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Abstract

It has been proven that the knowledge of an accurate approximation of the Dirichlet-to-Neumann
(DtN) map is useful for a large range of applications in wave scattering problems. We are concerned
in this paper with the construction of an approximate local DtN operator for time-harmonic
elastic waves. The main contributions are the following. First, we derive exact operators using
Fourier analysis in the case of an elastic half-space. These results are then extended to a general
three-dimensional smooth closed surface by using a local tangent plane approximation. Next, a
regularization step improves the accuracy of the approximate DtN operators and a localization
process is proposed. Finally, a first application is presented in the context of the On-Surface
Radiation Conditions method. The efficiency of the approach is investigated for various obstacle
geometries at high frequencies.

Keywords: Scattering, time-harmonic elastic waves, approximate local DtN map, far-field
patterns

1. Introduction

The simulation of time-harmonic elastic waves in the high frequency regime is a timely research
field due to the variety of possible applications (for example seismology, remote sensing or non-
destructive testing). To solve elastodynamic scattering problems in unbounded domains, various
numerical methods are used [56]. We can mention the Finite Element Method [41, 25, 43, 13] or the
Finite Difference Method [55, 38]. Such volume methods are used with nonreflecting boundary con-
ditions [37, 35] such as Absorbing Boundary Conditions (ABCs) [27, 20, 34] or Perfectly Matched
Layers (PMLs) [12, 40, 26] to truncate the computational domain. Another possible approach is
to use the Fast Multipole accelerated Boundary Element Method (FM-BEM) [22, 23, 21] resulting
from the discretization of Boundary Integral Equations (BIE) [47]. Some of the above mentioned
numerical methods reveal to be unstable or ill-conditioned in the high frequency regime. Over-
coming this problem requires the knowledge of a good approximation of the Dirichlet-to-Neumann
map (DtN). The aim of this paper is to propose local approximations of the DtN map for 3D
frequency-domain elastodynamics in the high frequency regime. The derivation process falls into
the techniques of the On-Surface Radiation Conditions (OSRC) method [44, 3, 7, 33]. It is worth
noting that approximate DtN operators are not limited to the OSRC method but find many ap-
plications. They are used to derive absorbing boundary conditions for infinite domains. We can
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cite for example [11, 42, 4, 9, 10, 51] in acoustics and electromagnetism and [37, 39, 35] in elas-
todynamics. These approximations play also a crucial role in Domain Decomposition Methods
(DDM) [36, 14] to ensure the transmission of the physical informations between the sub-domains.
In the DDM context, algebraic approximations of the DtN have been proposed [49, 50]. Fur-
thermore, approximate local DtN are very useful to derive fast iterative solutions of scattering
problems by the integral equations method. Since fine meshes leading to large-scale systems are
used in the high frequency regime, the application of direct methods is prohibitive (due to large
CPU times and memory requirements). An alternative is to consider iterative solvers. But linear
systems arising from the discretization of the elastodynamic equations are known to be difficult
to solve at high wavenumbers since the matrix tends to be indefinite. For example, it has been
shown that the number of iterations can significantly hinder the overall efficiency of the FM-
BEM [22, 23]. Traditional algebraic preconditioning approaches such as incomplete LU, SParse
Approximative Inverse [18, 19], multi-grid methods [17], nested GMRES algorithm [24] have been
applied to electromagnetic or elastodynamic FM-BEMs. However, since algebraic preconditioners
use only a small part of the system matrix, they do not contain enough information on the physics
of the underlying continuous operator and cannot always improve the performance of the solver
for high frequencies. Analytical preconditioners offer a very interesting alternative. They play
the role of regularizing operators in the integral representation of the scattered field and improve
the spectral properties of the resulting boundary integral equations ahead from the discretiza-
tion [5, 6, 1, 16, 31]. Local approximations of the DtN map naturally define efficient analytical
preconditioners. A strategy, developed in acoustic and electromagnetic scattering [7, 33], to obtain
accurate local approximations of the DtN map is to consider only its principal symbol. Being able
to derive such approximations in linear elasticity is a very challenging task due to the complexity
of the three-dimensional elastic waves.

This paper is organized as follows. In Section 2, we introduce the problem setting and recall
the Somigliana integral representation of the scattered field to justify the interest of defining
approximate DtN maps. In Section 3, we derive exact DtN surface relations in the case of the
elastic half-space using Fourier analysis tools which greatly simplify previous work lead by two of
the authors [32]. Section 4 is devoted to the construction of local approximations of the DtN map.
The accuracy of the approximation is increased by a regularization process. Then the localization
of the non-local operators is realized by using complex Padé approximants. In Section 5, we
present a first possible application of this approximate DtN in the extreme OSRC context. Details
on the finite element discretization and the numerical implementation are given together with
various illustrations of the numerical efficiency. Finally, Section 6 gives some concluding remarks
and directions for future work.

2. Problem statement

2.1. Exterior Navier problem
Let us consider a bounded domain Ω− in R3 representing an impenetrable body with a closed

boundary Γ := ∂Ω− of class C 2 at least. Let Ω+ denote the associated exterior domain R3\Ω−
and n the outer unit normal vector to the boundary Γ. The Lamé parameters µ and λ and the
density ρ are positive constants. The propagation of time-harmonic waves in a three-dimensional
isotropic and homogeneous elastic medium is modeled by the Navier equation

divσ(u) + ρω2u = 0 (1)

where ω > 0 is the frequency. In the case of 3D isotropic elastodynamics, the stress and strain

tensors are given by σ(u) = λ(divu)I3 + 2µε(u) and ε(u) =
1

2

(
[∇u] + [∇u]

T) respectively, where
I3 is the 3-by-3 identity matrix and [∇u] is the matrix whose the j-th column is the gradient of
the j-th component of u. The field u can be decomposed into a longitudinal field up = ∇ψp and a
transverse field us = u−up = curlψs. The scalar and vector Lamé potentials ψp and ψs satisfy
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respectively {
ψp = −κ−2

p divu
∆ψp + κ2

pψp = 0
and

{
ψs = κ−2

s curlu
∆ψs + κ2

sψs = 0
(2)

where κ2
p = ρω2(λ + 2µ)−1 and κ2

s = ρω2µ−1 are the P and S wavenumbers. The wavelengths
are defined by λα = 2π/κα (α = s, p). The scattering problem is formulated as follows : Given
an incident wave field uinc which is assumed to solve the Navier equation in the absence of any
scatterer, find the displacement u solution to the Navier equation (1) in Ω+ which satisfies the
Dirichlet boundary condition on Γ

u|Γ + uinc
|Γ = 0. (3)

In addition, the field u has to satisfy the Kupradze radiation conditions at infinity

lim
r→∞

r

(
∂ψp
∂r
− iκpψp

)
= 0, lim

r→∞
r

(
∂ψs
∂r
− iκsψs

)
= 0, r = |x|, (4)

uniformly in all directions.

2.2. Traces and integral representation formula
We denote by Hs

loc(Ω
+) and Hs(Γ) the standard (local in the case of the exterior domain)

complex valued Hilbertian Sobolev spaces of order s ∈ R defined on Ω+ and Γ respectively (with
the convention H0 = L2). Spaces of vector functions will be denoted by boldface letters, thus
Hs = (Hs)3. We set ∆∗u := divσ(u) = (λ+ 2µ)∇ divu−µ curl curlu and introduce the energy
spaceH1

+(∆∗) :=
{
u ∈H1

loc(Ω
+) : ∆∗u ∈ L2

loc(Ω
+)
}
. The Neumann trace, defined by t|Γ := Tu,

is given by the traction operator

T = 2µ
∂

∂n
+ λn div +µn× curl .

We recall that we have u|Γ ∈ H
1
2 (Γ) and t|Γ ∈ H−

1
2 (Γ) for any u ∈ H1

+(∆∗). In the remaining
of the paper we will use the tangential Günter derivative M defined by [45, Eq. (1.14) page 282]

M =
∂

∂n
− n div +n× curl .

We also use the surface differential operators: The tangential gradient ∇Γ, the surface divergence
divΓ, the surface scalar curl curlΓ, the tangential vector curl curlΓ, the scalar Laplace-Beltrami
operator ∆Γ and the vector Laplace-Beltrami operator ∆Γ. For their definitions we refer to [54,
pages 68-75]. The tangential Günter derivative M is a surface derivative that can be rewritten

Mu|Γ =
(
[∇Γu|Γ]− (divΓ u|Γ)I3

)
n, (5)

where [∇Γv] is the matrix whose the j-th column is the tangential gradient of the j-th component
of v. In the following, it is convenient to rewrite the traction operator as

T = 2µM + (λ+ 2µ)n div−µn× curl .

As a result, the Neumann trace of the displacement field u is expressed in function of the Dirichlet
trace of u and of the Lamé potentials ψp and ψs as follows

t|Γ = 2µMu|Γ − ρω2
(
n (ψp)|Γ + n× (ψs)|Γ

)
. (6)

For a solution u ∈ H1
+(∆∗) to the Navier equation (1) in Ω+, that satisfies the Kupradze

radiation conditions, the Somigliana integral representation of the field is given by

u(x) = Du|Γ(x) − St|Γ(x), x ∈ Ω+, (7)

3



where the single- and double-layer potential operators are defined by

Sϕ =

ˆ
Γ

Φ(· ,y)ϕ(y)ds(y) and Dψ =

ˆ
Γ

[T yΦ(· ,y)]
T
ψ(y)ds(y). (8)

The fundamental solution of the Navier equation is a 3-by-3 matrix-valued function expressed by

Φ(x,y) =
1

ρω2

(
curl curlx

[
eiκs|x−y|

4π|x− y|
I3

]
−∇x divx

[
eiκp|x−y|

4π|x− y|
I3

])
.

The tensor T yΦ(x,y) is obtained by applying the traction operator T y = T (n(y), ∂y) to each
column of Φ(x,y). Due to the radiation conditions, the solution exhibits the following asymptotic
behavior

u(x) =
eiκp|x|

|x|
u∞p (x̂) +

eiκs|x|

|x|
u∞s (x̂) +O

( 1

|x|
)
, |x| → +∞, (9)

uniformly in all directions x̂ =
x

|x|
. The fields u∞p and u∞s , defined on the unit sphere S2 in

R3, are the longitudinal and the transversal far-field patterns respectively. The far-field pattern is
given by the integral representation formula

u∞(x̂) = F
D
u|Γ(x̂)−F

S
t|Γ(x̂) (10)

where the far-field operators F
S
and F

D
are defined for any vector density ϕ and x̂ ∈ S2 [2] by

FSϕ(x̂) =

ˆ
Γ

(
1

µ
[IR3 − x̂⊗ x̂]

e−iκsx̂·y

4π
+

1

λ+ 2µ
[x̂⊗ x̂]

e−iκpx̂·y

4π

)
ϕ(y) ds(y) and (11)

F
D
ϕ(x̂) =

ˆ
Γ

(
1

µ

[
T y[IR3 − x̂⊗ x̂]

e−iκsx̂·y

4π

]T
+

1

λ+ 2µ

[
T y[x̂⊗ x̂]

e−iκpx̂·y

4π

]T)
ϕ(y) ds(y).

(12)
The new unknowns of the scattering problem are the surfacic data (u|Γ, t|Γ). Several methods

that are exact or approximate are proposed for computing the Neumann data t|Γ knowing the
Dirichlet one u|Γ, or conversely. Ideally, if we could explicit for a general shape the exact Dirichlet-
to-Neumann (DtN) map which is defined by

Λex : H
1
2 (Γ) → H−

1
2 (Γ)

u|Γ 7→ t|Γ
, (13)

the exterior problem (1)-(3)-(4) would be solved directly by the following representation

u(x) = −(D − SΛex)uinc
|Γ (x), x ∈ Ω+. (14)

Unfortunately, this cannot be achieved for an arbitrary surface Γ. Instead, the idea is to derive a
local approximate DtN map as accurate as possible. This approximation is usually reduced to a
surface relation of the form

P1u|Γ + P2t|Γ = 0, (15)

where P1 and P2 are two invertible local boundary operators. The advantage of such operators is
to lead after discretization to sparse matrices. Note that in (15), the surfacic data u|Γ and t|Γ are
not exact but approximate.

3. Derivation of exact DtN surface relations for the elastic half-space

Recent investigations in elastodynamics [32], based on the analysis of boundary integral oper-
ators and Calderón formulas, showed that the construction of the surface relation (15) is consid-
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erably simplified if a surface relation between the data u|Γ and t|Γ − 2µMu|Γ of the form

Q1u|Γ +Q2(t|Γ − 2µMu|Γ) = 0 (16)

is considered. It follows that P1 = Q1 − 2µQ2M, P2 = Q2. For an elastic half-space, we can
derive exact non-local boundary relations of type (15) and the exact DtN operator is given by

Λex = −P−1
2 P1 = −Q−1

2 Q1 + 2µM.

In this section, we first construct the non-local boundary operators Q1 and Q2 using Fourier
analysis. Then we present a physical interpretation of the proposed DtN surface relations.

3.1. Derivation of some exact DtN operators using Fourier analysis
Let us consider the case Γ := {x ∈ R3 | x1 = 0}. We denote by n := (1, 0, 0) the outwardly

directed unit normal vector at Γ to Ω− := {x ∈ R3 | x1 < 0}. Assuming that x1 is the radial
direction to Ω−, then the tangential direction is x‖ := (x2, x3). We define the partial Fourier
transform f̂ of a function f := (f1, f2, f3) : R3 → R3 by

f̂j(x1, ξ) :=

ˆ
R2

fj(x1,x‖)e
−ix‖·ξ dx‖, for j = 2, 3,

and the inverse Fourier transform by

fj(x) :=
1

2π

ˆ
R2

f̂j(x1, ξ)eix‖·ξdξ, for j = 2, 3.

The dual variable of x‖ is ξ := (ξ2, ξ3) and we set ‖ξ‖ :=
√
ξ · ξ.

Proposition 3.1. For Γ = {x ∈ R3 | x1 = 0}, we have the following equivalent exact surface
relations :

(i) u|Γ = V
(
t|Γ − 2µMu|Γ) , with

V =

(
− 1

ρω2
M +

1

iρω2

(
n(∆Γ + κ2

p I)
1
2 n · In + (∆Γ + κ2

s It)
− 1

2 (κ2
s It + ∇Γ divΓ It)

))
,

(ii) Λ1u|Γ = (I + Λ2)
(
t|Γ − 2µMu|Γ

)
, with

Λ1 = iρω2

[
n
(
∆Γ + κ2

p I
)− 1

2n · In +
(
∆Γ + κ2

s It
)− 1

2

(
It −

1

κ2
s

curlΓ curlΓ

)]
, (17)

and
Λ2 = −i

(
∇Γ

(
∆Γ + κ2

s I
)− 1

2 n · In − n
(
∆Γ + κ2

p I
)− 1

2 divΓ It

)
, (18)

where we have defined In = n⊗ n, It = I− In.

Proof. • In a first step, we rewrite the elastodynamic system (1) as a first-order hyperbolic system
where the unknown is the Fourier transform of

U = (u, (λ+ 2µ) divu, µ(curlu)3,−µ(curlu)2)
T
,

setting u = (u1, u2, u3). The Dirichlet trace of U is given by U |Γ = (u|Γ, t|Γ − 2µMu|Γ)
T with

t|Γ − 2µMu|Γ = −ρω2(n (ψp)|Γ + n× (ψs)|Γ).
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If we develop system (1), we obtain
∂1(λ+ 2µ) divu− ∂2

(
µ(curlu)3

)
− ∂3

(
− µ(curlu)2

)
+ ρω2u1 = 0,

∂2(λ+ 2µ) divu− ∂3

(
µ(curlu)1

)
+ ∂1

(
µ(curlu)3

)
+ ρω2u2 = 0,

∂3(λ+ 2µ) divu+ ∂1

(
− µ(curlu)2

)
+ ∂2

(
µ(curlu)1

)
+ ρω2u3 = 0.

(19)

Using the equality (curlu)1 = ∂2u3 − ∂3u2 and rearranging (19), we obtain
∂1(λ+ 2µ) divu = ∂2

(
µ(curlu)3

)
+ ∂3

(
− µ(curlu)2

)
− ρω2u1,

∂1

(
µ(curlu)3

)
= −∂2(λ+ 2µ) divu− µ

(
∂33u2 − ∂32u3

)
− ρω2u2,

∂1

(
− µ(curlu)2

)
= −∂3(λ+ 2µ) divu− µ

(
∂22u3 − ∂23u2

)
− ρω2u3.

(20)

Following (19), we compute the first derivative of u with respect to x1
∂1u1 = − 1

ρω2

(
∂2

11(λ+ 2µ) divu− ∂2
21

(
µ(curlu)3

)
− ∂2

31

(
− µ(curlu)2

))
,

∂1u2 = − 1

ρω2

(
∂2

21(λ+ 2µ) divu− ∂2
13

(
µ(curlu)1

)
+ ∂2

11

(
µ(curlu)3

))
,

∂1u3 = − 1

ρω2

(
∂2

31(λ+ 2µ) divu+ ∂2
11

(
− µ(curlu)2

)
+ ∂2

12

(
µ(curlu)1

))
.

To eliminate the second order derivative with respect to x1, we use equalities (2) to obtain

∂1u1 =
1

ρω2

(
κ2
p + ∂2

22 + ∂2
33

)
(λ+ 2µ) divu

− 1

ρω2

(
−∂2

21

(
µ(curlu)3

)
− ∂2

31

(
− µ(curlu)2

))
,

∂1u2 = − 1

ρω2

(
−∂2

13

(
µ(curlu)1

)
−
(
κ2
s + ∂2

22 + ∂2
33

)(
µ(curlu)3

))
− 1

ρω2
∂2

21(λ+ 2µ) divu,

∂1u3 = − 1

ρω2

(
−
(
κ2
s + ∂2

22 + ∂2
33

)(
− µ(curlu)2

)
+ ∂2

12

(
µ(curlu)1

))
− 1

ρω2
∂2

31(λ+ 2µ) divu.

Noting that

∂2
13(curlu)1 = −∂2

23(curlu)2 − ∂2
33(curlu)3

and
∂2

12(curlu)1 = −∂2
22(curlu)2 − ∂2

23(curlu)3,

we get 

∂1u1 =
1

ρω2

(
κ2
p + ∂2

22 + ∂2
33

)
(λ+ 2µ) divu

− 1

ρω2

(
−∂2

21

(
µ(curlu)3

)
− ∂2

31

(
− µ(curlu)2

))
,

∂1u2 = − 1

ρω2

(
−∂2

23

(
− µ(curlu)2

)
−
(
κ2
s + ∂2

22

)(
µ(curlu)3

))
− 1

ρω2
∂2

21(λ+ 2µ) divu,

∂1u3 = − 1

ρω2

(
−
(
κ2
s + ∂2

33

)(
− µ(curlu)2

)
− ∂2

23

(
µ(curlu)3

))
− 1

ρω2
∂2

31(λ+ 2µ) divu.

(21)

Applying the partial Fourier transform along x‖ to systems (20) and (21), we have the equation
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A∂x1Û = BÛ where

A =

I3
1

ρω2
M

03 I3

 with M =

 0 −iξ2 −iξ3
iξ2 0 0
iξ3 0 0


and

B =



0 0 0
κ2
p − ||ξ||2

ρω2
0 0

0 0 0 0
κ2
s − ξ2

2

ρω2
−ξ2ξ3
ρω2

0 0 0 0 −ξ2ξ3
ρω2

κ2
s − ξ2

3

ρω2

−ρω2 0 0 0 iξ2 iξ3
0 −(ρω2 − µξ2

3) −µξ2ξ3 −iξ2 0 0
0 −µξ2ξ3 −(ρω2 − µξ2

2) −iξ3 0 0


.

• To solve the hyperbolic equation, we introduce the change of variable V = AÛ and write
∂x1
V = BA−1V . Setting sp =

√
κ2
p − ‖ξ‖2 and ss =

√
κ2
s − ‖ξ‖2, the eigenvalues of the matrix

BA−1 are ±isp with multiplicity 1 and ±iss with multiplicity 2. The matrix BA−1 is diagonalized
as BA−1 = PDP−1 with D = diag(−isp,−iss,−iss, isp, iss, iss). The associated matrix P is

P =

(
I3 I3

−C C

)
with C = iρω2


s−1
p 0 0

0
(κ2
s − ξ2

3)

κ2
sss

ξ2ξ3
κ2
sss

0
ξ2ξ3
κ2
sss

(κ2
s − ξ2

3)

κ2
sss

 .

The first-order hyperbolic system is accordingly rewritten as ∂x1
W = DW , for x1 ≥ 0, where

W = P−1V = P−1AÛ . The solution of this equation is W (x1) = ex1DW (0). Since we are
characterizing the part of the wave field that is square integrable in the right half-space, then we
must impose that the first three components of W (0) vanish. Coming back to U , we obtain the
equation

û|Γ =
(
− 1

ρω2
M + C−1

)(
t̂|Γ − 2µMû|Γ

)
.

Applying the inverse Fourier transform we obtain surface relation (i).
Another choice for the eigenfunctions (by imposing the unitary coordinate on the last three

coordinates) would yield the following equation

Cû|Γ =
(
− 1

ρω2
CM + I3

)(
t̂|Γ − 2µMû|Γ

)
.

Applying the inverse Fourier transform, we get surface relation (ii).

We have obtained two expressions (that are equivalent) for the DtN map Λex. The boundary
condition (ii) corresponds to the approximate DtN operator obtained in [32] for a general smooth
surface through the computations of the principal parts of the elementary boundary integral
operators. The alternative proof proposed here using Fourier analysis is more straightforward and
falls into the techniques used for OSRC method [3, 7, 33].

3.2. Physical interpretation
The DtN operators proposed in Proposition 3.1 may seem complicated compared to the ones

constructed in acoustics or electromagnetism but it is due to the definition of elastic waves in an
isotropic and homogeneous medium. Indeed, using relations (2) and (6) between the displacement
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field u and the Lamé potentials ψp and ψs, we retrieve the surface relations of Proposition 3.1 as
follows:

Proposition 3.2. Assume Γ = {x ∈ R3 | x1 = 0}. Let Λex
A be the exact acoustic DtN operator

for the P-wavenumber κp and Λex
EM be the exact Magnetic-to-Electric (MtE) operator for the S-

wavenumber κs, which are defined by (see [7, Equation (11)] and [33, Proposition 1] with Z0 = 1)

Λex
A = i

(
∆Γ + κ2

p I
) 1

2 and Λex
EM =

(
It +

1

κ2
s

∆Γ

)− 1
2
(

It −
1

κ2
s

curlΓ curlΓ

)
,

such that

Λex
A(ψp)|Γ =

∂

∂n
ψp and Λex

EM

(
n×

(
(ψs)|Γ × n

))
= − 1

iκs
n× (curlψs)|Γ , (22)

(ψp)|Γ = (Λex
A)−1 ∂

∂n
ψp and Λex

EM

(
n×

(
(curlψs)|Γ × n

))
= iκsn× (ψs)|Γ . (23)

Then we have

(i) u|Γ = − 1

ρω2

[
M + nΛex

A (n · In) + iκsn×Λex
EM (It × n)

] (
t|Γ − 2µMu|Γ

)
.

(ii)
[
n (Λex

A)−1 (n · In) +
1

iκs
Λex
EM It

]
u|Γ

= − 1

ρω2

[
I− n (Λex

A)−1 divΓ It +
1

iκs
Λex
EM ∇Γ(n · In)

] (
t|Γ − 2µMu|Γ

)
.

Proof. First, we recall that for any scalar function v ∈ C 1(Ω+) and any vector function w ∈(
C 1(Ω+)

)3

, the following identities hold on the boundary Γ

∇Γv|Γ = n×
(
(∇v)|Γ × n

)
and

∂

∂n
v = n · (∇v)|Γ ,

and
n · (curlw)|Γ = curlΓw = −divΓ(n×w|Γ) .

The decomposition u = ∇ψp + curlψs leads to
n · u|Γ = n · (∇ψp)|Γ + n · (curlψs)|Γ

=
∂

∂n
ψp − divΓ

(
n× (ψs)|Γ

)
n×

(
u|Γ × n) = ∇Γ(ψp)|Γ + n×

(
(curlψs)|Γ × n) ,

and from (6) we deduce{
n ·
(
t|Γ − 2µMu|Γ

)
= −ρω2(ψp)|Γ

n×
((
t|Γ − 2µMu|Γ

)
× n

)
= −ρω2n × (ψs)|Γ .

We obtain the following rewritting of the boundary data u|Γ and t|Γ − 2µMu|Γ

− 1

ρω2

(
t|Γ − 2µMu|Γ

)
= n (ψp)|Γ + n × (ψs)|Γ

and
u|Γ = n

∂

∂n
ψp − ndivΓ

(
n× (ψs)|Γ

)
+ ∇Γ(ψp)|Γ + n×

(
(curlψs)|Γ × n) .
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Using that on the boundary Γ of a half-space

M = ∇Γ(n · In)− divΓ It

and substituting (22) in the expression of u|Γ, the relation (i) comes. Applying the operator[
n (Λex

A)−1 (n · In) +
1

iκs
Λex
EM It

]
to u|Γ and using (23), we obtain relation (ii).

4. Local approximate DtN surface operators for a general smooth surface Γ

The boundary relations given in Proposition 3.1 are non local and, are valid only in the case
of an elastic half-space. There exists two ways to construct such surface operators in the case
of a general smooth surface: a formal one using a tangent plane approximation and a rigourous
one applying the technique of microlocal diagonalization for hyperbolic systems [34]. These two
approaches allow to obtain the surface approximations (i) and (ii) in Proposition (3.1) onto a
general smooth surface Γ. In the sequel, we choose to consider the approximation (ii) that is
more judicious numerically speaking. Indeed, both surface relations require to invert some surface
differential operators. The GMRES solver is chosen to compute the solution of the associated
linear systems (see Section 5). The operator V in (i) is of order +1 and the operator (I + Λ2) in
(ii) is of order 0. The latter is thus more appropriate.

In this section, we first explain how to improve the accuracy of the approximate DtN operators
using a regularization procedure and then, how to localize these operators with a complex Padé
rational approximation of the square-root.

4.1. Regularization of the approximate DtN map
Let us consider the time-harmonic scattering problem of a plane wave by a rigid elastic sphere

of radius R > 0. In this case, the Neumann trace t|Γ of the displacement u solution to the
exterior problem (1)-(3)-(4) is computed analytically in terms of vector spherical harmonics. We
also compute an approximate Neumann trace by applying the surface relation (ii) in Proposition
3.1 as an OSRC equation directly on the surface of a rigid elastic sphere, namely

t̃|Γ =
((

I + Λ2

)−1

Λ1 + 2µM
)
u|Γ. (24)

The comparison of these two surfacic data gives a first indication on the accuracy of the
proposed approximate DtN operator in (ii). We consider incident plane waves of the form

uinc(x) =
1

µ
eiκsx·d(d× p)× d+

1

λ+ 2µ
eiκpx·d(d · p)d , where d ∈ S2 and p ∈ R3. (25)

When p = ±d, the incident plane wave oscillates along the direction of propagation (pressure wave
or P-wave). When the polarization p is orthogonal to the propagation vector d, the incident plane
wave oscillates in a direction orthogonal to the direction of propagation (shear wave or S-wave).
Such incidence plane waves admit the following series expansion

uinc(x) =

∞∑
m=1

m∑
j=−m

(
α(1)
m M

(1)
m,j(κs,x) + β(1)

m N
(1)
m,j(κs,x)

)
+

∞∑
m=0

m∑
j=−m

γ(1)
m ∇u

(1)
m,j(κp,x). (26)

The scalar function u
(k)
m,j(κp,x), the vector functions M (k)

m,j(κs,x) and N
(k)
m,j(κs,x) of order m

for j = −m, . . . ,m, with m, j ∈ N, and the spectral coefficients are given in the Appendix.
The spectral decomposition of both the Neumann trace t|Γ and its approximation t̃|Γ are also
proposed in the Appendix (cf. formulas (A.1) and (A.2) respectively). To analyze the accuracy
of the approximate DtN operator in the surface relation (ii), we compare these two analytical
solutions. We report on Figure 1 the modulus of the coefficients αex

m and αapp
m (left), βex

m and βapp
m

(center), γex
m and γapp

m (right) as a function of the modes m. In all the simulations, the mechanical
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parameters are chosen such that the wavenumbers satisfy κs = 2κp. We consider an incident
plane S-wave with d = (0, 0, 1)T and p = (1, 0, 0)T . We fix κs = 16π and R = 1. We observe
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Figure 1: Diffraction of incident plane S-waves by a unit sphere (κs = 16π): modulus of the coefficients αex
m and

αapp
m (left), βex

m and βapp
m (center), γexm and γappm (right).

a very good approximation of the exact coefficients for all the modes, except in the transition
zones for m ≈ κp and m ≈ κs. These localized errors are due to the singularity that arises in the
square-roots in (17) and (18). A solution to regularize the square-root operator consists in adding
a small artificial damping parameter to the wavenumbers κp and κs. We set κα,ε = κα+ iεα, with
εα > 0, α = p, s. The new approximate DtN operator is written

t̃|Γ =
((

I + Λ2,ε

)−1

Λ1,ε + 2µM
)
u|Γ (27)

with

Λ1,ε = iρω2

[
n
(
∆Γ + κ2

p,ε I
)− 1

2n · In +
(
∆Γ + κ2

s,ε It
)− 1

2

(
It −

1

κ2
s,ε

curlΓ curlΓ

)]
, (28)

and
Λ2,ε = −i

(
∇Γ

(
∆Γ + κ2

s,ε I
)− 1

2 n · In − n
(
∆Γ + κ2

p,ε I
)− 1

2 divΓ It

)
. (29)

The aim is now to choose the damping parameters in order to minimize the errors between the
exact and approximate coefficients in the transition zone. Previous works in acoustics and elec-
tromagnetism have exhibited an optimal damping parameter by solving an optimization problem
for a sufficiently large wavenumber. In view of Proposition 3.2, it seems natural to consider the
same expression of the optimal parameters for elastodynamic problems as for the Helmholtz [29, 7]
and Maxwell [33] exterior problems, given respectively by εp,A = 0.39κ

1/3
p (H2)1/3 and εs,EM =

0.39κ
1/3
s (H2)1/3, where H is the mean curvature of the boundary Γ. This choice can also be jus-

tified by the observation that the expression of the coefficient αex
m is the same as in the Maxwell

case so that the optimization of αapp
m would give exactely εs,EM . Moreover, we have numerically

observed that this choice improves the accuracy of the approximate DtN (27). We report on
Figure 2 the exact and approximate coefficients. The accuracy is better in the zones m ≈ κp
and m ≈ κs when considering the damping parameters εp,A and εs,EM without deteriorating the
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approximation for the propagative (m� κp) and evanescent modes (m� κs). We consider these
two parameters in the sequel of the paper.
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Figure 2: Diffraction of incident plane S-waves by a unit sphere (κs = 16π): modulus of the coefficients αex
m and

αapp
m,ε (left), βex

m and βapp
m,ε (center), γexm and γappm,ε (right).

4.2. Local approximate DtN map
A crucial point is to propose a local representation of the square-root operators involved in

(28) and (29). To this end, we use complex rational Padé approximants of order 2L + 1 with a
rotating branch-cut technique of angle θ [8, 48, 52, 7]: for z ∈ C, one has

(1 + z)−1/2 ≈ PL(z)

QL(z)
= r0 +

L∑
`=1

r`
z − q`

(30)

where PL and QL are two polynomials of degree L. The complex coefficients r`, ` = 0, . . . , L, and
q`, ` = 1, . . . , L depend on the angle θ. The notation z1/2 designates the principal determination
of the square-root of a complex number z with branch-cut along the negative real axis. The use
of Padé approximants leads to the following relation on a general surface Γ

t̃
Pade
|Γ =

((
I + Λ̃2,ε

)−1

Λ̃1,ε + 2µM
)
u|Γ. (31)

The local representations of the operators Λ1,ε and Λ2,ε are given respectively by

Λ̃1,ε = iρω2

[
1

κp,ε
n
(
r0I +

L∑
`=1

r`

( ∆Γ

κ2
p,ε

− q`I
)−1)

n · In

+
1

κs,ε

(
r0I +

L∑
`=1

r`

(
L− q`I

)−1)(
It − curlΓ

1

κ2
s,ε

curlΓ

)]
and

(32)
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Λ̃2,ε = i
[
− 1

κs,ε
∇Γ

(
r0I +

L∑
`=1

r`

(∆Γ

κ2
s,ε

− q`I
)−1)

n · In

+
1

κp,ε
n
(
r0I +

L∑
`=1

r`

( ∆Γ

κ2
p,ε

− q`I
)−1)

divΓ It

] (33)

where we have set L := ∇Γ
1

κ2
s,ε

divΓ− curlΓ
1

κ2
s,ε

curlΓ in view of the decomposition [54, Equation

(2.5.192)] of the operator ∆Γ acting on tangent vector fields. We compute the analytical expression
of the solution t̃Pade

|Γ for the scattering by the sphere S2

t̃
Pade
|Γ (x) =

∞∑
m=1

m∑
j=−m

(
αPade
m curlS2Ym,j(x̂) + βPade

m ∇S2Ym,j(x̂)
)

+

∞∑
m=0

m∑
j=−m

γPade
m x̂Ym,j(x̂).

The coefficients depend on the Padé parameters: the angle of rotation θ and the order 2L+ 1. We
report in Table 1 the error ‖αapp − αPade‖ according to θ and L, with αapp = (αapp

m )1≤m≤mmax ,
αPade = (αPade

m )1≤m≤mmax
, and ‖ · ‖ the Euclidian norm. We consider the scattering by a unit

sphere of an incident plane S-wave with d = (0, 0, 1)T and p = (1, 0, 0)T . We fix κs = 6π and
mmax = 3[κs], where [·] denotes the integer part of a real number. As expected, the increase of
the Padé order N leads to better accuracy. An appropriate angle seems to be θ = π/2. We obtain
similar results for the other coefficients. From now on, we fix θ = π/2.

Table 1: Diffraction of an incident plane S-wave by a unit sphere: ‖αapp − αPade‖ vs θ and N .
θ N = 4 N = 8 N = 12
0 1.05e00 2.22e-01 7.35e-02
π/4 5.71e-02 6.4e-04 1.42e-05
π/3 2.85e-02 1.48e-04 1.59e-06
π/2 2.99e-02 8.64e-05 5.94e-07
2π/3 2.49e-01 2.74e-03 6.92e-04

5. An application of the approximate local DtN: the OSRC method

5.1. Principle of the OSRC method
One possible application of the approximate DtN (31) is as an OSRC [3, 33, 44] to solve

approximately the exterior Navier problem (1)-(3)-(4). The method consists in considering the
boundary differential equation

t̃|Γ = −
((

I + Λ̃2,ε

)−1

Λ̃1,ε + 2µM
)
uinc
|Γ , (34)

directly on the physical surface Γ. The approximation of the DtN map is evaluated by solving
a set of local differential equations posed on Γ (i.e. on the boundary similarly to BEMs). The
solution of the sparse linear systems (contrary to BEMs that lead to dense systems) associated
with the discretization of (34) gives an approximation of the trace t̃|Γ, and hence of the scattered
field

u(x) ≈ −Duinc
|Γ (x) − S t̃|Γ(x), x ∈ Ω+. (35)

Similarly, the approximate far-field pattern is computed via the integral representation formula

u∞(x̂) ≈ −F
D
uinc
|Γ (x̂)−F

S
t̃|Γ(x̂) (36)

where the far-field operators FS and FD are defined by (11)-(12). The evaluation of the approxi-
mate Neumann trace t̃|Γ is decomposed into the following three steps:
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Step 1: Compute the intermediate variable v ∈H
1
2 (Γ) such that

v = −Λ̃1,εu
inc
|Γ . (37)

Step 2: Solve the boundary differential equation: find q ∈H−
1
2 (Γ) solution of(

I + Λ̃2,ε

)
q = v. (38)

Step 3: Deduce an approximation of the Neumann trace t̃|Γ ∈H−
1
2 (Γ)

t̃|Γ = q − 2µMuinc
|Γ . (39)

The treatment of the three steps involves only sparse matrices. We point out that the second
one requires to solve a linear system (using an iterative solver) to find the intermediate variable
q. The efficiency of the OSRC method is obtained at the expense of the accuracy. Thus it is
less accurate than integral equation methods but it is extremely faster. Its numerical efficiency is
related to the (limited) level of accuracy required in the approximate DtN operator. In Section 5.3,
we demonstrate on numerical examples that the OSRC method is nevertheless a very interesting
tool to analyze high frequency scattering phenomena.

5.2. Finite element discretization
We consider a triangulation of Γ with NT triangular elements and NV vertices. The polyedric

interpolated surface is denoted by Γh. For the discretization, we use classical P1 boundary finite
elements. We set Vh = P1(Γh) and Vh = V 3

h with dimVh = 3NV . For example, the P1-interpolation
gh := (uinc

|Γ )h of the Dirichlet data is given by

gh(x) =

3∑
i=1

NV∑
j=1

gi(aj)ϕj(x)ei, x ∈ Γh,

where aj , 1 ≤ j ≤ NV , are the vertices of the mesh and the functions ϕj , 1 ≤ j ≤ NV , the P1

basis functions on Γh. We use the standard scalar product given by(
u,v

)
:=

ˆ
Γh

u · v dΓh.

The discretization of the OSRC (34) is decomposed into three steps:

Step 1: The discrete weak formulation for the application of the operator Λ̃
1,ε

(eq. (37)) is given in
the following algorithm:
(a) Knowing the incident field, solve the L uncoupled equations to find v`h ∈ Vh such that

(κ−1
p,εh

∇Γhv
`
h, κ
−1
p,εh

∇Γhv
′
h) + q`(v

`
h, v
′
h) = −(nh · gh, v′h), v′h ∈ Vh, ` = 1, . . . , L.

Note that the coefficients r0, r`, q`, ` = 1, . . . , L, are determined by the Padé approxi-
mation (30).

(b) Evaluate the intermediate variable zh ∈ Vh such that

(κp,εhzh, z
′
h) = r0(nh · gh, z′h) +

L∑
`=1

r`(v
`
h, z
′
h), z′h ∈ Vh.

(c) Independently from steps (a)-(b), compute bh ∈ Vh solution to

(bh, b
′
h) = (nh × (gh × nh), b′h)− (κ−1

s,εh
curlΓh gh, κ

−1
s,εh

curlΓh b
′
h), b′h ∈ Vh.
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(d) For all (u′h, ρ
′
h) ∈ Vh × Vh, solve the L uncoupled systems of two equations{

q`(u
`
h,u

′
h) + (κ−1

s,εh
curlΓh u`h, κ

−1
s,εh

curlΓh u′h)− (∇Γhρ
`
h,u

′
h) = −(bh,u

′
h), ` = 1, . . . , L,

(ρ`h, ρ
′
h) + (κ−1

s,εh
u`h, κ

−1
s,εh
∇Γhρ

′
h) = 0, ` = 1, . . . , L.

(e) Evaluate the intermediate variable ch ∈ Vh

(κs,εhch, c
′
h) = r0(bh, c

′
h) +

L∑
`=1

r`(u
`
h, c
′
h), c′h ∈ Vh.

(f) The variable vh ∈ Vh is finally given by

(vh,v
′
h) = −iρω2

(
(zh,nh · v′h) + (ch,v

′
h

))
, v′h ∈ Vh.

The discrete wavenumbers are expressed by κα,εh = κs + iεh with εh = βακ
1/3
α (H2

h)1/3

(α = s, p). The quantity Hh is a piecewise constant interpolation of the mean curvature H
over Γh on each triangle of the triangulation. The numerical evaluation of Hh comes from
the relation

Hh(x) =
1

2
divΓh nh(x) =

1

2

3∑
k=1

NV∑
j=1

(nh(aj) · ek)(ek · ∇Γhϕj(x)), x ∈ Γh.

Step 2: The solution qh ∈ Vh of the linear system (38) is obtained with the iterative solver GMRES.
At each iteration, the matrix-vector product required by GMRES(

I + Λ̃2,ε

)
x = z

is realized by the following algorithm:
(a) Solve the L uncoupled systems to find v`h ∈ Vh, such that

(κ−1
s,εh

∇Γhv
`
h, κ
−1
s,εh

∇Γhv
′
h) + q`(v

`
h, v
′
h) = −(nh · xh, v′h), v′h ∈ Vh, ` = 1, . . . , L.

(b) Evaluate the auxiliary variable wh ∈ Vh

(κs,εhwh, w
′
h) = r0(nh · xh, w′h) +

L∑
`=1

r`(v
`
h, w

′
h), w′h ∈ Vh.

(c) Independently from steps (a)-(b), solve the L uncoupled systems to find u`h ∈ Vh such
that

(κ−1
p,εh

∇Γhu
`
h, κ
−1
p,εh

∇Γhu
′
h) + q`(u

`
h, u
′
h) = −(divΓh Itxh, u

′
h), u′h ∈ Vh, ` = 1, . . . , L.

(d) Evaluate the intermediate variable yh ∈ Vh solution to

(κp,εhyh, y
′
h) = r0(divΓh Itxh, y

′
h) +

L∑
`=1

r`(u
`
h, y
′
h), y′h ∈ Vh.

(e) The variable zh ∈ Vh is finally given by(
zh, z

′
h

)
=
(
xh, z

′
h

)
+ i(−

(
∇Γhwh, z

′
h

)
+ (yh,nh · z′h)), z′h ∈ Vh.

Step 3: The approximation th of the Neumann trace of the scattered field is finally obtained: Find
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th ∈ Vh such that for all t′h ∈ Vh

(th, t
′
h) = (qh, t

′
h)− 2µ(Mhgh, t

′
h) (40)

where qh is computed in Step 2 and Mh is the numerical evaluation of the tangential
Günter derivative.

According to the decomposition of the DtN operator mentioned in Section 3.2, the application
of the approximate acoustic NtD operator [7] and of the approximate MtE operator [33] appear in
Step 1 and Step 2. The implementation is easy and only requires sparse matrices. The solution of
the 4L uncoupled (and thus embarrassingly parallel) sparse linear systems with L small (typically
L = 4) is efficiently realized by a direct solver.

5.3. Numerical efficiency of the OSRC for 3D elastodynamics
We study the scattering of incident elastic plane waves of the form (25) by different obstacles.

We compute the Neumann trace of the scattered field u (35) and the bistatic Scattering Cross
Section (SCS) [2]:

SCS(θ, φ) = 10log10(4π|u∞(x̂(θ, φ))|2) (dB), (41)

where the points x̂ ∈ S2 are defined by x̂ := x̂(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). We
consider several geometries. First, a unit sphere is used for validation purposes by comparison
with the analytical solutions (A.1) and (A.2). The second object is an ellipsoid with semi-axes
a = 1, b = 0.5 and c = b along the x-, y- and z-directions respectively (ellipsoid abb), or with
semi-axes a = 1, b = 0.75 and c = 0.5 (ellipsoid abc). The last geometry is a trapping domain.
We consider a semi-concave sphere (Sshape) (Fig. 3). The number of vertices of the different
meshes used are given in Table 2. We denote by nλs = λs/h the density of discretization points
per S-wavelength where h is the average length of the edges of the triangles. The simulations are
performed with Matlab. All the tests are run on an Dell PowerEdge R900 with 4 chips Intel Xeon
E7 (10 cores, 2 GHz) and 1 Tb of RAM.

Table 2: Number of vertices for the different meshes used in this Section.
Mesh sphere 3 sphere 4 ellipsoid abb ellipsoid abc Sshape
NV 40 962 61 033 40 962 40 064 61 542

Figure 3: Geometry of the semi-concave sphere.

The efficiency and accuracy of the method depend on different parameters: the damping
parameters εs,p, the order 2L + 1 and the angle θ of the Padé approximation and the stopping
criterion of the GMRES solver (without restart) in the second step of the OSRC method. We
summarize the parameters used for all the following simulations (unless indicated otherwise) in
Table 3. The choice of the regularizing parameters εs,p and the ones used in the localization
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process has been discussed in the previous Sections 4.1 and 4.2. Concerning the tolerance of the
GMRES, note that the OSRC method is an approximate method with a lower accuracy than the
reference method of boundary integral equations. As a result, it is sufficient to fix the tolerance
in the GMRES stopping criterion to 10−3. For this choice, the convergence of the GMRES is
achieved within a small number of iterations.

Table 3: Important Parameters of the OSRC and corresponding fixed values in the remaining of the Article.
Parameters εs εp L θ tol

Values 0.4κ
1/3
s (H2)1/3 0.4κ

1/3
p (H2)1/3 4 π/2 1.e-03

First, we study the convergence of the finite element method. We consider the scattering of
incident plane P-waves with p = d = (0, 0, 1)T or S-waves with d = (0, 0, 1)T and p = (1, 0, 0)T

by a unit sphere. The bistatic SCS is evaluated at points x̂ = (sin(θ), 0, cos(θ)) where θ ∈ [0, 2π],
namely SCS(θ, 0). We report in Table 4 the relative error between the analytical SCS relative to
the OSRC formulation (cf. Appendix) and the computed SCS with respect to the discretization
density nλα . These results attest both the convergence of the finite element approximation and
the accuracy of the OSRC method. As expected, when decreasing the tolerance of GMRES to
10−3, the accuracy of the numerical solution is improved.

Table 4: Diffraction of incident plane P- or S-waves by a unit sphere: accuracy of the finite element method.
10−2 10−3

Mesh nλs Error in ‖ · ‖2 Error in ‖ · ‖∞ Error in ‖ · ‖2 Error in ‖ · ‖∞

P-wave

sphere 1 6 1.82e-02 2.40e-02 1.61e-02 2.42e-02
sphere 2 13 1.36e-02 1.54e-02 4.24e-03 6.43e-03
sphere 3 26 1.28e-02 1.46e-02 1.80e-03 1.70e-03

S-wave

sphere 1 6 8.07e-02 7.54e-02 8.05e-02 7.53e-02
sphere 2 13 2.02e-02 1.71e-02 1.85e-02 1.83e-02
sphere 3 26 1.13e-02 1.24e-02 4.39e-03 4.10e-03

We check now the efficiency of the OSRC by considering first the ideal configuration of a
unit sphere and incident plane P-waves with p = d = (0, 0, 1)T , S-waves with d = (0, 0, 1)T and
p = (1, 0, 0)T or a combination of P and S waves with d = (0, 0, 1)T and p = 1/

√
2(1, 0, 1)T .

The OSRC-based solution is compared to the analytical solution (A.1) and the analytical OSRC-
based solution (A.2). The analytical OSRC-based solution represents the best solution that we
can expect when using the OSRC. In Figure 4, the Neumann traces of the scattered field for
κs = 8π computed on the mesh sphere 3 (corresponding to nλs = 13) are reported. We observe a
good agreement between the analytical and computed OSRC-based surface fields. In addition, the
OSRC method allows a correct approximation of the reference exact solution. Similar conclusions
hold when we check the accuracy of the SCS(θ, 0) (cf. Figure 5). We also report the SCS for
κs = 16π with mesh sphere 4 (corresponding to nλs = 8). In that case, some oscillations appear
in the OSRC solution. This is due to the small density of points per wavelength. However, the
principal informations on the SCS are still well reproduced and a better accuracy is expected if a
finer mesh is used. Finally, numerical results in Fig. 6 show the crucial role of the regularization
process and confirm the study made in Section 4.1. The chosen regularization parameters lead
to a very good approximation of the SCS for all angles while spurious oscillations are observed
without damping, particularly in the zone of grazing rays.

We consider the scattering of plane waves by an ellipsoid (with κs = 8π) for two configurations
described in Table 5. We report in Figure 7 the SCS computed with a spectral method [46]
(considered as the reference one) and the SCS obtained with the OSRC method. Even for this
more complex geometry of scatterer, the SCS is correctly reproduced for the two configurations.
The only minor errors occur in the shadow zone.

The last obstacle is the semi concave sphere presented in Fig. 3. This trapping domain is
known to be more difficult for the OSRC method [3, 33]. The data are incident plane P-waves
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Analytical solution Analytical OSRC-based solution Computed OSRC-based solution

P-waves
(first
comp.)

S-waves
(third
comp.)

Figure 4: Diffraction of plane P-waves (first row) and S-waves (second row) by a unit sphere (κs = 8π): comparison
of the Neumann traces of the scattered field (left: analytical solution, center: analytical OSRC-based solution and
right: computed OSRC-based solution). For the P-wave (resp. S-wave) only the first component (resp. third
component) is represented.
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Figure 5: Diffraction of plane P-waves, S-waves and P/S-waves by a unit sphere (for κs = 8π and κs = 16π):
comparison of the SCS for the analytical solution, the analytical OSRC-based solution and the OSRC-based solution.

Table 5: Description of the two tests used for the scattering by an ellipsoid.
Incident d p Geometry nλs SCS
waves
P (−1, 0, 0)T p = (1, 0, 0)T abc 17 SCS(π/2, φ)

φ ∈ [0, 2π]
S (0, 0,−1)T p = (0, 1, 0)T abb 19 SCS(θ, 0)

θ ∈ [0, 2π]
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Figure 6: Diffraction of incident plane P-waves by a unit sphere (κs = 4π): study of the effect of the parameters
εp and εs. The SCS approximations if no regularization is added and if some regularization is added are compared
with the analytic solution.
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Figure 7: Diffraction of plane P-waves and S-waves by an ellipsoid (κs = 8π): comparison of the SCS for the
OSRC-based solution and the spectral method-based solution.

with p = d = (−1, 0, 0)T and κs = 8π. This test corresponds to an incident wave that hits the
concave part of the obstacle. The reference solution is computed using the FM-BEM [22]. We
compute SCS(θ, 0) with θ ∈ [0, 2π]. We report in Fig. 8 the SCS. As expected, the accuracy on
the SCS is better in the convex (sphere) part than in the cavity part.

6. Conclusions and future work

In this article, we have proposed a new class of approximate local Dirichlet-to-Neumann maps
for three-dimensional elastodynamics. The methodology to construct and to evaluate these opera-
tors is detailed including regularization and localization steps. Furthermore, a physical interpreta-
tion is given to link these approximations to the ones obtained in acoustics and electromagnetism.
A first application is presented in the context of the OSRC method. The approach has been
numerically evaluated for many configurations (in terms of incident fields, scatterers or frequen-
cies). Numerical simulations attest that the proposed approximate local DtN maps applied as
OSRC operators reproduce in a fast and approximate way the near- and far-fields, especially when
the scatterer is convex and the frequency is high. As expected, the OSRC performance is less
satisfactory in the case of non-convex obstacles.
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Figure 8: Diffraction of incident plane P-waves by a semi concave sphere (κs = 8π).

Previous works in acoustics and electromagnetism show that this accuracy is nevertheless ac-
ceptable in other applications. And such approximate local DtN operators may play a central role
in improving other numerical methods for wave propagation: to design inexpensive and efficient
analytical preconditioners ([5, 30, 6, 1, 16, 31, 32, 15]) in the context of integral equations method,
to be served as very good initial guesses for such iterative methods, to derive Absorbing Boundary
Conditions for volume methods ([4, 37, 35, 9, 10]) or to be used in the context of Domain Decom-
position Methods ([36, 49, 14]). These extensions will be the subjects of promising forthcoming
researches.
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A. Appendix

In this appendix, we give the analytical expressions of the solution to the time-harmonic
scattering problem of a plane wave by a rigid elastic sphere of radius R > 0 and the approximate
solution obtained using the OSRC method, in terms of the vector spherical harmonics.

Notations. We denote by Ym,j the spherical harmonics of order m for j = −m, . . . ,m, with
m, j ∈ N [54, Equation (2.4.78)]; by jm the spherical Bessel function of order m ∈ N and by h(1)

m

the spherical Hankel function of the first kind and order m ∈ N. We set z(1)
m = jm and z

(3)
m =

h
(1)
m . We introduce the scalar function u

(k)
m,j(κp,x) = z

(k)
m (κp|x|)Ym,j(x̂) and vector functions

M
(k)
m,j(κs,x) = curl

(
xu

(k)
m,j(κs,x)

)
and N

(k)
m,j(κs,x) = 1

iκs
curlM

(k)
m,j(κs,x), k = 1, 3. These

functions solve the Helmholtz equation for the wavenumber κp and the Maxwell’s equations for
the wavenumber κs [53, Theorems 9.14 and 9.16], respectively.

An incident plane wave defined for x ∈ R3 by

uinc(x) =
1

µ
eiκsx·d(d× p)× d+

1

λ+ 2µ
eiκpx·d(d · p)d , where d ∈ S2 and p ∈ R3 ,

admits the following series expansion (using [53, Equations (9.44), (9.45), (9.63)] and [28, Theorem
6.26])

uinc(x) =

∞∑
m=1

m∑
j=−m

(
α(1)
m M

(1)
m,j(κs,x) + β(1)

m N
(1)
m,j(κs,x)

)
+
∞∑
m=0

m∑
j=−m

γ(1)
m ∇u

(1)
m,j(κp,x),
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with the coefficients α(1)
m =

1

µ

4π im

m(m+ 1)
curlS2Ym,j(d) · p, β(1)

m =
1

µ

4π im

m(m+ 1)
∇S2Ym,j(d) · p and

γ
(1)
m = − 4π im+1

κp(λ+ 2µ)
Ym,j(d)d · p.

Analytical scattered field and far-field pattern. Since the vector spherical harmonics form a com-
plete orthonormal system in the Hilbert space L2(S2), the scattered wave and the corresponding
far field pattern are given by

u(x) =

∞∑
m=1

m∑
j=−m

(
α(3)
m M

(3)
m,j(κs,x) + β(3)

m N
(3)
m,j(κs,x)

)
+

∞∑
m=0

m∑
j=−m

γ(3)
m ∇u

(3)
m,j(κp,x),

u∞(x̂) =

∞∑
m=1

(−i)m+1

κs

m∑
j=−m

(
α(3)
m curlS2Ym,j(x̂)+β(3)

m ∇S2Ym,j(x̂)
)

+

∞∑
m=0

(−i)m
m∑

j=−m
γ(3)
m x̂Ym,j(x̂)

with γ(3)
0 = − j′0(κpR)

h
(1)′

0 (κpR)
γ

(1)
0 and for m ≥ 1,

 α
(3)
m

β
(3)
m

γ
(3)
m

 =


a

(3)
m 0 0

0 b
(3,1)
m c

(3,1)
m

0 b
(3,2)
m c

(3,2)
m


−1

(−Uinc
m ), Uinc

m =


a

(1)
m 0 0

0 b
(1,1)
m c

(1,1)
m

0 b
(1,2)
m c

(1,2)
m


 α

(1)
m

β
(1)
m

γ
(1)
m

 ,

where, for k = 1, 3, the coefficients are given by a
(k)
m = z

(k)
m (κsR), b(k,1)

m = 1
iκsR

(
z

(k)
m (κsR) +

κsRz
(k)′

m (κsR)
)
, c(k,1)

m = 1
Rz

(k)
m (κpR), b(k,2)

m = m(m+1)
iκsR

z
(k)
m (κsR) and c

(k,2)
m = κpz

(k)′

m (κpR). To
compute the traction trace of u

t|Γ(x) =

∞∑
m=1

m∑
j=−m

(
αex
m curlS2Ym,j(x̂) + βex

m ∇S2Ym,j(x̂)
)

+

∞∑
m=0

m∑
j=−m

γex
m x̂Ym,j(x̂), (A.1)

we use the following formulas for k = 1, 3 :

TxM
(k)
m,j(κ,x) = µ

(
κz

(k)′

m (κ|x|)− z
(k)
m (κ|x|)
|x|

)
curlS2Ym,j(x̂),

TxN
(k)
m,j(κ,x) =

µ

iκ|x|2
(
−
(
κ2|x|2 − 2m(m+ 1) + 2

)
z

(k)
m (κ|x|)− 2κ|x|z(k)′

m (κ|x|)
)
∇S2Ym,j(x̂)

+2µ
m(m+ 1)

iκ|x|

(
κz

(k)′

m (κ|x|)− z
(k)
m (κ|x|)
|x|

)
x̂Ym,j(x̂)

Tx∇u
(k)
m,j(κ,x) =

2µ

|x|

(
κz

(k)′

m (κ|x|)− z
(k)
m (κ|x|)
|x|

)
∇S2Ym,j(x̂)

+
[
− 2µ

|x|2
((
κ2|x|2 −m(m+ 1)

)
z

(k)
m (κ|x|) + 2κ|x|z(k)′

m (κ|x|)
)
− λκ2z

(k)
m (κ|x|)

]
x̂Ym,j(x̂).

Analytical OSRC-based solution. By using the plane wave expansion (26), we compute the ap-
proximate Neumann-type trace of the displacement field corresponding to the OSRC formulation
(24):

t̃|Γ(x) =

∞∑
m=1

m∑
j=−m

(
αapp
m curlS2Ym,j(x̂) + βapp

m ∇S2Ym,j(x̂)
)

+

∞∑
m=0

m∑
j=−m

γapp
m x̂Ym,j(x̂)

=

∞∑
m=1

m∑
j=−m

(
αapp

2µ,m curlS2Ym,j(x̂) + βapp
2µ,m∇S2Ym,j(x̂)

)
+

∞∑
m=0

m∑
j=−m

γapp
2µ,m x̂Ym,j(x̂) + 2µMu|Γ(x)

(A.2)
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with γapp
2µ,0 =

iρω2

κp,ε
κpj
′
0(κpR)γ

(1)
0 and for m ≥ 1,

 αapp
2µ,m

βapp
2µ,m

γapp
2µ,m

 =

 1 0 0

0 1 d app,1
m

0 d app,2
m 1


−1 napp,1

m 0 0

0 napp,2
m 0

0 0 napp,3
m

 (−Uinc
m )

with the coefficients napp,1
m = iµ

(
κ2
s,ε −

m(m+1)
R2

) 1
2

, napp,2
m = iρω2

(
κ2
s,ε −

m(m+1)
R2

)− 1
2

, napp,3
m =

iρω2
(
κ2
p,ε −

m(m+1)
R2

)− 1
2

, d app,1
m = −i

(
κ2
s,ε −

m(m+1)
R2

)− 1
2 1
R , d

app,2
m = −i

(
κ2
p,ε −

m(m+1)
R2

)− 1
2 m(m+1)

R .
We have also

Mu|Γ(x) =

∞∑
m=1

m∑
j=−m

(
αg
m curlS2Ym,j(x̂) + βg

m∇S2Ym,j(x̂)
)

+

∞∑
m=0

m∑
j=−m

γg
m x̂Ym,j(x̂)

with γg
0 = − 2

Rκpj
′
0(κpR)γ1

0 and for m ≥ 1, αg
m

βg
m

γg
m

 =

 −
1
R 0 0

0 − 1
R

1
R

0 m(m+1)
R − 2

R

 (−Uinc
m ) .

The far-field pattern of the approximate displacement field computed using the OSRC formu-
lation is given by the formula (10) where the far-field operators FS and FD are defined by (11)
and (12). We use the following analytical formulas

F
S
∇S2Ym,j(x̂) = (−i)m−1 R

2

µκs
(jm(κsR) + κsRj

′
m(κsR))∇S2Ym,j(x̂) + (−i)m−1m(m+ 1)R

κp(λ+ 2µ)
jm(κpR) x̂Ym,j(x̂) ,

F
S

curlS2Ym,j(x̂) = (−i)mR
2

µ
jm(κsR) curlS2Ym,j(x̂) ,

FS x̂Ym,j(x̂) = (−i)m−1 R2

λ+ 2µ
j′m(κpR) x̂Ym,j(x̂) + (−i)m−1 R

µκs
jm(κsR)∇S2Ym,j(x̂) ,

F
D
∇S2Ym,j(x̂) =

(−i)m+1

κs

((
κ2
sR

2 − 2m(m+ 1) + 2
)
jm(κsR) + 2κsRj

′

m(κsR)
)
∇S2Ym,j(x̂)+

2µ(−i)m−1

(λ+ 2µ)κp
m(m+ 1)

(
κpRj

′

m(κpR)− jm(κpR)
)
x̂Ym,j(x̂)

F
D

curlS2 Ym,j(x̂) = (−i)m
(
κsR

2j′m(κsR)−Rjm(κsR)
)

curlS2Ym,j(x̂)

F
D
x̂Ym,j(x̂) =

(−i)m+1

κp(λ+ 2µ)

[
2µ
((
κ2
pR

2 −m(m+ 1)
)
jm(κpR) + 2κpRj

′

m(κpR)
)

+ λκ2
pR

2jm(κpR)
]
x̂Ym,j(x̂)

+(−i)m−1 2

κs

(
κsRj

′

m(κsR)− jm(κsR)
)
∇S2Ym,j(x̂).
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