cd

ψ(Xt(ω)) exp

(∫ t

0

Λ(r,Xr(ω), (K ∗ µm
r )(Xr(ω)))

)
dm(ω) , (6.6)

where the third equality is justified by Fubini theorem and the fourth equality follows by (6.5). This allows

to conclude the necessary part of the first statement of the lemma.

Regarding the converse, let (Y, γm) be a solution of (6.2). We set directly umt (x) := (K ∗ γmt )(x). Ob-

viously the first equation in (6.1) is satisfied for (Y, um). Since µm
t is finite, the second equation follows

directly by (6.2) to ϕ = K(x− ·).
To establish the second statement of the theorem, it is enough to observe that from the r.h.s of (6.5) we have

Leb({ξ ∈ R
d|F(K)(ξ) = 0}) = 0 =⇒ F(µm

t ) =
F(um)(t, ·)

F(K)
a.e. , t ∈ [0, T ],

where Leb denotes the Lebesgue measure on Rd. This shows effectively that γm (resp. um) is uniquely

determined by um (resp. γm) and ends the proof.

Now, by applying Itô’s formula , we can show that the associated measure γm (second equation in (6.2))

satisfies a PIDE.

Theorem 6.2. The measure γmt , defined in the second equation of (6.2), satisfies the PIDE




∂tγ
m
t = 1

2

d∑

i,j=1

∂2ij
(
(ΦΦt)i,j(t, x, (K ∗ γmt ))γmt

)
− div (g(t, x,K ∗ γmt )γmt ) + γmt Λ(t, x, (K ∗ γmt ))

γm0 (dx) = ζ0(dx) ,

(6.7)

in the sense of distributions.

Proof. It is enough to use the definition of γmt and, as mentioned above, apply Itô’s formula to the process

ϕ(Yt)Vt(Y, (K ∗ γm)(Y )), for ϕ ∈ C∞
0 (Rd) and Y (defined in the first equation of (6.2)). Indeed, for ϕ ∈
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C∞
0 (Rd), Itô’s formula gives,

E[ϕ(Yt)Vt(Y, (K ∗ γm)(Y ))] = E[ϕ(Y0)]

+

∫ t

0

E [ϕ(Ys)Λ(s, Ys, (K ∗ γm)(s, Ys))Vs(Y, (K ∗ γm)(Y ))] ds

+

∫ t

0

d∑

i=1

E [∂iϕ(Ys)gi(s, Ys, (K ∗ γm)(s, Ys))Vs(Y, (K ∗ γm)(Y ))] ds

+
1

2

∫ t

0

d∑

i,j=1

E[∂2ijϕ(Ys)(ΦΦ
t)i,j(s, Ys, (K ∗ γm)(s, Ys))Vs(Y, (K ∗ γm)(Y ))]ds .

(6.8)

By the definition of the measure γm in (6.2), we have
∫

Rd

ϕ(x)γmt (dx) =

∫

Rd

ϕ(x)ζ0(dx)

+

∫ t

0

∫

Rd

ϕ(x)Λ(s, x, (K ∗ γm)(s, x))γms (dx)ds

+

∫ t

0

∫

Rd

∇ϕ(x) · g(s, x, (K ∗ γm)(s, x))γms (dx)ds

+
1

2

d∑

i,j=1

∫ t

0

∫

Rd

∂2ijϕ(x)(ΦΦ
t)i,j(s, x, (K ∗ γm)(s, x))γms (dx)ds . (6.9)

This concludes the proof of Theorem 6.2.

7 Particle systems approximation and propagation of chaos

In this section, we focus on the propagation of chaos for an interacting particle system ξ = (ξi,N )i=1,··· ,N

associated with the McKean type equation (1.4) when the coefficients Φ, g,Λ are bounded and Lipschitz.

We remind that the propagation of chaos consists in the property of asymptotic independence of the com-

ponents of ξ when the size N of the particle system goes to ∞. That property was introduced in [22] and

further developed and popularized by [31]. Moreover, we propose a particle approximation of u, solution

of (1.4).

We suppose here the validity of Assumption 1. For the simplicity of formulation we suppose that Φ

and g only depend on the last variable z. Let (Ω,F ,P) be a fixed probability space, and (W i)i=1,··· ,N be a

sequence of independent Rp-valued Brownian motions. Let (Y i
0 )i=1,··· ,N be i.i.d. r.v. according to ζ0. We

consider Y := (Y i)i=1,··· ,N the sequence of processes such that (Y i, um
i

) are solutions to

{
Y i
t = Y i

0 +
∫ t

0
Φ(um

i

s (Y i
s ))dW

i
s +

∫ t

0
g(um

i

s (Y i
s ))ds

um
i

t (y) = E

[
K(y − Y i

t )Vt
(
Y i, um

i

(Y i)
)]
, with mi := L(Y i) ,

(7.1)

recalling that Vt
(
Y i, um

i

(Y i)
)
= exp

( ∫ t

0
Λs(Y

i
s , u

mi

s (Y i
s ))ds

)
. The existence and uniqueness of the solution

of each equation is ensured by Proposition 3.10. We remind that the map (m, t, y) 7→ um(t, y) fulfills the

regularity properties given at the second and third item of Lemma 3.4 .

Obviously the processes (Y i)i=1,··· ,N are independent. They are also identically distributed since Propo-

sition 3.10 also states uniqueness in law.
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So we can define m0 := mi the common distribution of the processes (Y i)i=1,··· ,N .

From now on, CdN will denote (Cd)N , which is obviously isomorphic to C([0, T ],RdN). We start observing

that, for every ξ̄ ∈ CdN the function (t, x) 7→ u
SN (ξ̄)
t (x) is obtained by composition of m 7→ umt (x) with

m = SN (ξ̄).

Now let us introduce the system of equations





ξi,Nt = ξi,N0 +
∫ t

0
Φ(u

SN (ξ)
s (ξi,Ns ))dW i

s +
∫ t

0
g(u

SN (ξ)
s (ξi,Ns ))ds

ξi,N0 = Y i
0

u
SN (ξ)
t (y) =

1

N

N∑

j=1

K(y − ξj,Nt )Vt
(
ξj,N , uS

N (ξ)(ξj,N )
)
,

(7.2)

with SN (ξ) standing for the empirical measure associated to ξ := (ξi,N )i=1,··· ,N i.e.

SN (ξ) :=
1

N

N∑

i=1

δξi,N . (7.3)

As for (7.3), we set SN (Y) :=
1

N

N∑

i=1

δY i is the empirical measure for Y := (Y i)i=1,··· ,N , where we remind

that for each i ∈ {1, · · · , N}, Y i is solution of (7.1). We observe that by Remark 2.3, SN (ξ) and SN (Y) are

measurable maps from (Ω,F) to (P(Cd),B(P(Cd))), and they are such that SN (ξ), SN (Y) ∈ P2(Cd) P-a.s. A

solution ξ := (ξi,N )i=1,··· ,N of (7.2) is called weakly interacting particle system.

The first line equation of (7.2) is in fact a path-dependent stochastic differential equation. We claim that

its coefficients are measurable. Indeed, the map (t, ξ̄) 7→ (SN (ξ̄), t, ξ̄it , ) being continuous from ([0, T ] ×
CdN ,B([0, T ]) ⊗ B(CdN)) to (P(Cd) × [0, T ] × Rd,B(P(Cd)) ⊗ B([0, T ]) ⊗ B(Rd)) for all i ∈ {1, · · · , N}, by

composition with the continuous map (m, t, y) 7→ um(t, y) (see Lemma 3.4 (3.)) we deduce the continuity of

(t, ξ̄) 7→ (u
SN (ξ̄)
t (ξ̄it))i=1,··· ,N , and so the measurability from ([0, T ]× CdN ,B([0, T ])⊗ B(CdN)) to (R,B(R)).

In the sequel, for simplicity we denote ξ̄r≤s := (ξ̄ir≤s)1≤i≤N . We remark that, by Proposition 3.8 and Remark

3.7, we have
(
uS

N(ξ̄)
s (ξ̄is)

)
i=1,···N

=
(
u
SN (ξ̄

r≤s
)

s (ξ̄is)
)
i=1,···N

, (7.4)

for any s ∈ [0, T ], ξ̄ ∈ CdN and so stochastic integrands of (7.2) are adapted (so progressively measurable

being continuous in time) and so the corresponding Itô integral makes sense. We discuss below its well-

posedness.

The fact that (7.2) has a unique strong solution (ξi,N )i=1,···N holds true because of the following arguments.

1. Φ and g are Lipschitz. Moreover the map ξ̄r≤s 7→
(
u
SN (ξ̄

r≤s
)

s (ξ̄is)
)
i=1,··· ,N

is Lipschitz.

Indeed, for given (ξr≤s, ηr≤s) ∈ CdN ×CdN , s ∈ [0, T ], by using successively inequality (3.5) of Lemma

3.4 and Remark 2.1, for all i ∈ {1, · · · , N} we have

|uS
N (ξr≤s)

s (ξit)− u
SN(ηr≤s)
s (ηit)| ≤

√
CK,Λ(T )


|ξis − ηis|+

1

N

N∑

j=1

sup
0≤r≤s

|ξjr − ηjr |




≤ 2
√
CK,Λ(T ) max

j=1,··· ,N
sup

0≤r≤s

|ξjr − ηjr | . (7.5)
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Finally the functions

ξ̄r≤s 7→
(
Φ(uS

N (ξ̄r,r≤s)
s (ξ̄is))

)
i=1,···N

ξ̄r≤s 7→
(
g(uS

N(ξ̄r,r≤s)
s (ξ̄is))

)
i=1,···N

are uniformly Lipschitz and bounded.

2. A classical argument of well-posedness for systems of path-dependent stochastic differential equa-

tions with Lipschitz dependence on the sup-norm of the path (see Chapter V, Section 2.11, Theo-

rem 11.2 page 128 in [28]).

Theorem 7.1. Let us suppose the validity of Assumption 1. Let N be a fixed positive integer. Let (Y i)i=1,··· ,N (resp.

((ξi,N )i=1,··· ,N ) be the solution of (7.1) (resp. (7.2)), m0 is defined after (7.1). The following assertions hold.

1. If F(K) is in L1(Rd), there is a constant C = C(Φ, g,Λ,K, T ) such that, for all i = 1, · · · , N and t ∈ [0, T ],

E[‖uS
N (ξ)

t − um0
t ‖2∞] ≤ C

N
(7.6)

E[ sup
0≤s≤t

|ξi,Ns − Y i
s |2] ≤ C

N
, (7.7)

where C is a finite positive constant only depending on MK ,MΛ, LK , LΛ, T .

2. If K belongs to W 1,2(Rd), there is a constant C = C(Φ, g,Λ,K, T ) such that, for all t ∈ [0, T ],

E[‖uS
N (ξ)

t − um0
t ‖22] ≤ C

N
, (7.8)

where C is a finite positive constant only depending on MK ,MΛ, LK , LΛ, T and ‖∇K‖2.

The validity of (7.6) and (7.7) will be the consequence of the significant more general proposition below.

Proposition 7.2. Let us suppose the validity of Assumption 1. Let N be a fixed positive integer. Let (W i,N )i=1,··· ,N

be a family of p-dimensional standard Brownian motions (not necessarily independent). We consider the processes

(Ȳ i,N )i=1,··· ,N , such that for each i ∈ {1, · · · , N}, Ȳ i,N is the unique strong solution of

{
Ȳ i,N
t = Y i

0 +
∫ t

0 Φ(u
mi,N

s (Ȳ i,N
s ))dW i,N

s +
∫ t

0 g(u
mi,N

s (Ȳ i,N
s ))ds, for all t ∈ [0, T ]

um
i,N

t (y) = E

[
K(y − Ȳ i,N

t )Vt
(
Ȳ i,N , um

i,N

(Ȳ i,N )
)]
, with mi,N := L(Ȳ i,N ) ,

(7.9)

recalling that Vt
(
Y i,N , um

i,N

(Y i,N )
)
= exp

( ∫ t

0 Λs(Y
i,N
s , um

i,N

s (Y i,N
s ))ds

)
, (Y i

0 )i=1,··· ,N being the family of i.i.d.

r.v. initializing the system (7.1). Below, we consider the system of equations (7.2), where the processes W i are replaced

by W i,N , i.e. 



ξi,Nt = ξi,N0 +
∫ t

0
Φ(u

SN (ξ)
s (ξi,Ns ))dW i,N

s +
∫ t

0
g(u

SN(ξ)
s (ξi,Ns ))ds

ξi,N0 = Ȳ i,N
0

u
SN(ξ)
t (y) =

1

N

N∑

j=1

K(y − ξj,Nt )Vt
(
ξj,N , uS

N (ξ)(ξj,N )
)
.

(7.10)

Then the following assertions hold.

1. For any i = 1, · · ·N , (Ȳ i,N
t )t∈[0,T ] have the same law mi,N = m0, where m0 is the common law of processes

(Y i)i=1,··· ,N defined by the system (7.1).

37



2. Equation (7.10) admits a unique strong solution.

3. Suppose moreover that F(K) is in L1(Rd). Then, there is a constant C = C(K,Φ, g,Λ, T ) such that, for all

t ∈ [0, T ],

sup
i=1,...,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + E[‖uS

N (ξ)
t − um

0

t ‖2∞] ≤ C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] ,

(7.11)

with SN (Ȳ) :=
1

N

N∑

j=1

δȲ j,N .

Remark 7.3. 1. The r.h.s. of (7.11) can be easily bounded if the processes (Ȳ i,N )i=1,··· ,N are i.i.d. Indeed, as in

the proof of the Strong Law of Large Numbers,

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] = sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E





 1

N

N∑

j=1

ϕ(Ȳ j,N )− E[ϕ(Ȳ j,N )]




2



= sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

V ar(
1

N

N∑

j=1

ϕ(Ȳ j,N ))

= sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

V ar(
1

N
ϕ(Ȳ 1,N ))

≤ 1

N
. (7.12)

2. In fact Proposition 7.2 does not require the independence of (Ȳ i,N )i=1,···N . Indeed, the convergence of the

numerical approximation u
SN (ξ)
t to um0

t only requires the convergence of dΩ2 (S
N (Ȳ),m0) to 0, where we

remind that the distance dΩ2 has been defined at Remark 3.5 b). This gives the opportunity to define new

numerical schemes for which the convergence of the empirical measure SN(Ȳ) is verified without i.i.d. particles.

3. Let us come back to the case of independent driving Brownian motions W i, i ≥ 1. Observe that Theorem 7.1

implies the propagation of chaos. Indeed, for all k ∈ N⋆, (7.7) implies

(ξ1,N − Y 1, ξ2,N − Y 2, · · · , ξk,N − Y k)
L2(Ω,F ,P)−−−−−−−→
N −→ +∞

0 ,

which gives the convergence in law of the vector (ξ1,N , ξ2,N , · · · , ξk,N ) to (Y 1, Y 2, · · · , Y k). Consequently,

since (Y i)i=1,··· ,k are i.i.d. according to m0

(ξ1,N , ξ2,N , · · · , ξk,N ) converges in law to (m0)⊗k when N → +∞ . (7.13)

4. Proposition 7.2 can be used to provide propagation of chaos results for non exchangeable particle systems. Let

us consider (Ȳ i,N )i=1,···N (resp. (ξi,N )i=1,···N ) solutions of (7.9) (resp. (7.10)) where

W 1,N :=

√
N2 − 1

N
W 1 +

1

N
W 2 and for i > 1, W i,N :=W i ,

where we recall that (W i)i=1,··· ,N is a sequence of independent p dimensional Brownian motions. In that sit-

uation, the particle system (ξi,N ) is clearly not exchangeable. However, a simple application of Proposition 7.2
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allows us to prove the propagation of chaos. Indeed, let us introduce the sequence of i.i.d processes (Y i) solutions

of (7.1), Proposition 7.2 yields

E[sup
s≤t

|ξi,Ns − Y i
s |2] ≤ 2E[sup

s≤t

|ξi,Ns − Ȳ i,N
s |2] + 2E[sup

s≤t

|Ȳ i,N
s − Y i

s |2]

≤ C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] + E[sup
s≤t

|Ȳ i,N
s − Y i

s |2] .

To bound the second term on the r.h.s. of the above inequality, observe that Ȳ i,N = Y i for i > 1 and for i = 1,

notice that simple computations, involving BDG inequality, imply E[sups≤t |Y 1,N
s − Y 1

s |2] ≤ C
N2 .

Concerning the first term on the r.h.s. of the above inequality, we first observe that the decomposition holds

〈SN (Ȳ)−m0, ϕ〉 =
1

N

N∑

i=1

ϕ(Ȳ i,N )− 〈m0, ϕ〉

=
1

N

(
ϕ(Ȳ 1,N)− E[ϕ(Ȳ 1,N )]

)
+
N − 1

N

( 1

N − 1

N∑

i=2

ϕ(Ȳ i,N )− 〈m0, ϕ〉
)
,

for all ϕ ∈ Cb(Cd). We remind that Ȳ 1,N , · · · , Ȳ N,N have the same law m0 taking into account item 1. of

Proposition 7.2. It follows that

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E

[
|〈SN (Ȳ)−m0, ϕ〉|2

]
≤ 6

N2
+

3(N − 1)2

N2
sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E

[
|〈 1

N − 1

N∑

j=2

δȲ j,N −m0, ϕ〉|2
]
. (7.14)

Since the r.v. (Ȳ 2,N , · · · , Ȳ N,N) are i.i.d. according to m0, (7.14) and item 1. of Remark 7.3 give us

sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] ≤ C

N
,

which leads to a similar inequality as (7.7) in Theorem 7.1. The same reasoning as in item 3. above implies

propagation of chaos.

Proof of Proposition 7.2. Let us fix t ∈ [0, T ]. In this proof, C is a real positive constant (C = C(Φ, g,Λ,K, T ))

which may change from line to line.

Equation (7.9) has N blocks, numbered by 1 ≤ i ≤ N . Item 2. of Proposition 3.10 gives uniqueness in law

for each block equation, which implies that for any i = 1, · · ·N , mi,N = m0 and proves the first item.

Concerning the strong existence and pathwise uniqueness of (7.10), the same argument as for the well-

statement of (7.2) operates. The only difference consists in the fact that the Brownian motions may be

correlated. A very close proof as the one of Theorem 11.2 page 128 in [28] works: the main argument is the

multidimensional BDG inequality, see e.g. Problem 3.29 of [21]. From now on let us focus on the proof of

inequality (7.11). On the one hand, since the map (t, ξ̄) ∈ [0, T ]×CdN 7→ (u
SN (ξ̄)
t (ξ̄it))i=1,··· ,N is measurable

and satisfies the non-anticipative property (7.4), the first assertion of Lemma 3.11 gives for all i ∈ {1, · · · , N}

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] ≤ CE[

∫ t

0

|uSN (ξ)
s (ξi,Ns )− um

0

s (Ȳ i,N
s )|2ds]

≤ C

∫ t

0

E[|uSN (ξ)
s (ξi,Ns )− um

0

s (ξi,Ns )|2]ds+
∫ t

0

E[|um0

s (ξi,Ns )− um
0

s (Ȳ i,N
s )|2]ds

≤ C

∫ t

0

(
E[‖uSN (ξ)

s − um
0

s ‖2∞] + E[ sup
0≤r≤s

|ξi,Nr − Ȳ i,N
r |2]

)
ds, by (3.5) ,

(7.15)
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which implies

sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] ≤ C

∫ t

0

(
E[‖uSN (ξ)

s − um
0

s ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤r≤s

|ξi,Nr − Ȳ i,N
r |2]

)
ds (7.16)

On the other hand, using inequalities (3.5) (applied pathwise with m = SN (ξ)(ω̄) and m′ = SN (Ȳ)(ω̄)) and

(3.8) (with the random measure η = SN (Ȳ) and m = m0) in Lemma 3.4, yields

E[‖uS
N(ξ)

t − um
0

t ‖2∞] ≤ 2E
[
‖uS

N(ξ)
t − u

SN(Ȳ)
t ‖2∞

]
+ 2E[‖uS

N(Ȳ)
t − um

0

t ‖2∞]

≤ 2CE[|Wt(S
N(ξ), SN (Ȳ))|2] + 2C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ 2C

N

N∑

i=1

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ 2C sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2],(7.17)

where the third inequality follows from Remark 2.1.

Let us introduce the non-negative function G defined on [0, T ] by

G(t) := E[‖uS
N(ξ)

t − um
0

t ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] .

From inequalities (7.16) and (7.17) that are valid for all t ∈ [0, T ], we obtain

G(t) ≤ (2C + 1) sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] + C sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ C

∫ t

0

(
E[‖uSN (ξ)

s − um
0

s ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤r≤s

|ξi,Nr − Ȳ i,N
r |2]

)
ds

+ C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2]

≤ C

∫ t

0

G(s)ds + C sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] . (7.18)

By Gronwall’s lemma, for all t ∈ [0, T ], we obtain

E[‖uS
N (ξ)

t − um
0

t ‖2∞] + sup
i=1,··· ,N

E[ sup
0≤s≤t

|ξi,Ns − Ȳ i,N
s |2] ≤ CeCt sup

ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Ȳ)−m0, ϕ〉|2] . (7.19)

Proof of Theorem 7.1. To prove inequalities (7.6) and (7.7), we can deduce them from Proposition 7.2. Indeed,

we have to bound the quantity sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Y) −m0, ϕ〉|2] . To this end, it is enough to apply Proposition

7.2, in particular (7.11), by setting for all i ∈ {1, · · · , N}, W i,N :=W i. Pathwise uniqueness of systems (7.1)

and (7.9) implies Ȳ i,N = Y i for all i ∈ {1, · · · , N}. Since (Y i)i=1,··· ,N are i.i.d. according to m0, inequalities

(7.6) and (7.7) follow from item 1. of Remark 7.3.

It remains now to prove (7.8). First, the inequality

E[‖uS
N (ξ)

t − um0
t ‖22] ≤ 2E[‖uS

N(ξ)
t − u

SN (Y)
t ‖22] + 2E[‖uS

N(Y)
t − um0

t ‖22], (7.20)

40



holds for all t ∈ [0, T ]. Using inequality (3.7) of Lemma 3.4, for all t ∈ [0, T ], we get

E[‖uS
N (ξ)

t − u
SN (Y)
t ‖22] ≤ CE[Wt(S

N (ξ), SN (Y))2]

≤ C
1

N

N∑

j=1

E[ sup
0≤r≤t

|ξj,Nr − Y j
r |2]

≤ C

N
, (7.21)

where the latter inequality is obtained through (7.7). The second term of the r.h.s. in (7.20) needs more

computations. Let us fix i ∈ {1, · · · , N}. First,

E[‖uS
N (Y)

t − um0
t ‖22] ≤ 2

(
E[‖At‖22] + E[‖Bt‖22]

)
, (7.22)

where, for all t ∈ [0, T ]





At(x) :=
1

N

N∑

j=1

K(x− Y j
t )
[
Vt
(
Y j , uS

N(Y)(Y j)
)
− Vt

(
Y j , um

0

(Y j)
)]

Bt(x) :=
1

N

N∑

j=1

K(x− Y j
t )Vt

(
Y j , um

0

(Y j)
)
− E

[
K(x− Y 1

t )Vt
(
Y 1, um

0

(Y 1)
)]
,

(7.23)

where we remind that m0 is the common law of all the processes Y i, 1 ≤ i ≤ N .

To simplify notations, we set Pj(t, x) := K(x− Y j
t )Vt

(
Y j , um

0

(Y j)
)
−E

[
K(x− Y 1

t )Vt
(
Y 1, um

0

(Y 1)
)]

for all

j ∈ {1, · · · , N}, x ∈ Rd and t ∈ [0, T ].

We observe that for all x ∈ Rd, t ∈ [0, T ], (Pj(t, x))j=1,··· ,N are i.i.d. centered r.v. . Hence,

E[Bt(x)
2] =

1

N
E[P 2

1 (t, x)] ≤
4

N
E[K(x− Y 1

t )
2Vt
(
Y 1, um

0

(Y 1)
)2
] ≤ 4MKe

2tMΛ

N
E[K(x− Y 1

t )]

and by integrating each side of the inequality above w.r.t. x ∈ Rd, we obtain

E

[∫

Rd

|Bt(x)|2dx
]
=

∫

Rd

E[|Bt(x)|2]dx ≤ 4MKe
2tMΛ

N
, (7.24)

where we have used that ‖K‖1 = 1.

Concerning At(x),

|At(x)|2 ≤ 1

N

N∑

j=1

K(x− Y j
t )

2
[
Vt
(
Y j , uS

N (Y)(Y j)
)
− Vt

(
Y j , um

0

(Y j)
)]2

=
1

N

N∑

j=1

K(x− Y j
t )K(x− Y j

t )
[
Vt
(
Y j , uS

N (Y)(Y j)
)
− Vt

(
Y j , um

0

(Y j)
)]2

≤ MKT

N
e2tMΛL2

Λ

N∑

j=1

K(x− Y j
t )

∫ t

0

|uSN (Y)
r (Y j

r )− um
0

r (Y j
r )|2dr

≤ MKT

N
e2tMΛL2

Λ

N∑

j=1

K(x− Y j
t )

∫ t

0

‖uSN (Y)
r − um

0

r ‖2∞dr,

(7.25)

where the third inequality comes from (2.8). Integrating w.r.t. x ∈ Rd and taking expectation on each side
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of the above inequality gives us, for all t ∈ [0, T ]

E[

∫

Rd

|At(x)|2dx] ≤ MKTe
2tMΛL2

Λ

∫ t

0

E[‖uSN (Y)
r − um

0

r ‖2∞]dr

≤ MKT
2e2tMΛL2

ΛC sup
ϕ∈Cb(Cd)
‖ϕ‖∞≤1

E[|〈SN (Y) −m0, ϕ〉|2]

≤ MKT
2e2tMΛL2

ΛC

N
, (7.26)

where we have used (3.8) of Lemma 3.4 for the second inequality above and (7.12) for the last one. To

conclude, it is enough to replace (7.24), (7.26) in (7.22), and inject (7.21), (7.22) in (7.20).

8 Particle algorithm

8.1 Time discretization of the particle system

In this Section Assumption 1. will be in force again. Let (Y i
0 )i=1,··· ,N be i.i.d. r.v. distributed according to ζ0.

In this section we are interested in discretizing the interacting particle system (7.2) solved by the processes

ξi,N , 1 ≤ i ≤ N . Let us consider a regular time grid 0 = t0 ≤ · · · ≤ tk = kδt ≤ · · · ≤ tn = T , with δt = T/n.

We introduce the continuous R
dN -valued process (ξ̃t)t∈[0,T ] and the family of nonnegative functions

(ṽt)t∈[0,T ] defined on Rd such that





ξ̃i,Nt = ξ̃i,N0 +
∫ t

0
Φ(ṽr(s)(ξ̃

i,N

r(s)))dW
i
s +

∫ t

0
g(ṽr(s)(ξ̃

i,N

r(s)))ds

ξ̃i,N0 = Y i
0

ṽt(y) =
1
N

∑N
j=1K(y − ξ̃j,Nt ) exp

{ ∫ t

0 Λ(r(s), ξ̃
j,N

r(s), ṽr(s)(ξ̃
j,N

r(s))) ds
}
, for any t ∈ [0, T ],

(8.1)

where r : s ∈ [0, T ] 7→ r(s) ∈ {t0, · · · tn} is the piecewise constant function such that r(s) = tk when

s ∈ [tk, tk+1[. We can observe that (ξ̃i,N )i=1,··· ,N is an adapted and continuous process. The interacting

particle system (ξ̃i,N )i=1,···N can be simulated perfectly at the discrete instants (tk)k=0,··· ,n from indepen-

dent standard and centered Gaussian random variables. We will prove that this interacting particle system

provides an approximation to (ξi,N )i=1,···N , solution of the system (7.2) which converges at a rate of order√
δt.

Proposition 8.1. Suppose that Assumption 1 holds excepted 2. which is replaced by the following: there exists a

positive real LΛ such that for any (t, t′, y, y′, z, z′) ∈ [0, T ]2 × (Rd)2 × (R+)2,

|Λ(t, y, z)− Λ(t′, y′, z′)| ≤ LΛ (|t− t′|+ |y − y′|+ |z − z′|) .

Then, the time discretized particle system (8.1) converges to the original particle system (7.2). More precisely, we have

the estimates

E[‖ṽt − u
SN(ξ)
t ‖2∞] + sup

i=1,···N
E

[
sup
s≤t

|ξ̃i,Ns − ξi,Ns |2
]
≤ Cδt , (8.2)

where C is a finite positive constant only depending on MK ,MΛ, LK , LΛ, T .

If we assume moreover that K ∈ W 1,2(Rd), then the following Mean Integrated Squared Error (MISE) estimate

holds:

E[‖ṽt − u
SN (ξ)
t ‖22] ≤ Cδt , (8.3)

where C is a finite positive constant only depending on MK ,MΛ, LK , LΛ, T and ‖∇K‖2.
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Remark 8.2. We keep in mind the probability measure m0 defined at Section 7, which is the law of processes Y i,

solutions of (7.1). We claim that ṽ can be used as a numerical approximation to the function um0 ; we remind that, by

Theorem 6.1 um0 is associated with a solution γm0 of the PIDE (6.7) via the relation um = K ∗ γm.

The committed expected squared error E[‖um0
t − ṽt‖2∞] is lower than C(T )(δt+1/N), for a given finite constant

C(T ). Indeed, it is bounded as follows:

E[‖um0
t − ṽt‖2∞] ≤ 2E[‖um0

t − u
SN (ξ)
t ‖2∞] + 2E[‖uS

N(ξ)
t − ṽt‖2∞].

The first term in the r.h.s. of the above inequality comes from the (strong) convergence of the particle system

(ξi,N )i=1,··· ,N to (Y i)i=1,··· ,N whose convergence is of order 1
N

, see Theorem 7.1, inequality (7.6). The second term

comes from the time discretization whose expected squared error is of order δt, see Proposition 8.1, inequality (8.2).

The proof of Proposition 8.1 is close to the one of Theorem 7.1. The idea is first to estimate through

Lemma 8.3 the perturbation error due to the time discretization scheme of the SDE in system (8.1), and

in the integral appearing in the linking equation of (8.1). Later the propagation of this error through the

dynamical system (7.2) will be controlled via Gronwall’s lemma. Lemma 8.3 below will be proved in the

Appendix.

Lemma 8.3. Under the same assumptions of Proposition 8.1, there exists a finite constant C > 0 only depending on

T,MK , LK ,MΦ, LΦ,Mg, Lg and MΛ, LΛ such that for any t ∈ [0, T ],

E[|ξ̃i,N
r(t) − ξ̃i,Nt |2] ≤ Cδt (8.4)

E[|ṽr(t) − ṽt‖2∞ ≤ Cδt (8.5)

E[‖ṽr(t) − u
SN(ξ̃)
t ‖2∞] ≤ Cδt . (8.6)

Proof of Proposition 8.1. All along this proof, we denote by C a positive constant that only depends on

T,MK , LK ,MΦ, LΦ,Mg, Lg and MΛ,LΛ and that can change from line to line. Let us fix t ∈ [0, T ].

• We begin by considering inequality (8.2). We first fix 1 ≤ i ≤ N . By (8.5) and (8.6) in Lemma 8.3 and

Lemma 3.4, we obtain

E[‖ṽt − u
SN (ξ)
t ‖2∞] ≤ 2E[‖ṽt − u

SN (ξ̃)
t ‖2∞] + 2E[‖uS

N(ξ̃)
t − u

SN (ξ)
t ‖2∞]

≤ 4(E[‖ṽt − ṽr(t)‖2∞] + E[‖ṽr(t) − u
SN (ξ̃)
t ‖2∞]) + 2E[‖uS

N (ξ̃)
t − u

SN (ξ)
t ‖2∞]

≤ Cδt+ CE[|Wt

(
SN(ξ̃), SN (ξ)

)
|2]

≤ Cδt+ C sup
i=1,···N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] , (8.7)

where the function uS
N(ξ̃) makes sense since ξ̃ has almost surely continuous trajectories and so SN(ξ̃)

is a random measure which is a.s. in P(Cd).

Besides, by the second assertion of Lemma 3.11, we get

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ)

s (ξi,Ns )|2 ds
]
+ C

∫ t

0

E

[
ξ̃i,N
r(s) − ξ̃i,Ns

]
ds+ Cδt2 .

(8.8)

Concerning the first term in the r.h.s. of (8.8), we have for all s ∈ [0, T ]

|ṽr(s)(ξ̃i,Nr(s))− uS
N(ξ)

s (ξi,Ns )|2 ≤ 2|ṽr(s)(ξ̃i,Nr(s))− uS
N(ξ)

s (ξ̃i,N
r(s))|2 + 2|uSN (ξ)

s (ξ̃i,N
r(s))− uS

N (ξ)
s (ξi,Ns )|2

≤ 2‖ṽr(s) − uS
N (ξ)

s ‖2∞ + 2C|ξ̃i,N
r(s) − ξi,Ns |2 , (8.9)
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where the second inequality above follows by Lemma 3.4, see (3.5) (Lipschitz property of the function

uS
N (ξ)). Consequently, by (8.8)

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ C

{
E

[∫ t

0

‖ṽr(s) − uS
N (ξ)

s ‖2∞ ds

]
+

∫ t

0

E

[
|ξ̃i,N

r(s) − ξi,Ns |2
]
ds+ δt2

}

≤ C

{
E

[∫ t

0

‖ṽr(s) − ṽs‖2∞ ds

]
+ E

[∫ t

0

‖ṽs − uS
N (ξ)

s ‖2∞ ds

]

+E

[∫ t

0

|ξ̃i,N
r(s) − ξ̃i,Ns |2 ds

]
+ E

[∫ t

0

|ξ̃i,Ns − ξi,Ns |2 ds
]
+ δt2

}
. (8.10)

Using inequalities (8.4) and (8.5) in Lemma 8.3, for all t ∈ [0, T ] we obtain

sup
i=1,···N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ Cδt2 + C

∫ t

0

[
E[‖ṽs − uS

N (ξ)
s ‖2∞] + sup

i=1,···N
E[sup

θ≤s

|ξ̃i,Nθ − ξi,Nθ |2]
]
ds.

(8.11)

Gathering the latter inequality together with (8.7) yields

E[‖ṽt − u
SN(ξ)
t ‖2∞] + sup

i=1,···N
E[sup

s≤t

|ξ̃i,Ns − ξi,Ns |2] ≤ Cδt+ 2C sup
i=1,···N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2]

≤ Cδt

+ C

∫ t

0

[
E[‖ṽs − uS

N(ξ)
s ‖2∞]

+ sup
i=1,···N

E[sup
θ≤s

|ξ̃i,Nθ − ξi,Nθ |2]
]
ds . (8.12)

Applying Gronwall’s lemma to the function

t 7→ sup
i=1,···N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2] + E[‖ṽt − u
SN (ξ)
t ‖2∞]

ends the proof (8.2).

• We focus now on (8.3). First we observe that

E[‖ṽt − u
SN(ξ)
t ‖22] ≤ 2E[‖ṽt − u

SN(ξ̃)
t ‖22] + 2E[‖uS

N(ξ̃)
t − u

SN (ξ)
t ‖22] . (8.13)

Using successively item 4. of Lemma 3.4, Remark 2.1 and inequality (8.2), we can bound the second

term on the r.h.s. of (8.13) as follows:

E[‖uS
N(ξ̃)

t − u
SN (ξ)
t ‖22] ≤ CE[|Wt

(
SN (ξ̃), SN (ξ)

)
|2]

≤ C sup
i=1,···N

E[sup
s≤t

|ξ̃i,Ns − ξi,Ns |2]

≤ Cδt . (8.14)

To simplify the notations, we introduce the real valued random variables

V i
t := e

∫
t
0
Λ
(
s,ξ̃i,Ns ,uSN (ξ̃)

s (ξ̃i,Ns )
)
ds and Ṽ i

t := e
∫

t
0
Λ
(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds
, (8.15)

defined for any i = 1, · · ·N and t ∈ [0, T ].

Concerning the first term on the r.h.s. of (8.13), inequality (9.21) of Lemma 9.4 gives for all y ∈ Rd

|ṽt(y)− u
SN(ξ̃)
t (y)|2 ≤ MK

N

N∑

i=1

K(y − ξ̃i,Nt )|Ṽ i
t − V i

t |2 . (8.16)
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Integrating the inequality (8.16) with respect to y, yields

‖ṽt − u
SN (ξ̃)
t ‖22 =

∫

y∈Rd

|ṽt(y)− u
SN(ξ̃)
t (y)|2 dy ≤ MK

N

N∑

i=1

|Ṽ i
t − V i

t |2 ,

which, in turn, implies

E

[
‖ṽt − u

SN(ξ̃)
t ‖22

]
≤ MK

N

N∑

i=1

E

[
|Ṽ i

t − V i
t |2
]
. (8.17)

Using successively item 1. of Lemma 9.4 and inequality (8.4) of Lemma 8.3 we obtain, for all i ∈
{1, · · · , N}

E[|Ṽ i
t − V i

t |2] ≤ C(δt)2 + CE

[∫ t

0

|ξ̃i,N
r(s) − ξ̃i,Ns |2 ds

]
+ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2ds
]

≤ Cδt+ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2ds
]

≤ Cδt+ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,N
r(s))|2ds

]

+ CE

[∫ t

0

|uSN (ξ̃)
s (ξ̃i,N

r(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2ds
]

≤ Cδt+ C

∫ t

0

[
E[‖ṽr(s) − uS

N (ξ̃)
s ‖2∞] + E[|ξ̃i,N

r(s) − ξ̃i,Ns |2]
]
ds

≤ Cδt+ C

∫ t

0

E[‖ṽr(s) − uS
N (ξ̃)

s ‖2∞] ds , (8.18)

where the fourth inequality above follows from Lemma 3.4, see (3.5). Consequently using (8.18) and

inequality (8.6) of Lemma 8.3, (8.17) becomes

E[‖ṽt − u
SN(ξ̃)
t ‖22] ≤

C

N

N∑

i=1

E[|Ṽ i
t − V i

t |2] ≤︸︷︷︸
(8.18)

Cδt+ C

∫ t

0

E[‖ṽr(s) − uS
N (ξ̃)

s ‖2∞] ≤︸︷︷︸
(8.6)

Cδt , (8.19)

Finally, injecting (8.19) and (8.14) in (8.13) yields

E[‖ṽt − u
SN (ξ)
t ‖22] ≤ Cδt ,

which ends the proof of Proposition 8.1.

8.2 Numerical results

8.2.1 Preliminary considerations

One motivating issue of the section is how the interacting particle system ξ := ξN,ε defined in (7.2) with

K = Kε, Kε(x) := 1
εd
φd(x

ε
) for some mollifier φd, can be used to approach the solution v of the PDE (1.1).

Two significant parameters, i.e. ε → 0, N → +∞ intervene. We expect to approximate v by uε,N , which

is the solution of the linking equation (3.1), associated with the empirical measure m = SN (ξ). For this

purpose, we want to control empirically the so-called Mean Integrated Squared Error (MISE) between the

solution v of (1.1) and the particle approximation uε,N , i.e. for t ∈ [0, T ],

E[‖uε,Nt − vt‖22] ≤ 2E[‖uε,Nt − uεt‖22] + 2E[‖uεt − vt‖22], (8.20)
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where uε = um0 with K = Kε, m0 being the common law of processes Y i, 1 ≤ i ≤ N in (7.1). Even though

the second expectation in the r.h.s. of (8.20) does not explicitely involve the number of particles N , the

first expectation crucially depends on both parameters ε,N . The behavior of the first expectation relies on

the propagation of chaos. This phenomenon has been investigated under Assumption 1 for a fixed ε > 0,

when N → +∞, see Theorem 7.1. According to Theorem 7.1, the first error term on the r.h.s. of the above

inequality can be bounded by C(ε)
N

.

Concerning the second error term, no result is available but we expect that it converges to zero when ε→ 0.

To control the MISE, it remains to determine a relation N 7→ ε(N) such that

ε(N) −−−−−→
N→+∞

0 and
C(ε(N))

N
−−−−−→
N→+∞

0 .

When the coefficients Φ, g and the initial condition are smooth with Φ non-degenerate and Λ ≡ 0 (i.e. in

conservative case), Theorem 2.7 of [20] gives a description of such a relation.

In our empirical analysis, we have concentrated on a test case, for which we have an explicit solution.

We first illustrate the chaos propagation for fixed ε > 0, i.e. the result of Theorem 7.1. On the other hand,

we give an empirical insight concerning the following:

• the asymptotic behavior of the second error term in inequality (8.20) for ε→ 0;

• the tradeoff N 7→ ε(N).

Moreover, the simulations reveal two behaviors regarding the chaos propagation intensity.

8.2.2 The target PDE

We describe now the test case. For a given triple (m,µ,A) ∈]1,∞[×Rd × Rd×d we consider the following

nonlinear PDE of the form (1.1):




∂tv =
1

2

d∑

i,j=1

∂2i,j
(
v(ΦΦt)i,j(t, x, v)

)
− div

(
vg(t, x, v)

)
+ vΛ(t, x, v) ,

v(0, x) = Bm(2, x)fµ,A(x) for all x ∈ Rd ,

(8.21)

where the functions Φ , g , Λ defined on [0, T ]× Rd × R are such that

Φ(t, x, z) = f
1−m

2

µ,A (x)z
m−1

2 Id , (8.22)

Id denoting the identity matrix in Rd×d,

g(t, x, z) = f1−m
µ,A (x)zm−1A+At

2
(x− µ) , and Λ(t, x, z) = f1−m

µ,A (x)zm−1Tr

(
A+At

2

)
. (8.23)

Here fµ,A : Rd → R is given by

fµ,A(x) = Ce−
1
2 〈x−µ,A(x−µ)〉 , normalized by C =

[∫

x∈Rd

Bm(2, x)e−
1
2 (x−µ)·A(x−µ)

]−1

(8.24)

and Bm is the d-dimensional Barenblatt-Pattle density associated to m > 1, i.e.

Bm(t, x) =
1

2
(D − κt−2β|x|)

1
m−1

+ t−α, (8.25)

with α = d
(m−1)d+2 , β = α

d
, κ = m−1

m
β and D = [2κ−

d
2
π

d
2 Γ( m

m−1 )

Γ( d
2+

m
m−1 )

]
2(1−m)

2+d(m−1) .
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In the specific case where A is the zero matrix of Rd×d, then fµ,A ≡ 1; g ≡ 0 and Λ ≡ 0. Hence, we

recover the conservative porous media equation, whose explicit solution is

v(t, x) = Bm(t+ 2, x) , for all (t, x) ∈ [0, T ]× R
d,

see [3]. For general values of A ∈ Rd×d, extended calculations produce the following explicit solution

v(t, x) = Bm(t+ 2, x)fµ,A(x) , for all (t, x) ∈ [0, T ]× R
d , (8.26)

of (8.21), which is non conservative.

8.2.3 Details of the implementation

Once fixed the number N of particles, we have run M = 100 i.i.d. particle systems producing M i.i.d.

estimates (uε,N,i)i=1,···M . The MISE is then approximated by the Monte Carlo approximation

E[‖uε,Nt − vt‖22] ≈
1

MQ

M∑

i=1

Q∑

j=1

|uε,N,i
t (Xj)− vt(X

j)|2v−1(0, Xj) , for all t ∈ [0, T ] , (8.27)

where (Xj)j=1,··· ,Q=1000 are i.i.d Rd-valued random variables with common density v(0, ·). In our simula-

tion, we have chosen T = 1, m = 3/2, µ = 0 and A = 2
3Id. Kε = 1

εd
φd( ·

ε
) with φd being the standard and

centered Gaussian density. We have run a discretized version of the interacting particle system with Euler

scheme mesh kT/n with n = 10. Notice that this discretization error is neglected in the present analysis.

The initial condition v(0, ·) is perfectly simulated using a rejection algorithm with a Gaussian instrumental

distribution.

8.2.4 Simulations analysis

Our simulations show that the approximation error presents two types of behavior depending on the num-

ber N of particles with respect to the regularization parameter ε.

1. For large values ofN , we visualize a chaos propagation behavior for which the error estimates are similar

to the ones provided by the density estimation theory [29] corresponding to the classical framework

of independent samples.

2. For small values of N appears a transient behavior for which the bias and variance errors cannot be

easily described.

Observe that the Mean Integrated Squared Error MISEt(ε,N) := E[‖uε,Nt − vt‖22] can be decomposed as

the sum of the variance Vt(ε,N) and squared bias B2
t (ε,N) as follows:

MISEt(ε,N) = Vt(ε,N) +B2
t (ε,N)

= E

[
‖uε,Nt − E[uε,Nt ]‖22

]
+ E

[
‖E[uε,Nt ]− vt‖22

]
. (8.28)

For N large enough, according to Remark 7.3, one expects that the propagation of chaos holds. Then the

particle system (ξ̃i,N )i=1,··· ,N (solution of (8.1)) is close to an i.i.d. system with common lawm0. We observe

that, in the specific case where the weighting function Λ does not depend on the density u, for t ∈ [0, T ], we
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have

E[uε,Nt ] =
1

N
E




N∑

j=1

Kε(· − ξ̃j,Nt ) exp
{ ∫ t

0

Λ(r(s), ξ̃j,N
r(s)) ds

}

 ,

= E
[
Kε(· − Y 1

t )Vt
(
Y 1
)]

= uεt . (8.29)

We remind that the relation uε = Kε ∗ vε comes from Theorem 6.1. Therefore, under the chaos propagation

behavior, the approximations below hold for the variance and the squared bias:

Vt(ε,N) ≈ E

[
‖uε,Nt − uεt‖22

]
and B2

t (ε,N) ≈ E
[
‖uεt − vt‖22

]
. (8.30)

On Figure 1, we have reported the estimated variance error Vt(ε,N) as a function of the particle number N ,

(on the left graph) and as a function of the regularization parameter ε, (on the right graph), for t = T = 1

and d = 5.

That figure shows that, when the number of particles is large enough, the variance error behaves precisely

as in the classical case of density estimation encountered in [29], i.e., vanishing at a rate 1
Nεd

, see relation

(4.10), Chapter 4., Section 4.3.1. This is in particular illustrated by the log-log graphs, showing almost linear

curve, when N is sufficiently large. In particular we observe the following.

• On the left graph, log(Vt(ε,N)) ≈ a− α logN with slope α = 1;

• On the right graph, logVt(ε,N) ≈ b − β log ε with slope β = 5 = d.

It seems that the threshold N after which appears the linear behavior (compatible with the propagation of

chaos situation corresponding to asymptotic-i.i.d. particles) decreases when ε grows. In other words, when

ε is large, less particles N are needed to give evidence to the chaotic behavior. This phenomenon could be

explained by analyzing the particle system dynamics. Indeed, at each time step, the interaction between

the particles is due to the empirical estimation of Kε ∗ vε based on the particle system. Intuitively, the more

accurate the estimation is, the less strong the interaction between particles will be. Now observe that at time

step 0, the particle system (ξ̃i,N0 ) is i.i.d. according to v(0, ·), so that the estimation of (Kε ∗vε)(0, ·) provided

by (8.1) reduces to the classical density estimation approach. In that classical framework, it is well-known

that for larger values of ε the number of particles, needed to achieve a given density estimation accuracy, is

smaller. Hence, one can imagine that for larger values ε less particles will be needed to obtain a quasi-i.i.d

particle system at time step 1, (ξ̃i,N1 ). Then one can think that this initial error propagates along the time

steps.

On Figure 2, we have reported the estimated squared bias error,B2
t (ε,N), as a function of the regularization

parameter, ε, for different values of the particle number N , for t = T = 1 and d = 5.

One can observe that, similarly to the classical i.i.d. case, (see relation (4.9) in Chapter 4., Section 4.3.1

in [29]), for N large enough, the bias error does not depend on N and can be approximated by aε4, for

some constant a > 0. This is in fact coherent with the bias approximation (8.30), developed in the specific

case where the weighting function Λ does not depend on the density. Assuming the validity of approxi-

mation (8.30) and of the previous empirical observation implies that one can bound the error between the

solution, vε, of the regularized PDE of the form (6.7) (with K = Kε) associated to (8.21), and the solution,
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v, of the limit (non regularized) PDE (8.21) as follows

E

[
‖vεt − vt‖22

]
≤ 2E

[
‖vεt − uεt‖22

]
+ 2E

[
‖uεt − vt‖22

]

≤ 2E
[
‖vεt −Kε ∗ vεt ‖22

]
+ 2E

[
‖uεt − vt‖22

]

≤ 2(a′ + a)ε4. (8.31)

Indeed, at least, the first term in the second line can be easily bounded, supposing that vεt has a bounded

second derivative. This constitutes an empirical proof of the fact that vε converges to v.

As observed in the variance error graphs, the threshold N , above which the propagation of chaos behavior

is observed decreases with ε. Indeed, for ε > 0.6 we observe a chaotic behavior of the bias error, starting

from N ≥ 500, whereas for ε ∈ [0.4, 0.6], this chaotic behavior appears only for N ≥ 5000. Finally, for small

values of ε ≤ 0.6, the bias highly depends on N for any N ≤ 104; moreover that dependence becomes less

relevant when N increases.

Taking into account both the bias and the variance error in the MISE (8.28), the choice of ε has to be

carefully optimized w.r.t. the number of particles: ε going to zero together with N going to infinity at a

judicious relative rate seem to ensure the convergence of the estimated MISE to zero. This kind of tradeoff

is standard in density estimation theory and was already investigated theoretically in the context of forward

interacting particle systems related to conservative regularized nonlinear PDE in [20]. Extending this type

of theoretical analysis to our non conservative framework is beyond the scope of the present paper.
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Figure 1: Variance error as a function of the number of particles, N , and the mollifier window width, ε, for dimension

d = 5 at the final time step T = 1.
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Figure 2: Bias error as a function of the mollifier window width, ε, for dimension d = 5 at the final time step T = 1.

9 Appendix

In this appendix, we present the proof of some technical results.

Remark 9.1. We start with an observation which concerns a possible relaxation of the hypotheses of Lemma 4.3; the

uniform convergence assumption for the integrands is crucial and it cannot be replaced by a pointwise convergence.

Let define Ω = [0, 1] equipped with the Borel σ-field, (Zn)n≥0 a sequence of continuous, real-valued functions

s.th. 



0 , x ≥ 2
n

nx , x ∈ [0, 1
n
]

−nx+ 2 , x ∈ [ 1
n
, 2
n
].

(9.1)

We consider a sequence of probability measures (mn)n≥0 s.th. mn(dx) = δ 1
n
(dx) and m0(dx) = δ0(dx).

On the one hand, we can observe the following.

• Zn −−−−−−→
n → +∞

0, pointwise.

• for all n ≥ 0, |Zn| ≤ 1, surely.

• mn −−−−−−→
n → +∞

m, weakly.

On the other hand,
∫ 1

0 Zndmn = Zn(
1
n
) = 1 9 0.

Before stating a tightness criterion for our family of approximating sequences we need to express the

classical Theorem of Kolmogorov-Centsov, stated in Theorem 4.10, Chapter 2 in [21], taking into account

Remark 4.13.

Proposition 9.2. Let r ∈ N
⋆. A sequence (Pn)n≥0 of Borel probability measures on Cr is tight if and only if

•
lim

λ−→+∞
sup
n∈N

Pn ({ω ∈ Cr | |ω0| > λ}) = 0 , (9.2)
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• ∀(ε, s, t) ∈ R⋆
+ × [0, T ]× [0, T ],

lim
δ↓0

sup
n∈N

Pn({ω ∈ Cr | max
(s,t)∈[0,T ]2

|t−s|≤δ

|ωt − ωs| > ε}) = 0 . (9.3)

Lemma 9.3. Let K : Rd → R be bounded and Lipschitz. For each n ∈ N, we consider Borel functions Φn :

[0, T ]×Rd ×R −→ Rd×p, gn : [0, T ]×Rd ×R −→ Rd, and Λn : [0, T ]×Rd ×R −→ R uniformly bounded in n.

We also consider a tight sequence (ζn0 ) of probability measures on Rd. Let (Y n, un) be solutions of




dY n
t = Φn(t, Y

n
t , un(t, Y

n
t ))dWt + gn(t, Y

n
t , un(t, Y

n
t ))dt

un(t, x) :=
∫
Cd K(x−Xt(ω)) exp

{∫ t

0 Λn

(
r,Xr(ω), un(r,Xr(ω))

)
dr
}
dmn(ω)

mn = L(Yn),
(9.4)

where for all n ∈ N, Y n
0 is a r.v. distributed according to ζn0 .

Then, the family
(
νn = L(Y n

· , un(·, Y n
· )), n ≥ 0

)
is tight.

Proof. If we denote by Pn the law of (Yn, un(·, Y n)) we bound the l.h.s of (9.2) as follows:

Pn({ω ∈ Cd+1| |ω0| > λ}) = P({|(Y n
0 , u

n(0, Y n
0 ))| > λ})

≤ P({|Y n
0 |+ |un(0, Y n

0 )| > λ})

≤ P({|Y n
0 | > λ

2
}) + P({|un(0, Y n

0 )| > λ

2
})

≤ ζn0 ({x ∈ R
d| |x| > λ

2
}) + P({|un(0, Y n

0 )| > λ

2
}). (9.5)

Let us fix ε > 0. On the one hand, (ζn0 ) being tight there exists a compact set Kε of Rd such that sup
n∈N

ζn0 (K
c
ε) ≤ ε.

Then, there exists λε > 0 such that {x ∈ Rd| |x| > λε

2 } ⊂ K
c
ε which implies

sup
n∈N

ζn0 ({x ∈ R
d| |x| > λε

2
}) ≤ sup

n∈N

ζn0 (K
c
ε) ≤ ε.

On the other hand, since un is uniformly bounded, for all λ > 0, Chebyshev’s inequality implies

P({|un(0, Y n
0 )| > λ

2
}) ≤ 4

E[|un(0, Y n
0 )|2]

λ2
≤ 4

(MKe
TMΛ)2

λ2
. (9.6)

Consequently for λ ≥ λε, we get

sup
n∈N

Pn({ω ∈ Cd+1| |ω0| > λ}) ≤ 4
(MKe

TMΛ)2

λ2
+ ε . (9.7)

Taking the limit when λ goes to infinity, we finally get inequality (9.2) since ε > 0 is arbitrary.

It remains to prove (9.3).

We will make use of Garsia-Rodemich-Rumsey Theorem, see e.g. Theorem 2.1.3, Chapter 2 in [30] or [4].

We will show that, for all 0 ≤ s < t ≤ T , there exists a positive real constant C ≥ 0

E[|Y n
t − Y n

s |4 + |un(t, Y n
t )− un(s, Y

n
s )|4] ≤ C|t− s|2 , (9.8)

where C does not depend on n. Suppose for a moment that (9.8) holds true.

Let ε > 0 fixed. Let δ > 0. If Pn denotes again the law of (Y n, un(·, Y n)), the quantity

Pn({ω ∈ Cd+1 | sup
(s,t)∈[0,T ]2

|t−s|≤δ

|ωt − ωs| > ε}) (9.9)
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intervening in (9.3) is bounded, up to a constant, by

P( max
(s,t)∈[0,T ]2

|t−s|≤δ

{|Y n
t − Y n

s |+ |un(t, Y n
t )− un(s, Y n

s )|} > ε) . (9.10)

Let us fix γ ∈]0, 14 [. By Garsia-Rodemich-Rumsey theorem, there is a sequence of non-negative r.v. Γn such

that, a.s.

sup
n∈N

E[(Γn)4] <∞

∀(s, t) ∈ [0, T ]2, |Y n
t − Y n

s |+ |un(t, Y n
t )− un(s, Y n

s )| ≤ Γn|t− s|γ . (9.11)

If |t− s| ≤ δ (9.11) gives

max
(s,t)∈[0,T ]2

|t−s|≤δ

{|Y n
t − Y n

s |+ |un(t, Y n
t )− un(s, Y n

s )|} ≤ Γnδγ . (9.12)

By (9.12) and Chebyshev’s inequality, for any n ∈ N, the quantity (9.9) is bounded by

P(Γnδγ > ε) = P(Γn > εδ−γ)

≤ δ4γ

ε4
,

for any n ∈ N. Since δ > 0 is arbitrary, (9.3) follows. To conclude the proof of the lemma, it remains to show

(9.8).

We recall that MΦ, Mg, MΛ, MK denote the uniform upper bound of the sequences (|Φn|), (|gn|), (|Λn|) and

of the function K . Let 0 ≤ s < t ≤ T . To show (9.8), we have to evaluate

E[|Y n
t − Y n

s |4] + E[|un(t, Y n
t )− un(s, Y

n
s )|4] . (9.13)

By classical computations (e.g. Itô’s isometry, Cauchy-Schwarz inequality), we easily obtain

∀k ∈ N
⋆, ∀T > 0, ∃C′ := C′

(k,T,MΦ,Mg ,MΛ) > 0, E[|Y n
t − Y n

s |2k] ≤ C′|t− s|k, (9.14)

where the constant C′ does not depend on n because Φn, gn are uniformly bounded, in particular w.r.t. n.

Regarding the second expectation in (9.13), we get

E[|un(t, Y n
t )− un(s, Y

n
s )|4] =

∫

Cd

(
un(t,Xt(ω))− un(s,Xs(ω))

)4
dmn(ω)

(9.15)

≤ 8(I1 + I2) ,

where

I1 :=

∫

Cd

(
un(t,Xt(ω))− un(s,Xt(ω))

)4
dmn(ω)

I2 :=

∫

Cd

(
un(s,Xt(ω))− un(s,Xs(ω))

)4
dmn(ω) .

(9.16)

On the one hand, for all x ∈ Rd,

|un(t, x)− un(s, x)| =
∣∣∣E
[
K(x− Y n

t )e
∫

t
0
Λn(r,Y

n
r ,un(r,Y

n
r ))dr

]
− E

[
K(x− Y n

s )e
∫

s
0
Λn(r,Y

n
r ,un(r,Y

n
r ))dr

]∣∣∣

≤
∫

Cd

|K(x−Xt(ω))−K(x−Xs(ω))| exp
(∫ t

0

Λn(r,Xr, un(r,Xr))dr

)
dmn(ω)

+

∫

Cd

K(x−Xs(ω))
∣∣∣ exp

(∫ t

0

Λn(r,Xr(ω), un(r,Xr(ω))

)
dr

− exp

(∫ s

0

Λn(r,Xr(ω), un(r,Xr(ω)))dr

) ∣∣∣ dmn(ω)
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By (2.7) and (9.14) (with k = 1) together with Cauchy-Schwarz inequality, this is lower than

LK exp(MΛT )

∫

Cd

|Xt(ω)−Xs(ω)|dmn(ω)

+ MK exp(MΛ)

∫

Cd

∣∣∣
∫ t

s

Λn(r,Xr(ω), un(r,Xr(ω)))dr
∣∣∣dmn(ω)

≤ (LK exp(MΛT )
√
C′ +MK exp(MΛ)MΛ

√
T )
√
|t− s|,

which implies

I1 =
∫
Cd |un(t,Xt(ω))− un(s,Xt(ω))|4dmn(ω) ≤ (LK exp(MΛT )

√
C′ +MK exp(MΛ)MΛ

√
T )4|t− s|2 .

(9.17)

On the other hand, for all (x, y) ∈ Rd × Rd

|un(s, x)− un(s, y)| ≤ E[
∣∣K(x− Y n

s )−K(y − Y n
s )
∣∣ exp

( ∫ s

0 Λn(r, Y
n
r , un(r, Y

n
r ))dr

)
]

≤ LK exp(MΛT )|x− y|, ,
(9.18)

which implies

I2 =
∫
Cd |un(s,Xt(ω))− un(s,Xs(ω))|4dmn(ω) ≤ LK exp(MΛT )

∫
Cd |Xt(ω)−Xs(ω)|4dmn(ω)

≤ LK exp(MΛT )C
′|t− s|2 ,

(9.19)

where the second inequality comes from (9.14) with k = 2.

Coming back to (9.15), we have |I1 + I2| ≤ C′′|t − s|2 with C′′ a constant value depending only on

T,MΦ,Mg,MΛ,MK , LK , T . This enable us to conclude the proof of (9.8) and finally the one of Lemma

9.3.

We proceed now with the proof of Lemma 8.3, that will make use of the following intermediary result.

Lemma 9.4. Let N ∈ N⋆. Let (ξi,N )i=1,··· ,N be a solution of the interacting particle system (7.2); let (ξ̃i,N )i=1,··· ,N

and ṽ as defined as in the discretized interacting particle system (8.1).

Under the same assumptions as in Proposition 8.1, the random variables V i
t := e

∫
t
0
Λ
(
s,ξ̃i,Ns ,uSN (ξ̃)

s (ξ̃i,Ns )
)
ds and

Ṽ i
t := e

∫
t
0
Λ
(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds, for all t ∈ [0, T ], i ∈ {1, · · · , N} fulfill the following.

1. For all t ∈ [0, T ], i ∈ {1, · · · , N}

E[|Ṽ i
t − V i

t |2] ≤ C(δt)2 + CE

[∫ t

0

|ξ̃i,N
r(s) − ξ̃i,Ns |2 ds

]
+ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2ds
]
,(9.20)

where C is a real positive constant depending only on MΛ, LΛ and T .

2. For all (t, y) ∈ [0, T ]× R
d, i ∈ {1, · · · , N}

|ṽt(y)− u
SN (ξ̃)
t (y)|2 ≤ MK

N

N∑

i=1

K(y − ξ̃i,Nt ) |Ṽ i
t − V i

t |2 . (9.21)

Proof of Lemma 9.4. Let us fix t ∈ [0, T ], i ∈ {1, · · · , N}. To prove (9.20), it is enough to recall that Λ being

uniformly Lipschitz w.r.t. the time and space variables, the inequality (2.7) yields

|Ṽ i
t − V i

t |2 ≤ 3e2tMΛL2
Λ

∫ t

0

[
|r(s) − s|2 + |ξ̃i,N

r(s) − ξ̃i,Ns |2 + |ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2
]
ds , (9.22)
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and taking the expectation in both sides of (9.22) implies (9.20) with C := 3e2TMΛL2
Λ.

Let us fix y ∈ Rd. Concerning (9.21), by recalling the third line equation of (8.1) and the linking equation

(3.1) (with m = SN (ξ̃)), we have

|ṽt(y)− u
SN(ξ̃)
t (y)|2 =

∣∣∣∣∣
1

N

N∑

i=1

K(y − ξ̃i,N )Ṽ i
t − 1

N

N∑

i=1

K(y − ξ̃i,N )V i
t

∣∣∣∣∣

2

=

∣∣∣∣∣
1

N

N∑

i=1

K(y − ξ̃i,N )
(
Ṽ i
t − V i

t

)∣∣∣∣∣

2

≤ 1

N

N∑

i=1

K2(y − ξ̃i,Nt )|Ṽ i
t − V i

t |2

≤ MK

N

N∑

i=1

K(y − ξ̃i,Nt ) |Ṽ i
t − V i

t |2 , (9.23)

which concludes the proof of (9.21) and therefore of Lemma 9.4.

Proof of Lemma 8.3. All along this proof, C will denote a positive constant that only depends

T,MK , LK ,MΦ, LΦ,Mg, Lg and MΛ, LΛ and that can change from line to line. Let us fix t ∈ [0, T ].

• Inequality (8.4) of Lemma 8.3 is simply a consequence of the fact that the coefficients Φ and g are

uniformly bounded. Indeed,

E[|ξ̃i,N
r(t) − ξ̃i,Nt |2] = E

[∣∣∣
∫ t

r(t)

Φ(ṽr(s)(ξ̃
i,N

r(s))) dWs +

∫ t

r(t)

g(ṽr(s)(ξ̃
i,N

r(s))) ds
∣∣∣
2
]

≤ 2E

[∫ t

r(t)

|Φ(ṽr(s)(ξ̃i,Nr(s)))|
2 ds

]
+ 2(t− r(t))E

[∫ t

r(t)

|g(ṽr(s)(ξ̃i,Nr(s)))|
2 ds

]

≤ 2M2
Φδt+ 2M2

g (δt)
2

≤ Cδt , as soon as δt ∈ ]0, 1[ .

• Now, let us focus on the second inequality (8.5) of Lemma 8.3. Note that for any y ∈ R
d, the following

inequality holds:

|ṽr(t)(y)− ṽt(y)| ≤ 1

N

N∑

i=1

[∣∣∣K(y − ξ̃i,N
r(t))−K(y − ξ̃i,Nt )

∣∣∣ e
∫ r(t)
0 Λ

(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds

+ K(y − ξ̃i,Nt )

∣∣∣∣e
∫ r(t)
0 Λ

(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds − e

∫
t
0
Λ
(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds

∣∣∣∣
]
.

(9.24)

Using the Lipschitz property of Λ and the fact thatK and Λ are bounded, one can apply (2.7) to bound

the second term of the sum on the r.h.s. of the above inequality as follows:

K(y − ξ̃i,Nt )

∣∣∣∣e
∫ r(t)
0 Λ

(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds − e

∫
t
0
Λ
(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds

∣∣∣∣ ≤ MKe
(t−r(t))MΛ(t− r(t))MΛ

≤ Cδt . (9.25)

The first term of the sum on the r.h.s. of (9.24) is bounded using the Lipschitz property of K and the

fact that Λ is bounded.
∣∣∣K(y − ξ̃i,N

r(t))−K(y − ξ̃i,Nt )
∣∣∣ e

∫ r(t)
0 Λ

(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds ≤ LKe

tMΛ |ξ̃i,N
r(t) − ξ̃i,Nt | . (9.26)
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Injecting (9.25) and (9.26) in (9.24) we obtain for all y ∈ Rd

|ṽr(t)(y)− ṽt(y)| ≤ Cδt+
LKe

tMΛ

N

N∑

i=1

|ξ̃i,N
r(t) − ξ̃i,Nt |,

which finally implies that

‖ṽr(t) − ṽt‖2∞ ≤ Cδt2 +
C

N

N∑

i=1

|ξ̃i,N
r(t) − ξ̃i,Nt |2 .

We conclude by using inequality (8.4) of Lemma 8.3 after taking the expectation of the r.h.s. of the

above inequality.

• Finally, we deal with inequality (8.6) of Lemma 8.3. Observe that the error on the left-hand side can

be decomposed as

E[‖ṽr(t) − u
SN(ξ̃)
t ‖2∞] ≤ 2E[‖ṽr(t) − ṽt‖2∞] + 2E[‖ṽt − u

SN (ξ̃)
t ‖2∞]

≤ Cδt+ 2E[‖ṽt − u
SN (ξ̃)
t ‖2∞] , (9.27)

where we have used inequality (8.5) of Lemma 8.3.

Let us consider the second term on the r.h.s. of the above inequality. To simplify the notations, we

introduce the real valued random variables

V i
t := e

∫
t
0
Λ
(
s,ξ̃i,Ns ,uSN (ξ̃)

s (ξ̃i,Ns )
)
ds and Ṽ i

t := e
∫

t
0
Λ
(
r(s),ξ̃i,N

r(s)
,ṽr(s)(ξ̃

i,N

r(s)
)
)
ds
, (9.28)

defined for any i = 1, · · ·N and t ∈ [0, T ].

Using successively inequalities (9.20) of Lemma 9.4, (8.4) of Lemma 8.3 and (3.5) of Lemma 3.4, we

have for all i ∈ {1, · · · , N},

E[|Ṽ i
t − V i

t |2] ≤ Cδt+ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2ds
]

≤ Cδt+ CE

[∫ t

0

|ṽr(s)(ξ̃i,Nr(s))− uS
N (ξ̃)

s (ξ̃i,N
r(s))|

2ds

]

+ CE

[∫ t

0

|uSN(ξ̃)
s (ξ̃i,N

r(s))− uS
N (ξ̃)

s (ξ̃i,Ns )|2ds
]

≤ Cδt+ C

∫ t

0

[
E[‖ṽr(s) − uS

N (ξ̃)
s ‖2∞] + E[|ξ̃i,N

r(s) − ξ̃i,Ns |2]
]
ds

≤ Cδt+ C

∫ t

0

E[‖ṽr(s) − uS
N (ξ̃)

s ‖2∞] ds . (9.29)

On the other hand, inequality (9.21) of Lemma 9.4 implies

‖ṽt − u
SN (ξ̃)
t ‖2∞ ≤ M2

K

N

N∑

i=1

|Ṽ i
t − V i

t |2 . (9.30)

Taking the expectation in both sides of (9.30) and using (9.29) give

E[‖ṽt − u
SN (ξ̃)
t ‖2∞] ≤ M2

K

N

N∑

i=1

E

[
|Ṽ i

t − V i
t |2
]
≤ Cδt+ C

∫ t

0

E[‖ṽr(s) − uS
N (ξ̃)

s ‖2∞] ds . (9.31)

We end the proof by injecting this last inequality in (9.27) and by applying Gronwall’s lemma.
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