
HAL Id: hal-01188965
https://ensta-paris.hal.science/hal-01188965

Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A theory of finite strain magneto-poromechanics
Boumediene Nedjar

To cite this version:
Boumediene Nedjar. A theory of finite strain magneto-poromechanics. Journal of the Mechanics and
Physics of Solids, 2015, 84, pp.293-312. �10.1016/j.jmps.2015.08.003�. �hal-01188965�

https://ensta-paris.hal.science/hal-01188965
https://hal.archives-ouvertes.fr


A theory of finite strain magneto-poromechanics

B. Nedjara

aIMSIA, ENSTA ParisTech, CNRS, CEA, EDF,
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Abstract

The main purpose of this paper is the multi-physics modeling of magnetically

sensitive porous materials. We develop for this a magneto-poromechanics

formulation suitable for the description of such a coupling. More specifically,

we show how the current state of the art in the mathematical modeling of

magneto-mechanics can easily be integrated within the unified framework

of continuum thermodynamics of open media, which is crucial in setting the

convenient forms of the state laws to fully characterize the behavior of porous

materials. Moreover, due to the soft nature of these materials in general,

the formulation is directly developed within the finite strain range. In a

next step, a modeling example is proposed and detailed for the particular

case of magneto-active foams with reversible deformations. In particular,

due to their potentially high change in porosity, a nonlinear porosity law

recently proposed is used to correctly describe the fluid flow through the

interconnected pores when the solid skeleton is finitely strained causing fluid

release or reabsorption. From the numerical point of view, the variational

formulation together with an algorithmic design is described for an easy
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implementation within the context of the finite element method. Finally, a

set of numerical simulations is presented to illustrate the effectiveness of the

proposed framework.

Keywords: Magneto-poromechanics, Continuum thermodynamics, Biot’s

theory, Large deformation, Magneto-active foams.

1. Introduction

Magneto-active polymers (MAPs) are mostly composites of a soft polymer

matrix impregnated with magnetically permeable particles, typically iron

particles in micro- or nano-meter size. In general, the response of MAPs to

magnetic fields can be divided into two categories based on the property of

the matrix material: they can give large and prompt deformation, or they

can change their mechanical properties with moderate straining. These two

features have received considerable attention in recent years due to their

potential applications including, for instance, sensors, actuators, and bio-

medicine, see for example Jolly et al. (1996); Zŕınyi et al. (1996); Ginder

et al. (2002); Varga et al. (2006) among many others.

In parallel, the mathematical modeling of the coupling of electromagnetic

fields in deformable materials has also been an area of active research. Fully

coupled nonlinear field theories have been developed with constitutive formu-

lations based on augmented free energy functions, see for instance Dorfmann

and Ogden (2004a); Ericksen (2006); Kankanala and Triantafyllidis (2004);

Steigmann (2004); Vu and Steinmann (2007). In particular, it has been

shown that any one of the magnetic induction, magnetic field, or magnetiza-

tion vectors can be used as an independent variable for the magnetic part of
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the problem, the other two being obtained through the constitutive relations.

The relevant equations are based on the pioneering work of Pao (1978), see

also Brown (1966); Kovetz (2000) for detailed discussions concerning these

topics.

This work is devoted to the modeling of the particular case of magneto-

active foams. These latter have a combination of desirable properties, includ-

ing high porosity, light weight, low cost and fast responsiveness to external

stimuli. Indeed, they have the ability to respond to magnetic fields with dras-

tic change in volume, shape, and porosity. Furthermore, when the porosity

is highly interconnected, they can be good candidates for biomedical systems

used to control drug delivery, see Liu et al. (2006); Zhao et al. (2011), or to

dynamically control flows in microfluidic chips, see Hong et al. (2014).

It becomes then of interest to develop a theory that couples the magnetic

field with the large deformation in porous media. Historically, two approaches

have been used in a relevant literature for the modeling of porous materials:

mixture theories, see for example Bowen (1982); Wilmanski (2003), and the

macroscale consolidation theory of Biot, see for example Biot (1941, 1972).

The former approach is mostly used to model species migration where the

mixture equations for mass balance are used in combination with classical

equations for linear momentum balance in terms of rule-of-mixture relations

for the stress response, see the recent examples of application in Duda et al.

(2010); Baek and Pence (2011) among others. The present work is based

on the latter approach, i.e. the Biot’s theory. Since the pioneering work

of Biot, considerable progress has been made in the last decades to develop

a concise framework in the domain of poromechanics. Briefly, it describes
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the evolution of a saturated porous material in terms of the deformation of

its solid skeleton part in the one hand, and in terms of the distribution of

the mass of its fluid part, on the other hand. The resulting boundary value

problem consists of a coupling between the balance equation and the mass

conservation of the fluid. The reader is referred for example to Lewis and

Schrefler (1998); Coussy (2004) for a detailed synthesis.

The coupling with magnetostatics is integrated within the framework of

continuum thermodynamics of open media for the correct setting of the whole

set of constitutive relations. In particular, to describe the potentially high

change of porosity, we use a simplified version of the porosity law recently

proposed in Nedjar (2013a), see also Nedjar (2013b). This law accounts for

the physical property that the actual (Eulerian) porosity must belong to the

interval [0, 1] for any admissible process as, by definition, the porosity is at

any time a ratio of the connected porous space. Among others, this allows

for a good description of the seepage process and the fluid release and/or

absorption during the loading history.

A further goal of this paper is the formulation of a finite element treatment

to furnish a computational tool for structural simulations. The three-field

boundary value problem at hand being strongly coupled, it must be solved

with the help of a combination of existing numerical strategies proposed in a

relevant literature. As a very first attempt, we opt for a monolithic scheme

where the three sub-problems are solved simultaneously. The most relevant

particularities of the proposed numerical scheme are highlighted for an easy

implementation.

An outline of the remainder of this paper is as follows. In Section 2, we
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recall the governing equations of mass conservation and mechanical balance

together with the specialized versions of Maxwell’s equations. Both of the

equivalent spatial and material descriptions are considered. Then, in Section

3, the magneto-mechanics coupling is embedded within the framework of con-

tinuum thermodynamics. In particular, we show how the formulation can be

based on the magnetic induction vector or, equivalently, on the magnetic field

vector. Section 4 is devoted to the modeling of hyperelastic magneto-active

foams. Details of the whole constitutive equations are given together with

the variational forms in view of the numerical approximation. This model

example is then used for the simulations of Section 5. Finally, conclusions

and perspectives are drawn in Section 6.

Notation: Throughout the paper, bold face characters refer to second-

or fourth-order tensorial quantities. In particular, 1 denotes the second-order

identity tensor with components δij (δij being the Kronecker delta), and I

is the fourth-order unit tensor of components Iijkl =
1
2
(δikδjl + δilδjk) . The

notation (�)T is used for the transpose operator and the double dot symbol

’:’ is used for double tensor contraction, i.e. for any second-order tensors A

and B, A :B = tr[ABT ] = AijBij where, unless specified, summation on

repeated indices is always assumed. One has the property tr[(�)] = (�) : 1 for

the trace operator “tr”. The notation ⊗ stands for the tensorial product. In

components, one has (A⊗B)ijkl = AijBkl, and for any two vectors U and V,

(U⊗V)ij = UiVj. Furthermore, the double-striked characters will exclusively

be used for vector fields related to the magnetic part of the problem, e.g. b,

B, h . . . .
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2. Mass conservation and balance equations

When undeformed, unstressed, and in the absence of magnetic fields, the

magnetically sensitive porous body occupies the reference configuration Ω0

with boundary ∂Ω0. The porous body is thought as being a superimposi-

tion of a solid skeleton and a fluid phase. By solid skeleton, we mean the

continuum formed from the constitutive matrix and the connected porous

space emptied of fluid. Its deformation is the one that is observable under

the combined action of mechanical forces and magnetic fields.

We identify a material solid skeleton particle by its position vector in the

reference configuration, X ∈ Ω0, and trace its motion by its current position

at time t, x(X, t) ∈ Ωt. The deformation gradient is as usual defined as

F = ∇Xx, where ∇X(�) is the material gradient operator with respect to the

reference coordinates X. The Jacobian of the transformation is given by the

determinant J = detF with the standard convention J > 0.

Furthermore, for the porous space, we denote by n the Eulerian porosity

which is the volume fraction of the connected porous space in the spatial

configuration. Thus, for a current elementary volume dΩt of porous material,

the volume of porous space within it is ndΩt.

Now in contrast to the Eulerian porosity, the change in the porous space

is thermodynamically better captured relative to the reference configuration

through the Lagrangian porosity that we denote here by φ. This latter is

defined by the following Piola transform: If dΩ0 is the reference elementary

volume to which dΩt corresponds, the relation φdΩ0 = ndΩt holds. Hence, as

the relation between the elementary reference and current volumes is given by
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dΩt = JdΩ0, we thereby get the important relation between the Lagrangian

and Eulerian porosities

φ = Jn (1)

2.1. Mass conservation for open systems

Within a spatial elementary volume dΩt, the current fluid mass content

is ρfndΩt, where ρf is the actual fluid density. Likewise, the current solid

mass content is ρs(1 − n)dΩt, where ρs is the actual density of the matrix

that constitutes the solid skeleton. Therefore, by distinguishing the material

time derivative with respect to the solid phase ds(�)/dt from the one relative

to the fluid phase df (�)/dt, the Eulerian forms of the mass conservations for

the solid and fluid phases are respectively given by:

ds

dt

∫

Ωt

ρs(1− n) dΩt = 0 and
df

dt

∫

Ωt

ρfn dΩt = 0 (2)

for any partial or total volume Ωt of porous material. Furthermore, the fluid

mass conservation (2)2 rewritten in terms of the material time derivative

with respect to the solid phase is equivalently given by (see Appendix A for

details),
ds

dt

∫

Ωt

ρfn dΩt = −

∫

Ωt

divqf dΩt (3)

where qf is the spatial flow vector of fluid mass, and given by

qf = ρfν with ν = n (vf − vs) (4)

for the filtration vector ν, and the relative velocity (vf − vs) of the fluid with

respect to the velocity of the solid skeleton vs, see the sketch of Figure 1 for an

illustration. In Eq. (3), div(�) is the divergence operator with respect to the
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X

F = Gradϕt

J = det[F ]

x

n

qf
Ω0

ϕt

Ωt

Figure 1: A magneto-active porous solid under a deformation ϕt of the solid skeleton and

a fluid flow characterized by the flow vector qf .

spatial coordinates x. It is denoted by Div(�) in the material configuration

with respect to X.

Furthermore, relative to the reference configuration, we introduce the

Lagrangian fluid mass content, denoted here by Mf , and defined per unit of

reference volume dΩ0. It is related to the current fluid mass content per unit

of current volume dΩt as: MfdΩ0 = ρfndΩt. On the one hand, one obtains

the well-known definition

Mf = ρfφ (5)

where use has been made of the relation (1), and on the other hand, the

spatial fluid mass conservation (3) leads to the following local Lagrangian

form

Ṁf = −DivQf (6)

where Qf is the material flow vector of fluid mass related to its spatial

counterpart qf via the Piola transform Qf = JF−1qf . In Eq. (6) and
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henceforth, the dot operator (�̇) is the material time derivative with respect

to the solid phase which reduces to a simple derivative with respect to time

for a Lagrangian quantity.

2.2. Magnetostatics equations

As the porous materials we consider are electrically non-conducting, the

magnetostatic fields are governed by the following specializations of Maxwell’s

equations in the absence of distributed currents and time dependence

Ampère’s law: curl h = 0 in Ωt

Gauss’s law: div b = 0 in Ωt

(7)

where h and b are respectively the magnetic field and magnetic induction

vectors, both with respect to the spatial configuration. They are related by

the standard relation

b = µ0 (h+m) (8)

wherem is the spatial magnetization vector. The constant µ0 is the magnetic

permeability of vacuum. In Eq. (7)1, curl(�) denotes the rotational operator

with respect to x. It is denoted by Curl(�) in the material configuration with

respect to X.

Pull-back to the reference configuration gives the Lagrangian counterparts

of the above laws:

Curl H = 0 and Div B = 0 in Ω0 (9)

for the Piola transforms

H = F T
h B = JF−1

b M = F T
m (10)
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Using the relation (8), the Lagrangian magnetic induction vector given

by Eq. (10)2 becomes

B = µ0JC
−1(H+M) (11)

where C = F TF is the right Cauchy-Green tensor which, otherwise, is a

strain measure for the solid skeleton.

2.3. Mechanical balance and power of external forces

The magneto-active porous materials we have in mind are those where

only the solid skeleton is sensitive to external magnetic fields. This fact is

here taken into account within the classical Biot’s theory. In statics, the

spatial forms of the partial balance equations are given by

div
(
(1− n)σs

)
+ fm + ρs(1− n)f + f s

int = 0 in Ωt,

(1− n)σsn = ts on ∂Ωt

(12)

for the solid skeleton, and

div
(
nσf

)
+ ρfnf + f

f
int = 0 in Ωt,

nσfn = tf on ∂Ωt

(13)

for the fluid phase.

In these equations, σs and σf are respectively the partial Cauchy stress

tensors relative to the solid skeleton and to the fluid phase, ts and tf are

the respective prescribed Cauchy traction vectors on the boundary ∂Ωt of

unit outer normal n, f is the volumetric body force, and f s
int and f

f
int are

macroscopic interaction forces exerted by the other continuum. These latter

are such that f s
int+f

f
int = 0. And last, fm is the magnetic body force per unit

volume that solely affects the solid skeleton’s partial mechanical balance. It
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is given by fm = [∇x b]
T
m, see for example Pao (1978). Here and in all

what follows, the notation ∇x(�) refers to the spatial gradient operator with

respect to the coordinates x. Adding up both contributions, we get the

balance equation

divσ + fm + ρf = 0 in Ωt (14)

with

σ = (1− n)σs + nσf and ρ = (1− n)ρs + nρf (15)

for the total Cauchy stress tensor σ and the current density ρ of the porous

material. Notice that due to the magnetization, the partial stress σs is in

general non-symmetric, and so is the total stress σ. Nevertheless, we adopt

here the well known structure where the stress is augmented with terms

arising from the magnetic body force. Indeed, this latter can equivalently be

written as, see for example Dorfmann and Ogden (2004a), Steigmann (2004),

and Vu and Steinmann (2007),

fm = div
(
µ−1
0

[
b⊗ b−

1

2
b.b1

]
+m.b1−m⊗ b

︸ ︷︷ ︸
= σm

)
(16)

where we have introduced for convenience the notation σm for the magnetic

interaction stress tensor. The balance equation (14) can then equivalently

be written as

div σ̃ + ρf = 0 in Ωt (17)

in terms of the augmented1 Cauchy stress tensor σ̃ defined by σ̃ = σ + σm.

The stress σ̃ is this time symmetric. The pull-back of the balance equation

1Note that in the literature the widely used term is total stress, e.g. Bustamante et al.

(2006). Here we prefer to use the term augmented stress instead. The term total is left to
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(17) to the reference configuration gives the following useful Lagrangian form

Div P̃ + ρ0f = 0 in Ω0 (18)

in terms of the augmented first Piola-Kirchhoff stress tensor P̃ ≡ F S̃ =

Jσ̃F−T and the reference density ρ0 = Jρ, S̃ being the augmented second

Piola-Kirchhoff stress tensor. In particular, the first Piola-Kirchhoff magnetic

interaction part Pm = JσmF
−T is

Pm =
1

µ0J

[
FB⊗B−

1

2
C :B⊗BF−T

]
+M.BF−T − F−T

M⊗B (19)

where use has been made of the relations (10)2 and (10)3.

For later use, let us compute the power of the external forces, Pext, for

the open system at hand. Adding up the contributions of both phases, it is

given by

Pext =

∫

Ωt

(
ρs(1− n)f + fm + f s

int

)
.vs +

(
ρfnf + f

f
int

)
.vf dΩt

+

∫

∂Ωt

ts.vs + tf .vf da
(20)

Use of the divergence theorem after having replaced the boundary traction

vectors (12)2 and (13)2, use of the relations (15), and simplifying with the

balance equation (14), we get

Pext =

∫

Ωt

σ :∇xvs + f .qf + div
(
nσT

f (vf − vs)
)
+ f

f
int.(vf − vs) dΩt

where the relation (4) for the spatial flow vector of fluid mass qf has been

used. Furthermore, as the fluid partial stress tensor σf can be addressed

its classical meaning in poromechanics; the additional contributions of the solid skeleton

and the fluid phase, i.e. the total stress σ defined in Eq. (15)1.
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through a spherical tensor, we henceforth adopt the form σf = −p1 for the

fluid pore pressure p. Finally, giving ride of the term f
f
int.(vf − vs) to the

benefit of the fluid pore pressure, we end up with the form that will be used

in the following thermodynamic developments

Pext =

∫

Ωt

σ : ∇xvs + f .qf − div
( p
ρf

qf

)
dΩt (21)

where the relation (4) has again been used. In Eq. (21), ∇xvs is the spa-

tial velocity gradient of the solid skeleton that is related to the deformation

gradient through the well known kinematic relation ∇xvs = Ḟ F−1.

3. Continuum thermodynamics and constitutive equations

The above governing equations need now to be supplemented with ade-

quate constitutive relations. These latter together with the characterization

of the dissipation phenomena are constructed in accordance with the require-

ments of continuum thermodynamics. We demonstrate in this work how the

current state of the art in magneto-mechanics can be embedded within the

up to date poromechanics developments in a straightforward manner.

3.1. First principle: energy conservation

With respect to the spatial configuration, the first law of thermodynamics

for our magneto-sensitive open system is given by

ds

dt

∫

Ωt

ρs(1− n)es dΩt +
df

dt

∫

Ωt

ρfnef dΩt = Pext +Q+ Pm (22)

where es and ef are the specific, i.e. per unit of mass, internal energies of the

solid skeleton’s constitutive matrix and the fluid phase, respectively. While
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the power of the external forces Pext is given by Eq. (21), Q is the thermal

flux power and Pm is the magnetic power, respectively given by

Q =

∫

∂Ωt

−q.n da and Pm =

∫

Ωt

−m.
dsb

dt
dΩt (23)

where q is the spatial heat flux vector. The left hand side of Eq. (22) can

be rewritten as ∫

Ωt

dse

dt
+ e divvs + div

(
efqf

)
dΩt (24)

where e = ρs(1− n)es + ρfnef is the total volumetric internal energy of the

porous material. With Eqs. (24), (21) and (23), the energy conservation (22)

is rewritten as

∫

Ωt

dse

dt
+e divvs dΩt =

∫

Ωt

σ :∇xvs−div
(
hfqf+q

)
+f .qf−m.

dsb

dt
dΩt (25)

where hf = ef + p/ρf is the specific enthalpy of the fluid, see Appendix B

for useful details. Hence, the local form of the first law is given by

dse

dt
+ e divvs = σ : ∇xvs − div

(
hfqf + q

)
+ f .qf −m.

dsb

dt
(26)

which should be compared with the corresponding one for closed systems,

see for example Pao (1978); Brigadnov and Dorfmann (2003).

However, for the following developments, the Lagrangian form is better

suited. The energy conservation (25) must then be pull-back to the reference

configuration. Denoting by E the material total internal energy per unit

reference volume of the solid skeleton such that E dΩ0 = e dΩt, we obtain

the following correspondance for the left hand side of Eq. (25):

∫

Ωt

dse

dt
+ e divvs dΩt ≡

ds

dt

∫

Ωt

e dΩt =

∫

Ω0

Ė dΩ0 (27)
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Likewise, for the terms on the right-hand side, we have
∫

Ωt

σ :∇xvs dΩt =

∫

Ω0

P : Ḟ dΩ0 (28)

where P = JσF−T is the total first Piola-Kirchhoff stress tensor,
∫

Ωt

divq dΩt =

∫

Ω0

DivQ dΩ0 (29)

where Q = JF−1q is the material heat flux vector, and so on for the other

terms:∫

Ωt

div
(
hfqf

)
dΩt =

∫

Ω0

Div
(
hfQf

)
dΩ0

∫

Ωt

f .qf dΩt =

∫

Ω0

f .FQf dΩ0

∫

Ωt

m.
dsb

dt
dΩt =

∫

Ω0

−M.BF−T : Ḟ + F−T
M⊗B : Ḟ +M.Ḃ dΩ0

(30)

where, for this latter, use has been made of the relations (10)2 and (10)3

together with the well known kinematic relation J̇ = JF−T : Ḟ .

Hence, the material counterpart of the local form (26) is then

Ė = P : Ḟ −Div
(
hfQf

)
−DivQ+ f .FQf

+M.BF−T : Ḟ − F−T
M⊗B : Ḟ −M.Ḃ

(31)

where one can notice the presence of the three last terms related to the

magnetic coupling. The former ones are classical in poromechanics, see e.g.

Armero (1999); Coussy (2004).

3.2. Second principle and main dissipation inequality

The second law of thermodynamics postulates the positiveness of the

entropy production. It is written in the spatial configuration as

ds

dt

∫

Ωt

ρs(1− n)ss dΩt +
df

dt

∫

Ωt

ρfnsf dΩt ≥ −

∫

∂Ωt

q.n

T
da (32)
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where ss and sf are the specific entropies of the skeleton’s constitutive matrix

and the fluid, respectively, and T is the absolute temperature.

Denoting by S the total entropy per unit reference volume such that

SdΩ0 = [ρs(1 − n)ss + ρfnsf ]dΩt, pull-back of the inequality (32) to the

reference configutation using similar computations as those for the first prin-

ciple, Section 3.1, we end up with the local form

E = Ṡ +Div
(
sfQf +

Q

T

)
≥ 0 (33)

for the rate of entropy production E .

Now defining the volumetric free energy ψ of the porous material as a

whole, and the specific free enthalpy of the fluid alone µf , respectively as

ψ = E − TS and µf = hf − Tsf (34)

we can write the total dissipation D = TE as

D = Dthr +Dflw +Dint ≥ 0 (35)

where

Dthr = −
1

T
Q.∇XT

Dflw = −Qf . (∇Xµf )T + f .FQf

Dint = P : Ḟ + µfṀf − SṪ

+M.BF−T : Ḟ − F−T
M⊗B : Ḟ −M.Ḃ− ψ̇

(36)

after combining Eqs. (31) and (33), and using the fluid mass conservation,

Eq. (6). In Eq. (36)2, (∇Xµf )T stands for the material gradient of µf taken

at temperature T held constant.
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In the Clausius-Duhem inequality (35), we distinguish three forms of

dissipation: Dthr due to the heat conduction, Dflw due to the seepage process,

and the internal dissipationDint in the porous material. These three forms are

common in thermo-poromechanics, except for the additional terms in (36)3

that arise from the contribution to the internal dissipation of the magnetic

coupling.

A Fourier-type law for the definition of the heat flux vector q (or Q) is

sufficient to satisfy Dthr ≥ 0. Likewise, for the seepage process, Darcy’s law

furnishes an example for the definition of the flow vector of fluid mass qf (or

Qf ) that satisfies Dflw ≥ 0. Now following common arguments in continuum

thermodynamics, the non-negative dissipation due to internal processes in

the porous material is imposed separately, see e.g. Truesdell and Noll (1965);

Germain et al. (1983). Its treatment is detailed in the next section.

3.3. Internal dissipation and constitutive equations

In a first step, we rewrite the expression (36)3 in a more convenient form.

For this, let ψsk and Ssk be the free energy and the entropy of the solid

skeleton alone, both per unit reference volume, and respectively given by

ψsk = ψ −Mfψf and Ssk = S −Mfsf (37)

where ψf = µf − p/ρf is the specific free energy of the fluid, i.e. after

combining (B.7) with (B.9) in Appendix B. That is, ψsk is obtained by

extracting the volumetric free energy of the fluid from the total volumetric

free energy ψ and, likewise, Ssk is obtained by extracting the volumetric

entropy of the fluid from the total volumetric entropy S. Then, with the
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help of definition (5) for the fluid mass content and the state laws (B.10) for

the fluid, the internal dissipation (36)3 takes the new form

Dint = P : Ḟ + p φ̇− SskṪ

+M.BF−T : Ḟ − F−T
M⊗B : Ḟ −M.Ḃ− ψ̇sk

(38)

where, among others, one can notice the conjugate character between the

pore pressure p and the Lagrangian porosity φ, instead of the one between

µf andMf that appears in (36)3. However, in this form, φ is the independent

variable for the fluid part and we wish to use p instead, i.e. we want φ as

a function of p and not the reverse, see e.g. Biot (1972). For this, the free

energy ψsk is partially inverted through the partial Legendre transformation

Lsk = ψsk − pφ (39)

and the internal dissipation becomes then

Dint = P : Ḟ − φ ṗ− SskṪ

+M.BF−T : Ḟ − F−T
M⊗B : Ḟ −M.Ḃ− L̇sk ≥ 0

(40)

with a free energy of the general form Lsk ≡ Lsk(F ,B, p, T ). Without loss of

generality, material dissipations such as plasticity or viscoelasticity are not

considered for the sake of clarity. Using the standard arguments of continuum

thermodynamics, see for example Coleman and Gurtin (1967); Germain et al.

(1983), we get the following state laws

P =
∂Lsk

∂F
−M.BF−T + F−T

M⊗B , M = −
∂Lsk

∂B
,

φ = −
∂Lsk

∂p
and Ssk = −

∂Lsk

∂T
.

(41)
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To simplify further these constitutive equations, we introduce by similar

arguments as in Dorfmann and Ogden (2004a,b) the augmented volumetric

free energy Ωsk as

Ωsk(F ,B, p, T ) = Lsk(F ,B, p, T ) +
1

2
µ−1
0 J−1C :B⊗B (42)

With this latter, the augmented first Piola-Kirchhoff stress tensor P̃ ≡

P + Pm is directly obtained by the simple form

P̃ =
∂Ωsk

∂F
, (43)

where use has been made of the definition (19) for Pm. Furthermore, the

Lagrangian magnetic field vector H is directly obtained as

H =
∂Ωsk

∂B
, (44)

after a combination with (41)2 and the magnetic relation (11). The forms for

the Lagrangian porosity and entropy of the solid skeleton remain unchanged:

φ = −
∂Ωsk

∂p
, and Ssk = −

∂Ωsk

∂T
. (45)

In summary, given the augmented free energy function Ωsk, the results of

the constitutive relations (43)-(45) are replaced into: the mechanical balance

equation (18), or (17), the fluid mass conservation equation (6), the Maxwell’s

magnetic equations (9), or (7), and the transient heat equation if any.

Notice further that the internal dissipation, Eq. (40), can now be equiv-

alently rewritten in a more compact form as

Dint = P̃ : Ḟ − φ ṗ− SskṪ +H.Ḃ− Ω̇sk ≥ 0 (46)

where, among others, the conjugate character between H and B replaces the

one between M and B.
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3.4. Formulation based on the magnetic field

If instead of the magnetic induction vector B, we wish to use the magnetic

field vector H as the main independent magnetic variable, we define then the

complementary version of Ωsk, denoted by Ω∗

sk, through the following partial

Legendre transformation

Ω∗

sk(F ,H, p, T ) = Ωsk(F ,B, p, T )−H.B (47)

so that, when replaced into the inequality (46), the following state laws are

deduced

P̃ =
∂Ω∗

sk

∂F
, B = −

∂Ω∗

sk

∂H
, φ = −

∂Ω∗

sk

∂p
, Ssk = −

∂Ω∗

sk

∂T
. (48)

This very useful correspondance has been established by Bustamante

et al. (2006) for a similar formulation developed for closed systems. Now

it remains to precise the general form of the function Ω∗

sk in Eq. (47). For

this, we use the complementary version χsk of the volumetric free energy

Lsk, Eq. (39), that depends this time on the magnetic field H instead of the

magnetic induction B. It is given by

χsk(F ,H, p, T ) = Lsk(F ,B, p, T ) +
1

2
µ0JC

−1 :M⊗M , (49)

see e.g. Kovetz (2000); Steigmann (2004); Bustamante et al. (2008) for a

similar relation written in terms of the spatial magnetic vectors h, b and

m. Hence, after combining Eqs. (49) and (42) into Eq. (47), and using the

magnetic relation (11), the following form is obtained

Ω∗

sk(F ,H, p, T ) = χsk(F ,H, p, T )−
1

2
µ0JC

−1 :H⊗H . (50)
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In summary for a formulation based on the magnetic field vector, the

augmented free energy function Ω∗

sk has the form (50) and is used for the

constitutive relations given in (48). These latter are replaced as usual into

the mechanical balance equation (18), or (17), the fluid mass conservation

equation (6), the Maxwell’s magnetic equations (9), or (7), and the transient

heat equation if any.

4. Modeling hyperelastic magneto-active foams

Of interest for the developments presented below is the consideration of

porous materials with fully reversible deformations. One can think to the

example of macroporous ferrogels that change drastically their porosity and

volume in response to the application of external magnetic fields, see for

example Zhao et al. (2011); Hong et al. (2014). These materials are isotropic

and, for the sake of simplicity, it is further assumed here that the temperature

is constant. We choose to consider the magnetic field vector H as the main

independent magnetic quantity and we leave the magnetic induction vector

B to be determined using a constitutive law. We therefore use the augmented

free energy function Ω∗

sk introduced earlier in Section 3.4.

Now for objectivity reasons, the free energy function χsk in Eq. (50) must

depend on the deformation gradient F only through the right Cauchy-Green

tensor C, and for symmetry reasons, it depends on the magnetic field vector

H only through the tensor product H⊗H, i.e. χsk ≡ χsk(C,H⊗H, p). Then,

use of the property
∂Ω∗

sk

∂F
= 2F

∂Ω∗

sk

∂C
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gives the equivalent form for the state laws in (48):

τ̃ ≡ Jσ̃ = F 2
∂Ω∗

sk

∂C︸ ︷︷ ︸
= S̃

F T , Jb = −F
∂Ω∗

sk

∂H
, φ ≡ Jn = −

∂Ω∗

sk

∂p
(51)

where we have defined the augmented Kirchhoff stress tensor τ̃ . Furthermore,

being an isotropic function of its arguments, χsk depends in the most general

case on the collection of six irreductible invariants, see for example Spencer

(1984); Holzapfel (2000); Steigmann (2004) for more details,

I1 = C : 1, I2 =
1
2
(I21 −C : C) , I3 = detC ≡ J2,

I4 = H.H, I5 = C : H⊗H, and I6 = C2 : H⊗H,
(52)

where the first three ones are classical in isotropic hyperelesticity, and the

latter three ones, the so called pseudo-invariants, arise from the coupling

with magnetics.

To make matters as concrete as possible, the following augmented volu-

metric free energy that conforms with the general form (50) will be adopted

in our modeling:

Ω∗

sk = χ′

sk(C) + χpor(J, p)︸ ︷︷ ︸
poromechanics

+ c1 I4 + c2 I5 + c3 I6︸ ︷︷ ︸
magnetic coupling

−
1

2
µ0JC

−1 :H⊗H
︸ ︷︷ ︸

augmentation

(53)

where c1, c2 and c3 are material parameters. The first two terms are related

to the purely poromechanic part of the response, see for example Nedjar

(2013a, 2014): χ′

sk characterizes the drained response of the solid skeleton

without the porous space contribution. It depends at most on the above three

invariants I1, I2 and I3. The function χpor is the part that accounts for the

action of the pore pressure on the solid skeleton through the internal walls of
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the porous space. Its dependence on the deformation gradient only through

its Jacobian J is clear since, by essence, it is a volumetric phenomenon. Here

and in all what follows, the prime notation (�)′ refers to effective drained

quantities, and not a derivative with respect to any of their arguments.

Hence, the augmented stress tensor of the second Piola-Kirchhoff type,

Eq. (51)1, is given by

S̃ = S′ + Spor + 2c2H⊗H+ 2c3
{
H⊗HC +CH⊗H

}

−
1

2
µ0J

(
C−1 :H⊗H

)
C−1 + µ0JC

−1
H⊗HC−1

(54)

with, for the purely poromechanics part S = S′ + Spor

S′ = 2
∂χ′

sk

∂C
and Spor = JC−1∂χpor

∂J
(55)

where, among others, use has been made of the well known kinematic formula

∂J/∂C = 1
2
JC−1. Equivalently for the Kirchhoff type stress tensor, we have

τ̃ = τ ′ + τpor + 2c2bh⊗ hb+ 2c3
{
bh⊗ hb2 + b2h⊗ hb

}

−
1

2
µ0Jh.h1+ µ0Jh⊗ h

(56)

where b = FF T is the (spatial) left Cauchy-Green tensor, and where we have

used the relation (10)1 for h. For the poromechanics part τ = τ ′ + τpor, we

have

τ ′ = FS′F T ≡ 2
∂χ′

sk

∂b
b and τpor = J

∂χpor

∂J
1 (57)

where, for (57)1, use has been made of the well known result in isotropic

elasticity since the three invariants of b are the same as the above ones I1, I2

and I3 for C, see e.g. Truesdell and Noll (1965); Chadwick (1976); Marsden

and Hughes (1983). Furthermore, observe from (57)2 the spherical character
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of the Cauchy stress tensor σpor = J−1τpor due to the presence of the internal

fluid pore pressure.

For the magnetic induction vector, we have from Eqs. (53) and (48)2,

B = −2c1H− 2c2CH− 2c3C
2
H︸ ︷︷ ︸

= µ0JC
−1
M

+µ0JC
−1
H (58)

or equivalently for the Kirchhoff-like spatial version, Eq. (51)2,

Jb = −2c1bh− 2c2b
2
h− 2c3b

3
h︸ ︷︷ ︸

= µ0Jm

+µ0Jh (59)

which, when compared with the relations (11) and (8), respectively, one

concludes that the parameters c1, c2 and c3 are in fact the magnetization

parameters.

For the porosity, the state law (48)3, or (51)3, gives

φ ≡ Jn = −
∂χpor

∂p
(60)

This latter will be particularly detailed in the following section.

4.1. Porosity law

The magneto-active porous materials are in general characterized by a

high porosity that can drastically change under the action of mechanical

forces and/or magnetic fields. The porosity law must then be able to describe

this fact, but always keeping in mind that the (true) Eulerian porosity n is

by definition a volume fraction and, by consequence, is restricted to always

belong to the interval [0, 1]. Among the laws proposed in Nedjar (2013a)

that satisfy this restriction, we choose here the following simplified one

n ≡ n(J, p) = 1− (1− h(J)) exp

[
−

p− p0
(1− f0)Q

]
(61)
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where p0 is the initial pore pressure, f0 is the initial connected porosity, Q is

a Biot-like modulus, and the function h(J) is defined as

h(J) =





f0 J
m for J ≤ 1

1− (1− f0) exp

[
−

f0m

1− f0
(J − 1)

]
forJ ≥ 1

(62)

where m > 0 is a material parameter. This latter function is no more than

the drained porosity law since h(J) ≡ n(J, p = p0). Observe further that, see

Figure 2 for an illustration:

• For a high pore pressure, the actual porosity is limited by the upper

physical bound, n→ 1−.

• Under drained conditions with p = p0, the porosity strictly belongs to

the interval [0, 1].

• At the limiting case of an infinitesimal theory with J ≈ 1 + ε, where

ε ≪ 1 is the infinitesimal volumetric strain, a first order development

of the expression (61) near p = p0 gives the relation

n = f0 + f0mε +
p− p0
Q

which is the classical Biot’s linear porosity law interpreting the above

paramater Q as the initial Biot’s modulus, and the product f0m ≡ b

as the so-called Biot’s coefficient, e.g. see Biot (1941); Coussy (2004).

The partial volumetric free energy function χpor(J, p) that leads to the

porosity law (61) through the state law (60) and satisfies the requirements

χpor(J = 1, p = p0) = 0 and
∂χpor

∂J
(J, p = p0) = 0.
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Figure 2: Porosity law n(J, p). An illustration for J ≤ 1 and p ≥ p0.

is given by

χpor = −J(p− p0)− J(1− h(J))Q(1− f0)
(
exp

[
−

p− p0
Q(1− f0)

]
− 1

)
(63)

With this latter, the stress part due to the action of the internal pore

pressure on the solid skeleton is defined as well, i.e. Eq. (55)2 for Spor, or

Eq. (57)2 for τpor.

4.2. Variational formulation of the coupled problem

In magnetostatics, the magnetic field vector can be expressed as the gra-

dient of some magnetic scalar potential that we denote here by ϕ, see for

example Steigmann (2004) for more details. We write

H = −∇Xϕ ⇔ h = −∇xϕ (64)

so that the Ampère’s equation (7)1, or (9)1, is identically satisfied. It remains

then to solve the Gauss’s equation (7)2, or (9)2.
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The balance equations consist then of a system involving the mechanical

equilibrium, the magnetic Gauss’s equation, and the fluid mass conservation.

In a finite domain of the reference configuration Ω0, the weak form of the

three-field coupled problem at hand is:

∫

Ω0

P̃ : ∇X(δu) dΩ0 = Gext(δu)

∫

Ω0

B.∇X(δϕ) dΩ0 =

∫

∂Ω0

δϕQ dA

∫

Ω0

δp Ṁf −Qf .∇X(δp) dΩ0 = 0

(65)

which must hold for any admissible variations δu, δϕ and δp, of displacement,

magnetic potential and pore pressure, respectively. Eq. (65)1 is equivalent

to the strong form (18) where Gext(δu) is a short hand notation for the

virtual work of external mechanical loading, assumed for simplicity to be

deformation independent.

Eq. (65)2 is the weak form of Gauss’s equation (9)2 where Q = B.N is

the eventual nominal magnetic induction imposed on the boundary ∂Ω0 of

unit normal N , or on part of it. Notice here that, for the sake of simplicity,

the effect of the surrounding space is not considered regarding the magnetic

field which normally must be satisfied everywhere, and not only inside the

body. So that, Eq. (65)2 is in fact an approximation.

Finally, Eq. (65)3 is equivalent to the strong form (6) with the pore pres-

sure field p as primary variable. For simplicity, only Dirichlet-type boundary

conditions are considered in the presentation for this latter. Darcy’s law is

used for the filtration vector ν, see Eq. (4), so that the spatial flow vector of
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fluid mass is defined as well:

ν = −k∇xp ⇒ qf = −ρfk∇xp (66)

where the gravity effects are neglected. The parameter k > 0 is the spatial

permeability coefficient of the isotropic porous medium and, by the Piola

transform, the material flow vector Qf in Eq. (65)3 is then given by

Qf = −ρfJkC
−1∇Xp (67)

where the useful relation ∇x(�) = F−T∇X(�), for scalar fields, has been used.

Last but not least, and irrespective of the solid skeleton, the actual density

of the saturating fluid must be linked to the pore pressure p by specifying a

constitutive law. The fluid being considered here as barotropic, ρf ≡ ρf (p),

we use the polytropic-like law proposed in Nedjar (2013a),

ρf (p) = ρf0

(
p

p0

)g

(68)

where ρf0 is the initial fluid density, and g ∈ [0, 1] is a fluid parameter. This

law encompasses both ideal gas and incompressible fluids as particular cases

under isothermal conditions. In fact, one can immediatly notice that:

• for g = 0, the fluid is incompressible with ρf (p) = ρf0 , ∀p.

• for g = 1, the constitutive law reduces to the one for ideal gas.

4.3. Outlines of the algorithmic approximation

Different numerical strategies can be employed to solve this strongly cou-

pled problem. One can think of a staggered scheme consisiting of an initial

solid phase at fixed magnetic potential and fluid content, followed by the
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Gauss’s equation and the fluid mass conservation, both at fixed deformation,

see Nedjar (2014) for a similar development in poromechanics. However, as

a first attempt, we choose here to use a high fidelity solution procedure by

using a monolithic scheme where the three sub-problems are solved simulta-

neously via an iterative resolution procedure of the Newton-Raphson type.

Nevertheless, each of these sub-problems need to be linearized first. Below

are the relevant points of this procedure.

4.3.1. Mechanical balance equation

Within a typical time interval [tn, tn+1], the displacement u, the magnetic

potential ϕ, and the pore pressure field p are assumed to be known fields at

time tn, i.e. {un, ϕn, pn}.

Now by noticing the identity P̃ : ∇X(δu) = τ̃ : ∇x(δu), Eq. (65)1 is

then linearized as
∫

Ω0

[
∇x(∆u)τ̃ .∇x(δu) +∇s

x
(δu) : C̃ :∇s

x
(∆u)

]
dΩ0

+

∫

Ω0

∇s
x
(δu) :

[
−4c2 b∇x(∆ϕ)⊗ hb

]s
dΩ0

+

∫

Ω0

∇s
x
(δu) :

[
−4c3 b∇x(∆ϕ)⊗ hb

2
]s
dΩ0

+

∫

Ω0

∇s
x
(δu) :

[
−4c3 b

2∇x(∆ϕ)⊗ hb
]s
dΩ0

+

∫

Ω0

∇s
x
(δu) :

[
µ0Jh.∇x(∆ϕ)1

]
dΩ0

+

∫

Ω0

∇s
x
(δu) :

[
−2µ0J∇x(∆ϕ)⊗ h

]s
dΩ0

+

∫

Ω0

[
∇s

x
(δu) :1J

∂σpor
∂p

∆p
]
dΩ0 = Gext

n+1(δu)−

∫

Ω0

∇s
x
(δu) : τ̃ dΩ0

(69)
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where ∆u, ∆ϕ and ∆p are increments of displacement, magnetic potential,

and pore pressure fields, respectively. The first integral of the left hand side

represents the classical term composed by the geometric and the material

contributions to the linearization, C̃ being the augmented spatial tangent

modulus at fixed magnetic potential and pore pressure that is detailed in

Appendix C. The last integral of the left hand side represents the solid-fluid

coupling term where we have introduced the notation σpor = ∂χpor/∂J for

the volumetric Cauchy stress due to the pore pressure, see Eq. (57)2. All the

intermediate integrals represent the magneto-mechanics coupling, and the

right hand side represents the residual of the mechanical part. The notation

(�)s used in Eq. (69) stands for the symmetric part of a second-order tensor.

In particular, ∇s
x
(�) is the symmetric gradient operator.

We have omitted the subscripts n+1 for the sake of clarity. Nevertheless,

unless otherwise specified, all the variables are understood to be evaluated

at the actual time tn+1, i.e. b ≡ bn+1, h ≡ hn+1, n ≡ nn+1 . . . .

4.3.2. Gauss’s magnetic equation

For Gauss’s equation, by noticing the useful identities

B.∇X(δϕ)︸ ︷︷ ︸

−

(
∂Ω∗

sk

∂H

)
.(−δH)

= FB.∇x(δϕ) ≡ Jb.∇x(δϕ)
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the linearization of Eq. (65)2 is then given by
∫

Ω0

∇x(δϕ).
{
−4c2b∇

s
x
(∆u)bh− 8c3

[
b∇s

x
(∆u)b2

]s
h

}

+∇x(δϕ).
{
µ0J(∇

s
x
(∆u) :1)h− 2µ0J∇

s
x
(∆u)h

}

+∇x(δϕ).
{
2c1b+ 2c2b

2 + 2c3b
3 − µ0J1

}
∇x(∆ϕ) dΩ0

=

∫

∂Ω0

δϕQ dA−

∫

Ω0

∇x(δϕ).Jb dΩ0

(70)

where the first two terms on the left hand side are related to the magneto-

mechanics coupling, and the right hand side is the residual of the magnetic

Gauss’s balance.

4.3.3. Fluid mass conservation equation

The fluid mass conservation (65)3 needs first to be discretized in time

before linearization. For this, the rate form of the fluid mass content is

detailed as

Ṁf = gρfJn
ṗ

p
+ ρfnJ̇ + ρfJ

∂n

∂J
J̇ + ρfJ

∂n

∂p
ṗ

after combining the definitions (1) and (5), and using the fluid law, Eq. (68).

Then, an implicit backward-Euler scheme applied to the evolution equation

(65)3 gives the following time-discretized form
∫

Ω0

δp
ρfJ

∆t
n
{
g log

[
p

pn

]
+ log

[
J

Jn

]}

+δp
ρfJ

∆t

{∂n
∂J

(J − Jn) +
∂n

∂p
(p− pn)

}

+ρfJ∇x(δp).k∇xp dΩ0 = 0

(71)

where use has been made of the Darcy’s law, Eq. (66)2, for the flow vector

of fluid mass, and where ∆t = tn+1 − tn for the time interval.
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After lengthy, but straightforward algebraic manipulations and collecting

terms, the linearization is given by

∫

Ω0

δp
ρfJ

∆t

{
(J − Jn)

(
∂n

∂J
+ J

∂2n

∂J2

)
+ J

∂n

∂J

+(p− pn)

(
∂n

∂p
+ J

∂2n

∂p∂J

)
+ n

(
log

[
J

Jn

]
+ g log

[
p

pn

])(
n+ J

∂n

∂J

)}
1 : ∇s

x
(∆u)

+ρfJk

{
∇x(δp).∇xp1− 2∇x(δp)⊗∇xp

}
: ∇s

x
(∆u) dΩ0

+

∫

Ω0

δp
ρfJ

∆t

{
(J − Jn)

(
g

p

∂n

∂J
+

∂2n

∂J∂p

)

+(p− pn)

(
g

p

∂n

∂p
+
∂2n

∂p2

)
+
∂n

∂p
+ g

n

p
(
log

[
J

Jn

]
+ g log

[
p

pn

])(
gn

p
+
∂n

∂p

)}
∆p

+ρfJk

{
∇x(δp).∇x(∆p) + g∇x(δp).∇xp

∆p

p

}
dΩ0 = Rf

(72)

where the first integral on the left hand side corresponds to the fluid-solid

coupling. Rf is the short hand notation for the residual of the fluid part.

4.3.4. Finite element outlines

In a finite element context, the displacement, the magnetic potential,

and the pore pressure fields are defined at the nodes, see Figure 3 for an

illustration. The interpolations of the geometry and the three fields are

completely standard, see e.g. Hughes (1987); Zienkiewicz and Taylor (2000);

Wriggers (2008) for the exposition of these ideas.
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Figure 3: Typical finite element with nodal dofs in magneto-poromechanics.

For the monolithic resolution, the element contributions to the global

tangent stiffness matrix associated with the element nodes are written as

K
AB
e =




KAB
e11

KAB
e12

KAB
e13

KAB
e21

KAB
e22

0

KAB
e31

0 KAB
e33


 ∈ R

(ndim+2)×(ndim+2) (73)

for A,B = 1, . . . ne
node, where n

e
node is the number of nodes. In this matrix,

the first column (row) is associated with the ndim components of the nodal

displacements, the second column (row) is associated with the nodal magnetic

potential, and the third column (row) is associated with the nodal fluid

pore pressure. The fact that there is no coupling between magnetostatics

and fluid mass conservation appears through the vanishing (2, 3) terms, i.e.

KAB
e23

= 0 and KAB
e32

= 0. The expressions of the different sub-matrices are

easily deduced from the above linearizations, Eqs. (69), (70) and (72). In

particular, the (1, 2) terms are symmetric, KAB
e21

= (KAB
e12

)T , but the (1, 3)

ones are not. This renders the global tangent matrix non-symmetric.

5. Numerical simulations

Since the solid skeleton is macroscopically compressible, it is beneficial

to split the deformation locally into a volumetric part, that depends on the
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Jacobian J , and an isochoric part that depends on the modified deformation

gradient J−1/3F , as originally proposed by Flory (1961), and successfully

applied later on in finie strain elasticity, e.g. see Lubliner (1985); Ogden

(1997); Simo and Hughes (1998); Holzapfel (2000) among many others. In

practice, any of the existing compressible hyperelastic models proposed in the

literature can be used for the effective drained response of the solid skeleton.

We choose here a Neo-Hookean type with a free energy given by

χ′

sk(C) =
3

8
κsk

(
J4/3 + 2J−2/3 − 3

)
+

1

2
µsk

(
J−2/3C :1− 3

)
(74)

where the first term is related to the volumetric response with κsk as a bulk

modulus, and the second term is related to the volume-preserving part of the

response with µsk as a shear modulus. Hence, together with the expression

already given for the porous space contribution, χpor(J, p) in Eq. (63), the

augmented free energy (53) is completely defined.

Of interest in this section is the qualitative modeling of macroporous

ferrogels that can be used as active porous scaffolds capable of delivering

biological agents under the controls of external magnetic stimuli. Various

macroporous ferrogels were developed and studied in Zhao et al. (2011). In

particular, we consider here the one fabricated with 13 wt % Fe3O4 and 1 wt

% alginate cross-linked by 5 mM AAD (adipic acid dihydrazide), and frozen

at −20◦C. It is characterized by its highly interconnected (initial) porosity,

about 82%, and a low initial modulus, about 2.5 kPa. We keep in mind these

two important informations for the following simulations.
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5.1. Response to mechanical loadings

Figure 4 shows the results of compression tests on a cylindrical sample of

radius 5mm and 15mm height. The lateral free surface is supposed to allow

drainage while the top and bottom faces are assumed smooth and impervious.

The initial pore pressure is set to p0 = 1 atm, this latter being the prescribed

value of the pore pressure on the lateral surface as a boundary condition for

the fluid part. The mechanical loading consists on imposing a displacement

on the top face while the bottom one remains fixed. For symmetry reasons,

one fourth of the cylinder is considered during the computations.
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Figure 4: Compression tests on the macroporous ferrogel. Fast loading/unloading at

0.85 s−1 (solid curve), and very slow loading/unloading (dashed curve). Finite element

mesh and selected deformed configurations at 50% and 85% compressive strains.
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The following poromechanics material parameters have been used:

κsk = 0.83334 kPa, µsk = 1.25 kPa,

f0 = 0.82, m = 1.2, Q = 500 kPa,

k0 = 100mm2/MPa s, ρf0 = 1.204 kg/m3, g = 1

(75)

where κsk and µsk are such that the Young’s modulus is E0 = 2.5 kPa in

the limiting case of a linearized kinematics with a zero Poisson’s ratio, i.e.

the macroporous ferrogel behaves like a sponge, see also Hong et al. (2014).

Besides on the known initial porosity f0, see above, the parameters Q and m

are only qualitative. Nevertheless, these (f0,m,Q) parameters together with

p0 = 1 atm are the ones with which the porosity law of Figure 2 has been

plotted. For the fluid constitutive law, see Eq. (68), the fluid parameter g

corresponds to an ideal gas, ρf0 being here the initial air density. Finally, the

material permeability coefficient k0 is also qualitative at this stage. Anyhow,

this latter influences the rate-effects of the sample’s response through Darcy’s

law. This is shown by comparing the two loading/unloading curves of Figure

4. The dashed one corresponds to the case of a very slow velocity with full

drainage, i.e. the effective hyperelastic response of the solid skeleton alone.

The solid curve corresponds to a faster velocity where the sample is strain

compressed at 85% in one second of time. A relative stiffening is observed

in this case with the characteristic hysteresis due to the delay caused by the

fluid flow during unloading.

Globally, these results are in good agreement with the ones obtained

experimentally in (Zhao et al., 2011). The high deformability of the macro-

porous ferrogel is well captured by the purely poromechanical part of the

present modeling framework.
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5.2. Macroporous ferrogel under magnetic loading

In this second step, the deformation of macroporous ferrogel under the

influence of a magnetic field is examined. The sample we consider is again

the above cylinder with the same compressible Neo-Hookean-like material.

For the magnetic field, we recall that µ0 = 4π10−7N/A2 for the magnetic

permeability of vacuum. The magnetization parameters c1, c2 and c3, see

Eq. (53), would have to be determined experimentally. However, due to

the lack of experimental results, material properties are inadequate at this

point. Therefore, for the purpose of testing the robustness of our numerical

implementation, we assume the following values in this example:

c1 = 1N/A2 c2 = 1N/A2 c3 = 1N/A2 (76)

to activate the three pseudo-invariants relative to the magnetic coupling in

the constitutive relations, see the expressions (54), or (56), for the stress

tensor, and (58), or (59), for the magnetic induction vector.

A magnetic potential ϕ is imposed on the two ends of the cylinder at

ϕ− and ϕ+, respectively, which create a potential difference ∆ϕ = ϕ+ − ϕ−.

During the computation, this difference is increased from 0 to 2A in 20 steps

at a loading velocity of 0.5A/s, and then decreased from 2 to 0A in 20 steps

as well at an unloading velocity of −0.5A/s. For the rest of the boundary

conditions, the two end faces are free and impervious, and the lateral surface

is free with a prescribed pore pressure set to p0 for the fluid part. This latter

is also the initial pore pressure in the whole cylinder before the magnetic

loading.

The deformation of the cylinder is shown in Figure 5 for the magnetic
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potential differences ∆ϕ = 1A and ∆ϕ = 2A during the loading phase. For

illustrative purposes, the Eulerian porosity distribution for the latter and

the pore pressure field for the former are also shown. Among others, these

fields are not uniform within the cylinder and, due to the relatively high

permeability of the porous space together with the small dimensions of the

sample, the difference of the pore pressure with the initial one, p0 = 105N/m2,

is small.

One can also observe that the deformation easily reaches large levels,

more than 70%. This is highlighted in Figure 6 where we have plotted the

evolution of the global compressive strain versus the magnetic loading. The

hysteresis that appears during unloading illustrates here again the rate-effects

due to the fluid-flow.
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Figure 5: Deformed configuration under: (a) ∆ϕ = 1A, and (b) ∆ϕ = 2A.
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Figure 6: Evolution of the compressive strain with the magnetic loading. Deformed con-

figurations for ∆ϕ = 0.6 and 2A during loading, and ∆ϕ = 0.1A during unloading.

5.3. Macroporous ferrogels as active sponges

Macroporous ferrogels can be used as devices in tissue engineering and

cell-based therapies to trigger and enhance the release of various biological

agents by controlling the external magnetic fields, see Zhao et al. (2011) for

more details. It becomes then of major importance to know how the amount

of released fluid evolves during the loading history. Within the present theory,

this information is provided by the fluid mass conservation equation, i.e. by

Eq. (6), or equivalently by Eq. (65)3.

As an example, we consider again the precedent macroporous cylindrical

sample of radius 5mm and 15mm height. This latter is this time completely

submerged in water. The magneto-poromechanics material parameters we

use are those given in Eqs. (75)-(76) less those for the fluid’s constitutive
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law, replaced here by

ρf0 = 1000 kg/m3 and g = 0

for the saturating incompressible water. Initially, the volume of water inside

the porous domaine is then ∼ 966.04mm3 in our case, i.e. the initial volume

of the cylinder times the initial porosity f0.

Now as for the example of Section 5.2, a loading/unloading cycle consists

of an increase of the potential difference ∆ϕ between the end faces from 0

to 2A at a velocity of 0.5A/s, followed by a decrease from 2A to 0A at

a velocity of −0.5A/s. The boundary conditions are the same as for the

precedent example. For illustrative purposes, Figure 7 shows the evolution

of the released water volume from the whole cylinder under a one-cycle and a

three-cycles magnetic loading histories. Noteworthy observations should be

pointed out from these results:

• While the ascending branches of the curves correspond to increasing

volume release when the magnetic loading is increasing, the descending

ones mean that the released water is being partially reabsorbed with

decreasing magnetic loading.

• Once the magnetic loading is off, almost all the released water is reab-

sorbed after a recovery time and the cylindrical sample returns to its

original underformed configuration.

• One can check that, at any time, the computed released volume of

water never exceeds the volume that was initially present inside the

sample, i.e. less than ∼ 966.04mm3.
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Figure 7: Evolution of the released volume of water from the whole domain under a

one-cycle (dashed curve) and a three-cycles (solid curve) magnetic loading histories. The

computations are pursued until almost total recovery.

6. Conclusion and perspectives

In this paper, we have presented a coupled magneto-poromechanics theory

where, for the poromechanics part, use has been made of the macroscale

Biot’s theory. By means of the continuum thermodynamics of open media,

the nowadays well known fields related to the magnetic coupling have been

embedded in a sound way for a concise characterization of the whole set of

constitutive equations. Furthermore, as large deformation is usually expected

due to the soft nature of the materials we have in mind, the present theory

has been developed within the finite strain range.

To make matters as concrete as possible, a magneto-hyperelastic model

has been presented in detail that can be well adapted for the modeling of
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macroporous ferrogels. As these latter can further give high porosity change,

a nonlinear porosity law has been used that allows for a good description of

the seepage process when the fluid is released and/or reabsorbed. This char-

acteristic can certainly be of particular interest for the design of biomedical

devices used to enhance the release of biological agents.

With the finite element method as a tool for structural simulations, the

numerical examples presented in this paper have shown an encouragingly

good agreement with experimental observations, at least qualitatively. We

believe that further work has to be accomplished to optimize the present

formulation toward more realistic modeling of smart magneto-active porous

materials in general. Experimental investigations will certainly give better

knowledge of the material properties. Among others, the correct evaluation

of the fluid permeability which, even high and allows rapid recovery, has

however a great importance on the seepage process and, consequently, on

the rate-depend effects due to the fluid flow. The magnetization parameters

c1, c2 and c3 must be quantified correctly. Experimental tests could for

example show which ones are most relevant for the modeling, so that the

coupling part of the constitutive relations could then be simplified.

Further algorithmic investigations in conjunction with optimized finite

elements are needed. This is especially true for problems where strong dis-

torsions at large deformations with highly compressible materials are present.

The present global resolution strategy using a simultaneous scheme must be

changed in the favor of a straggered scheme exploiting the symmetries of each

sub-problem with certainly less computational costs. Moreover, as Maxwell

equations must be satisfied not only inside the body, but also in the surround-
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ing free space, this fact must be accounted for in future numerical develop-

ments. On another hand, when dealing with problems in magnetodynamics,

a vector potential formulation must be used together with the magnetic in-

duction vector as main magnetic variable. These points and others will form

the substance of separate communications.

Appendix A. Fluid mass conservation within a porous material

Within any volume Ωt of porous material in the spatial configuration, the

Eulerian fluid mass conservation is given by

df

dt

∫

Ωt

ρfn dΩt = 0 (A.1)

where n is the Eulerian porosity and ρf is the current fluid density. Eq. (A.1)

leads to the following local form:

∂

∂t

(
ρfn

)
+ div

(
ρfnvf

)
= 0 (A.2)

where vf is the velocity of the fluid phase located at x. Now as the spatial

flux vector of fluid mass qf is given by, see Figure 1,

qf = ρfn (vf − vs) (A.3)

where vs is the velocity of the solid phase at the same location x, Eq. (A.2)

is equivalently rewritten as

ds

dt

(
ρfn

)
+ ρfndivvs + divqf = 0 (A.4)

in terms of the material time derivative with respect to the solid phase.

Integrating the last result over the actual volume Ωt gives

ds

dt

∫

Ωt

ρfn dΩt +

∫

Ωt

divqf dΩt = 0 (A.5)

which proves the identity of Eq. (3).
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Appendix B. Thermostatics of fluids

Let us recall basic relations on the thermostatics of fluids that are useful

in the continuum thermodynamic developments of Section 3, see for example

Coussy (2004) for more details. The energy conservation reads

def = −p d

(
1

ρf

)
+ δQ (B.1)

where def is the change of the specific internal energy of the fluid, δQ is the

infinitesimal heat supply, and −p d(1/ρf ) is the mechanical work supplied to

the fluid by the pressure p in the volume change d(1/ρf ) of its specific volume

1/ρf . Excluding irreversible transformations, the entropy balance reads

dsf =
δQ

T
(B.2)

where sf is the specific entropy of the fluid and T the absolute temperature.

Combination of Eqs. (B.1) and (B.2) by eliminating the heat supply leads

to the following energy balance:

def = −p d

(
1

ρf

)
+ Tdsf (B.3)

This latter means that the specific internal energy has arguments 1/ρf

and sf , i.e. ef ≡ ef (1/ρf , sf ). By identification, again with Eq. (B.3), we

get the state laws

p = −
∂ef

∂
( 1

ρf

) and T =
∂ef
∂sf

(B.4)

• Partial inversion with respect to the pair (1/ρf , p) gives the fluid specific

enthalpy hf as

hf ≡ hf (p, sf ) = ef −

(
1

ρf

)
(−p) = ef +

p

ρf
(B.5)
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Hence, the variation of this latter, and use of Eq. (B.3), identify the

state laws
1

ρf
=
∂hf
∂p

and T =
∂hf
∂sf

(B.6)

• Partial inversion, this time with respect to the pair (sf , T ), gives the

fluid specific free energy ψf as

ψf ≡ ψf (
1

ρf
, T ) = ef − Tsf (B.7)

Its variation together with the use of Eq. (B.3), identify the state laws

p = −
∂ψf

∂
( 1

ρf

) and sf = −
∂ψf

∂T
(B.8)

• Finally, total inversion with respect to both pairs gives the fluid specific

free enthalpy µf , i.e. the Gibbs specific potential, as

µf ≡ µf (p, T ) = ef +
p

ρf
− Tsf (B.9)

with the state laws

1

ρf
=
∂µf

∂p
and sf = −

∂µf

∂T
(B.10)

Appendix C. Augmented tangent modulus C̃

As for the augmented stress tensor, Eqs. (54) or (56), the fourth-order

tangent modulus C̃ is given by an additive form as well. We write

C̃ = Csk + Cpor + Cmgn (C.1)

where Csk is the modulus relative to the drained hyperelastic solid skeleton,

Cpor is the porous space contribution at fixed pore pressure, and Cmgn is
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the magnetic contribution at fixed magnetic potential due to both of the

magneto-mechanics coupling and the magnetic augmentation.

The derivation of Csk mimics those for single-phase hyperelastic solids

widely developed in the literature, see e.g. Ogden (1997); Simo (1998);

Holzapfel (2000); Nedjar (2002a,b, 2011); Wriggers (2008). Details of this

nowadays standard notion are skipped here.

For the derivation of the modulus Cpor, one proceeds in two steps starting

from the definition of the partial state law Spor = JσporC
−1, Eq. (55)2, on

the reference configuration where we have defined the (scalar) volumetric

Cauchy stress σpor = ∂χpor/∂J :

• step (i): Compute the time derivative such that Ṡpor = Ξpor : 1
2
Ċ,

where Ξpor is the material tangent modulus relative to the porous space.

• step (ii): Then, push-forward of the precedent result to the current

configuration with the solid skeleton’s deformation gradient F gives the

Lie derivative £vτpor ≡ F ṠporF
T such that £vτpor = Cpor : d, where

d = sym[Ḟ F−1] is the spatial strain rates tensor. The useful kinematic

relationship Ċ = 2F TdF is to be employed during the derivation,

see Nedjar (2002, 2007, 2011) for similar developments. The following

expression is then obtained

Cpor = −2JσporI + J
{
σpor + J

∂σpor
∂J

}
1⊗ 1 (C.2)

The derivation of the modulus Cmgn follows similar lines as for Cpor, this
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time starting from the partial stress

Smgn = 2c2H⊗H+ 2c3
{
H⊗HC +CH⊗H

}

−
1

2
µ0J C−1 :H⊗HC−1 + µ0J C−1

H⊗HC−1

(C.3)

i.e. the last four terms in Eq. (54). Push-forward of its time derivative to

the current configuration, F ṠmgnF
T , allows to identify the following partial

tangent modulus

Cmgn = 4c3Ib + µ0J h.h
{
I −

1

2
1⊗1

}

+ µ0J
{
1⊗h⊗h+ h⊗h⊗1− 2I

h

} (C.4)

where the fourth-order operators I
h

and Ib are defined such that:

I
h

:d = h⊗hd+ dh⊗h

Ib :d =
(
bh⊗ hb

)
db+ bd

(
bh⊗ hb

)
.

(C.5)
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Varga, Z., Filipcsei, G., Zŕınyi, M., 2006. Magnetic field sensitive functional

elastomers with tunable elastic modulus. Polymer 47, 227–233.

Vu, D., Steinmann, P., 2007. Nonlinear electro- and magneto-elastostatics:

material and spatial settings. International Journal of Solids ansd Struc-

tures 44, 7891–7901.

Wilmanski, K., 2003. On thermodynamics of nonlinear poroelastic materials.

Journal of Elasticity 71, 247–261.

Wriggers, P., 2008. Nonlinear Finite Element Methods. Springer-Verlag,

Berlin, Heidelberg.

52



Zhao, X., Kim, J., Cezar, C., Huebsch, N., Lee, K., Bouhadir, K., Mooney,

D., 2011. Active scaffolds for on-demand drug and cell delivery. Proceed-

ings of the National Academy of Sciences (PNAS) 108(1), 67–72.

Zienkiewicz, O., Taylor, R., 2000. The Finite Element Method, 5th Ed.,

Volume 1. Butterworth-Heinemann, Oxford, UK.
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