Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime - ENSTA Paris - École nationale supérieure de techniques avancées Paris Accéder directement au contenu
Article Dans Une Revue Journal of Plasma Physics Année : 2012

Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

S. Y. Kalmykov
  • Fonction : Auteur
X. Davoine
  • Fonction : Auteur
K. Bunkers
  • Fonction : Auteur
Agustin Lifschitz
E. Lefebvre
  • Fonction : Auteur
D. L. Bruhwiler
  • Fonction : Auteur
B. A. Shadwick
  • Fonction : Auteur

Résumé

Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code VORPAL using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver.

Dates et versions

hal-01164134 , version 1 (16-06-2015)

Identifiants

Citer

B. M. Cowan, S. Y. Kalmykov, A. Beck, X. Davoine, K. Bunkers, et al.. Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime. Journal of Plasma Physics, 2012, 78 (04), pp 469- 482. ⟨10.1017/S0022377812000517⟩. ⟨hal-01164134⟩
285 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More