M. Achtman, K. Zurth, G. Morelli, G. Torrea, A. Guiyoule et al., Yersinia pestis, the cause of 474 plague, is a recently emerged clone of Yersinia pseudotuberculosis, Proc. Natl. Acad. Sci. USA 96, pp.475-14043, 1999.

C. Almendros, F. J. Mojica, C. Diez-villasenor, N. M. Guzman, and &. J. Garcia-martinez, CRISPR-Cas functional 480 module exchange in Escherichia coli, MBio, vol.5, pp.767-00713, 2013.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and &. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

A. Babic, A. M. Guerout, and &. D. Mazel, Construction of an improved RP4 (RK2)-based conjugative system, Research in Microbiology, vol.159, issue.7-8, p.484, 2008.
DOI : 10.1016/j.resmic.2008.06.004

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes, Science, vol.315, issue.5819, pp.1709-1712, 2007.
DOI : 10.1126/science.1138140

G. Bertani, Lysogeny at Mid-Twentieth Century: P1, P2, and Other Experimental Systems, Journal of Bacteriology, vol.186, issue.3, pp.595-600, 2004.
DOI : 10.1128/JB.186.3.595-600.2004

E. Martinaud, C. Martin, &. G. Pourcel, and . Vergnaud, Progenitor "Mycobacterium canettii" clone 491 responsible for lymph node tuberculosis epidemic, Emerg Infect Dis, vol.20, pp.21-28, 2014.

T. Bogdanovich, E. Carniel, H. Fukushima, and &. M. Skurnik, Use of O-antigen gene cluster-specific PCRs for 493 the identification and O-genotyping of Yersinia pseudotuberculosis and Yersinia pestis, J. Clin. Microbiol, vol.494, issue.41, pp.5103-5112, 2003.

A. Bolotin, B. Quinquis, A. Sorokin, and &. S. Ehrlich, Clustered regularly interspaced short palindrome 496 repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology, vol.151, pp.2551-2561, 2005.

K. C. Cady, J. Bondy-denomy, G. E. Heussler, A. R. Davidson, and &. G. O-'toole, The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages, Journal of Bacteriology, vol.194, issue.21, pp.5728-5738, 2012.
DOI : 10.1128/JB.01184-12

S. L. Ch-'ng, S. Octavia, Q. Xia, A. Duong, M. M. Tanaka et al., Population structure and 501 evolution of pathogenicity of Yersinia pseudotuberculosis, Appl. Environ. Microb, vol.77, pp.768-775, 2011.

B. Chenal-francisque, D. Souza, J. M. Dacheux, A. Elliott, L. J. Derbise et al., Insights 505 into the evolution of Yersinia pestis through whole-genome comparison with Yersinia 506 pseudotuberculosis, Proc Natl Acad Sci, vol.101, pp.13826-13831, 2004.

P. S. Chain, P. Hu, S. A. Malfatti, L. Radnedge, F. Larimer et al., Complete Genome Sequence of Yersinia pestis Strains Antiqua and Nepal516: Evidence of Gene Reduction in an Emerging Pathogen, Journal of Bacteriology, vol.188, issue.12, pp.4453-4463, 2006.
DOI : 10.1128/JB.00124-06

S. Chauvaux, M. A. Dillies, M. Marceau, M. L. Rosso, S. Rousseau et al., In 511 silico comparison of Yersinia pestis and Yersinia pseudotuberculosis transcriptomes reveals a higher 512 expression level of crucial virulence determinants in the plague bacillus, Int. J. Med. Microbiol, vol.301, pp.513-105, 2011.

A. P. Song, G. Anisimov, &. R. Vergnaud, and . Yang, Insight into microevolution of Yersinia pestis by 516 clustered regularly interspaced short palindromic repeats, PLoS ONE, vol.3, pp.2652-517, 2008.

M. Xiao, X. Wu, D. Wang, Z. Zhou, Z. Qi et al., Historical variations in mutation rate in an 520 epidemic pathogen, Yersinia pestis, Proc. Natl. Acad. Sci. USA, pp.577-582, 2013.

S. Delannoy, L. Beutin, Y. Burgos, and &. P. Fach, Specific detection of enteroaggregative hemorrhagic 522 Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR, J, p.523, 2012.

S. Delannoy, L. Beutin, and &. P. Fach, Use of Clustered Regularly Interspaced Short Palindromic Repeat Sequence Polymorphisms for Specific Detection of Enterohemorrhagic Escherichia coli Strains of Serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by Real-Time PCR, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR, pp.4035-4040
DOI : 10.1128/JCM.02097-12

G. Demarre, A. M. Guerout, C. Matsumoto-mashimo, D. A. Rowe-magnus, P. Marliere et al., A new 529 family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid 530 (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains, Res. Microbiol, vol.156, pp.531-245, 2005.

C. Diez-villasenor, C. Almendros, J. Garcia-martinez, and &. F. Mojica, Diversity of CRISPR loci in Escherichia 533 coli, Microbiology, vol.156, pp.1351-1361, 2010.

. Weill, CRISPR typing and subtyping for improved laboratory surveillance of Salmonella 537 infections, PLoS ONE, vol.7, pp.36995-538, 2012.

&. S. Magadan and . Moineau, The CRISPR/Cas bacterial immune system cleaves bacteriophage and 540 plasmid DNA, Nature, vol.468, pp.67-71, 2010.

I. Grissa, G. Vergnaud, and &. C. Pourcel, The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats, BMC Bioinformatics, vol.8, issue.1, pp.172-543, 2007.
DOI : 10.1186/1471-2105-8-172

URL : https://hal.archives-ouvertes.fr/hal-00194456

I. Grissa, G. Vergnaud, and &. C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Research, vol.35, issue.Web Server, pp.52-57, 2007.
DOI : 10.1093/nar/gkm360

URL : https://hal.archives-ouvertes.fr/hal-00194414

D. H. Haft, J. Selengut, E. F. Mongodin, and &. K. Nelson, A guild of 45 CRISPR-associated (Cas) protein 546 families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes, PLoS computational biology, vol.1, pp.547-60, 2005.

C. R. Hale, P. Zhao, S. Olson, M. O. Duff, B. R. Graveley et al., RNA-guided 549 RNA cleavage by a CRISPR RNA-Cas protein complex, Terns & M.P. Terns Cell, vol.139, pp.945-956, 2009.

L. Keim, B. Zoller, J. M. Bramanti, &. H. Riehm, and . Scholz, Yersinia pestis DNA from skeletal remains 552 from the 6(th) century AD reveals insights into Justinianic Plague, PLoS Pathog, vol.9, pp.1003349-553, 2013.

N. L. Held, A. Herrera, and &. J. Whitaker, Reassortment of CRISPR repeat-spacer loci in Sulfolobus 554 islandicus, Environ Microbiol, p.555, 2013.

J. Kamerbeek, L. Schouls, A. Kolk, M. Van-agterveld, D. Van-soolingen et al., Simultaneous detection and strain differentiation of 560 Mycobacterium tuberculosis for diagnosis and epidemiology, J. Clin. Microbiol, vol.559, issue.35, pp.907-914, 1997.

F. V. Karginov and . Hannon, The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea, Molecular Cell, vol.37, issue.1, pp.7-19, 2010.
DOI : 10.1016/j.molcel.2009.12.033

E. Mazzoni, M. Carniel, &. M. Skurnik, and . Achtman, Population structure of the Yersinia 566 pseudotuberculosis complex according to multilocus sequence typing, Environ Microbiol, vol.13, pp.3114-3127, 2011.

L. Flèche, P. , Y. Hauck, L. Onteniente, A. Prieur et al., A tandem repeats database for bacterial genomes: application to the genotyping 569 of Yersinia pestis and Bacillus anthracis, Ramisse & 568 G. Vergnaud, p.570, 2001.

B. R. Levin, S. Moineau, M. Bushman, and &. R. Barrangou, The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR???Mediated Immunity, PLoS Genetics, vol.255, issue.2, pp.1003312-572, 2013.
DOI : 10.1371/journal.pgen.1003312.s007

F. Liu, R. Barrangou, P. Gerner-smidt, E. M. Ribot, S. J. Knabel et al., Novel virulence gene and 573 clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme 574 for subtyping of the major serovars of Salmonella enterica subsp, enterica. Appl. Environ. Microb, vol.77, pp.575-1946, 2011.

A. F. Wolf, J. Yakunin, &. E. Van-der-oost, and . Koonin, Evolution and classification of the CRISPR-Cas 578 systems, Nat Rev Microbiol, vol.9, pp.467-477, 2011.

K. S. Makarova, Y. I. Wolf, and &. V. Koonin, The basic building blocks and evolution of CRISPR???Cas systems, Biochemical Society Transactions, vol.41, issue.6, pp.1392-1400, 2013.
DOI : 10.1042/BST20130038

G. C. Mcghee and . Sundin, Erwinia amylovora CRISPR Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking, PLoS ONE, vol.7, issue.7, pp.41706-583, 2012.
DOI : 10.1371/journal.pone.0041706.s005

P. A. Meacock and . Cohen, Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance, Cell, vol.20, issue.2, pp.529-642, 1980.
DOI : 10.1016/0092-8674(80)90639-X

T. G. Michiels and . Cornelis, Secretion of hybrid proteins by the Yersinia Yop export system., Journal of Bacteriology, vol.173, issue.5, pp.1677-1685, 1991.
DOI : 10.1128/jb.173.5.1677-1685.1991

F. J. Mojica, C. Diez-villasenor, J. Garcia-martinez, and &. C. Almendros, Short motif sequences determine the 588 targets of the prokaryotic CRISPR defence system, Microbiology, vol.155, pp.733-740, 2009.

P. Balloux, T. Keim, J. Wirth, R. Ravel, E. Yang et al., Yersinia pestis genome 592 sequencing identifies patterns of global phylogenetic diversity, Nature Genetics, vol.42, pp.1140-1143, 2010.

J. K. Naktin and . Beavis, Yersinia enterocolitica and Yersinia pseudotuberculosis Clinics in laboratory 594 medicine, pp.523-536, 1999.

O. Radziejewska-lebrecht, &. M. Holst, and . Skurnik, Serological characterization of the 597 enterobacterial common antigen substitution of the lipopolysaccharide of Yersinia enterocolitica O:3. 598 Microbiology, p.599, 2014.

C. C. Pourcel and . Drevet, Occurence, diversity of CRISPR-Cas systems and genotyping implications In: 600 CRISPR-Cas systems, pp.33-601, 2013.

C. Pourcel, G. Salvignol, and &. G. Vergnaud, CRISPR elements in Yersinia pestis acquire new repeats by 603 preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies, Microbiology, vol.151, pp.653-663, 2005.

F. Rezzonico, T. H. Smits, and &. B. Duffy, Diversity, evolution, and functionality of clustered regularly 606 interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora, p.607, 2011.

&. H. Flèche and . Scholz, Yersinia pestis lineages in Mongolia, PLoS One, vol.7, pp.30624-610, 2012.

C. Savin, L. Martin, C. Bouchier, S. Filali, J. Chenau et al., The Yersinia pseudotuberculosis complex: Characterization and delineation of a new species, Yersinia wautersii, International Journal of Medical Microbiology, vol.304, issue.3-4, pp.452-463, 2014.
DOI : 10.1016/j.ijmm.2014.02.002

L. M. Schouls, S. Reulen, B. Duim, J. A. Wagenaar, R. J. Willems et al., Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, 615 multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and 616 recombination, J. Clin. Microbiol, vol.614, issue.41, pp.15-26, 2003.

N. E. Shariat and . Dudley, CRISPRs: Molecular Signatures Used for Pathogen Subtyping, Applied and Environmental Microbiology, vol.80, issue.2, pp.430-439, 2014.
DOI : 10.1128/AEM.02790-13

N. Shariat, M. K. Kirchner, C. H. Sandt, E. Trees, R. Barrangou et al., Subtyping of Salmonella enterica Serovar Newport Outbreak Isolates by CRISPR-MVLST and Determination of the Relationship between CRISPR-MVLST and PFGE Results, Journal of Clinical Microbiology, vol.51, issue.7, pp.2328-2336, 2013.
DOI : 10.1128/JCM.00608-13

N. Shariat, C. H. Sandt, M. J. Dimarzio, R. Barrangou, and &. E. Dudley, CRISPR-MVLST subtyping of Salmonella enterica subsp. enterica serovars Typhimurium and Heidelberg and application in identifying outbreak isolates, BMC Microbiology, vol.13, issue.1, pp.254-625, 2013.
DOI : 10.1128/JCM.01404-06

M. Skurnik, A. Peippo, and &. E. Ervelä, Characterization of the O-antigen gene clusters of Yersinia 626 pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague 627 bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol. 628 Microbiol, pp.316-330, 2000.

Y. Song, Z. Tong, J. Wang, L. Wang, Z. Guo et al., Complete 631 genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans, DNA Research, vol.11, pp.632-179, 2004.

E. J. Sontheimer and . Marraffini, Microbiology: Slicer for DNA, Nature, vol.583, issue.7320, pp.45-46, 2010.
DOI : 10.1038/468045a

R. Sorek, C. M. Lawrence, and &. B. Wiedenheft, CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea, Annual Review of Biochemistry, vol.82, issue.1, pp.237-266, 2013.
DOI : 10.1146/annurev-biochem-072911-172315

R. A. Souza, A. Pitondo-silva, D. P. Falcao, and &. J. Falcao, Evaluation of four molecular typing methodologies as tools for determining taxonomy relations and for identifying species among Yersinia isolates, Journal of Microbiological Methods, vol.82, issue.2, pp.141-150, 2010.
DOI : 10.1016/j.mimet.2010.05.005

L. D. Sprague, H. C. Scholz, S. Amann, H. J. Busse, and &. H. Neubauer, Yersinia similis sp. nov., INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.58, issue.4, pp.952-958, 2008.
DOI : 10.1099/ijs.0.65417-0

R. Staden, The staden sequence analysis package, Molecular Biotechnology, vol.61, issue.3, pp.233-241, 1996.
DOI : 10.1007/BF02900361

R. V. Tauxe, as a Foodborne Pathogen, The Journal of Infectious Diseases, vol.189, issue.5, pp.761-763, 2004.
DOI : 10.1086/381806

S. Sanders, M. A. Whitehead, G. Quail, J. Dougan, &. B. Parkhill et al., The complete genome 647 sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 648 8081, PLoS Genet, vol.2, pp.206-649, 2006.

M. Touchon, S. Charpentier, O. Clermont, E. P. Rocha, E. Denamur et al., CRISPR distribution 650 within the Escherichia coli species is not suggestive of immunity-associated diversifying selection, J. Bacteriol, vol.193, pp.651-2460, 2011.

B. Wiedenheft, S. H. Sternberg, and &. J. Doudna, RNA-guided genetic silencing systems in bacteria and archaea, Nature, vol.466, issue.7385, pp.331-338, 2012.
DOI : 10.1038/nature10886

M. J. Boekema, &. J. Dickman, and . Doudna, RNA-guided complex from a bacterial immune system 656, 2011.