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We propose a new mechanism to explain the origin of optical gain in the transitions between 

excited and ground state of the ionized nitrogen molecule following irradiation of neutral 

nitrogen molecules with an intense ultra short laser pulse. An efficient transfer of population to 

the excited state is achieved via field-induced multiple recollisions. We show that the proposed 

excitation mechanism must lead to a super-radiant emission, a feature that we confirm 
experimentally.  

 
When an intense femtosecond laser pulse propagates in air, a column of weakly ionized plasma 

is formed. This long thin plasma column left in the wake of the pulse arises mainly from a dynamic 
competition between two effects: self-focusing of the laser beam and the defocusing effect that occurs 

when the collapsing laser pulse acquires high enough intensity to ionize air molecules [1, 2]. The 

plasma column emits a characteristic UV luminescence consisting of sharp lines from excited N2 and 
N2

+
 molecules [3, 4]. As shown recently, these excited nitrogen molecules, both neutral and ionized, 

give rise to a mirror-less lasing effect [5-18].  Lasing in neutral molecules is now understood. The 

scheme is the same as in the traditional nitrogen laser. Population inversion is due to impact excitation 
of neutral nitrogen molecules by energetic free electrons produced by the intense laser pulse [9-11]. 

Free electrons with a sufficient energy for impact excitation are produced with circularly polarized 

laser pulses. On the other hand, lasing in the ionized system remains mysterious. Optical amplification 

occurs for transitions between the second excited state 
uB 2

and the ground state gX 2 of the singly 

ionized nitrogen molecule [12-18] (see Fig. 1(a)). Observation of optical amplification requires 

seeding, the injection of light at a wavelength that corresponds to a transition between vibrational 

sublevels of states 
uB 2

and gX 2 . The seed can be external or self generated by the laser pulse 

during its propagation.  
 

 
Figure 1.  (a) Schematic diagram of relevant energy levels of nitrogen molecules and its ions. (b) Amplification 

of the seed pulse inside the plasma filament. The femtosecond pump laser pulse is focused by a convex lens of f 

= 400 mm in pure nitrogen at a pressure of 30 mbar. The seed pulse around 391 nm is generated by second 

harmonic generation in a thin BBO crystal on the second arm of a Mach-Zehnder interferometer. The weak seed 

pulse is combined with the 800 nm pump pulse with a dichromatic mirror. The seed pulse is also focused by an f 

= 400 mm lens installed before the dichromatic mirror. The spatial overlap and temporal delay of the pump and 

seed pulses is carefully controlled. The pump pulse energy is 3 mJ. Self-seeded stimulated emission is 

responsible for the weaker signal observed with pump only. (c) The self-seeded 391 nm signal as a function of 

pump laser energy in 150 mbar nitrogen.  
 
Examples of externally and self-seeded amplification are given in Fig. 1(b) for a linearly 

polarized pump laser pulse of 50 fs duration at 800 nm. The spectrum of the forward lasing emission is 

measured by a fiber spectrometer (Ocean Optics HR 4000), after removal of the pump light at 800 nm 
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with appropriate color filters. Line at 391 nm corresponds to the transition 
uB 2

(v = 0) → gX 2 (v’ 

= 0) where v and v’ denotes the vibrational levels of the excited and ground ionic states. This forward 
lasing at 391 nm exhibits an obvious threshold with pump laser energy, as presented in Fig. 1(c). 

Measurement of the gain at 391 nm as a function of delay between the pump and seed pulse is shown 

in Fig. 2. The optical gain is achieved during the femtosecond laser pulse and lasts for several tens of 
picoseconds. Recently, self-seeded emission at 428 nm with several microjoules of energy per pulse 

was obtained in the forward direction by simply launching a multi-TW femtosecond laser pulse at 800 

nm in air [16]. The seed was provided by the broadband continuum self-generated during propagation 

of the laser pulse. The stimulated emission corresponds to the transition 
uB 2

(v = 0) → gX 2 (v’ = 

1). The emission peak power was in the MW range, opening the exciting prospect to form with 

relative ease a powerful UV laser in the sky. 
 

Several scenarios have been discussed to explain the origin of this optical gain, none totally 

convincing. One can immediately exclude a wave-mixing process involving pump and seed pulses, 
because a retarded seed still gives rise to the intense stimulated emission. A population inversion 

based on a pump induced population transfer from the neutral molecule to both ionized states followed 

by a collision-induced faster depletion of the ground ionic state gX 2 than of the excited state 
uB 2

 can also be dismissed because it would require an inversion build-up time on the order of the collision 

time ( ~ ps) [18]. It is therefore incompatible with the observed gain that is realized within 50 fs. A 

recent proposal suggests that population inversion is established by depletion of state gX 2 through an 

efficient multi-photon radiative transfer to state 
uB 2

 [18]. However, a radiative transfer is a 

reversible process which should not lead to population inversion. Still another scenario invokes a 

transient inversion between rotational packets of the ground and excited ion states [19]. Revivals of 
rotational wave packets of molecules are certainly pertinent in explaining the surge of gain at 

characteristic delays of the seed pulse [14], but do not address the gain observed between these 

revivals. The fundamental question remains: how is optical gain achieved in this system? 

 
 

 
Figure 2. Temporal evolution of the optical gain at 391 nm measured in 10 mbar nitrogen gas as a function of 

delay between pump and seed pulse. Pump pulse energy is 3 mJ. Seed pulse characteristics are as in Figure 1. 

 

A clue to the answer of this question is given by the results of amplification as a function of 
the pump laser ellipticity, shown in Fig. 3(a). The amplification is strongest for a nearly linearly 

polarized pulse, and it is suppressed as soon as the degree of ellipticity  reaches 0.3. There is a 
striking analogy with the behavior of high order harmonics generation (HHG) [20], which we 

measured under identical experimental conditions (see Fig. 3(b)). The effect of ellipticity in high 

harmonic generation is well understood. A semi-classical model predicts the main features with a 
remarkable success [21, 22]. The high harmonic generation process is divided in three successive 
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steps: tunnel ionization, motion of the electron wave packet in the strong laser field and recombination 

on the parent ion. With a circularly polarized light pulse, the returning free electron wave function 

never overlaps with the parent ion and therefore cannot transform its kinetic energy in the form of high 
harmonics. The same semi-classical model also describes non sequential double ionization (NSDI) and 

molecular fragmentation [23, 24]. A returning electron having acquired sufficient energy in the laser 

field can, upon impact, eject a second electron from the atom or molecule, leaving it in a doubly 
charged state or break the molecular bonding. Again, in most cases this does not happen with a 

circularly polarized light. 

 

 
 

Figure 3. (a) 391 nm and 428 nm lasing emission as a function of the ellipticity of the pump pulses at 800 nm. 

The gas pressures were 45 mbar and 300 mbar respectively. (b) Dependence of the high-order harmonic yield in 

nitrogen gas as a function of the laser ellipticity. The experiments were performed in a 15 mm long gas cell with 

two 150 m holes on the entrance and exit surfaces of the gas cell, which were drilled by the laser pulse itself on 

the 100 m thick aluminum foils windows. Each data point was an average over 10 thousand laser shots. The 
nitrogen gas pressure was about 65 mbar and the pump pulse energy was 3.8 mJ.  

 
Applying the same semi-classical model to our case, we interpret the ellipticity dependence of 

the gain as being due to a non-radiative transfer of ion population from gX 2  to 
uB 2

 state via 

laser field-assisted recollision. In each elementary act, an electron in the presence of the intense pump 

laser is removed from the outer orbital of the neutral nitrogen molecule, accelerated and then is driven 

back by the laser field to the parent molecular ion where it collides inelastically with an inner orbital 

electron. During this event, if the impacting electron has a sufficient energy, there is a probability to 
transfer the inner orbital electron to the outer orbital of the molecular ion. A free electron and an 

excited molecular ion are left after the event.  

 
There are specific characteristics for this type of population transfer. First, in a manner similar 

to HHG and NSDI, this excitation process via electron recollision should exhibit a strong dependence 
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upon pump laser polarization. It can only occur for returning free electrons with kinetic energy above 

3.17 eV, the threshold energy required to bring a molecular ion in the excited state
uB 2

. This 

condition is easily met in our experiments. Inside filaments and/or in our low pressure experiments, 

the intensity reaches or even exceeds a level of 1.5 × 10
14

 W/cm², which corresponds to a 

ponderomotive potential (average electron kinetic energy) 1.94 2
0

2
0

2  ep mEeU eV [4]. All 

returning electrons with kinetic energy exceeding the threshold can contribute, since the extra energy 
is carried by the free electron left after the process. A second characteristic of this process is its 

irreversibility. Ions remain stored in the excited uB2  state because the reverse process (collision 

assisted down-transition from 
uB2  to gX 2 ) requires the presence of an external electron, a very 

unlikely event during the short laser pulse duration. Furthermore, the process is parametric in the sense 

that the probability of transfer from gX 2  to uB2  state can repeat at successive optical cycles of the 

pump pulse. The frequency of recollision in this multiple impact excitation process is crucial. To 

understand this point, consider the excitation of a pendulum by a single impact event. Except for a 
very strong impact, it will lead to small oscillations of the pendulum around its rest point. Consider 

now multiple impacts. If the time delay between successive percussions corresponds to a period of 

oscillation of the pendulum or an integer multiple of it, a large oscillation amplitude proportional to 

the number of impacts can be obtained because the effects of successive impacts add coherently. 
Translating this to our quantum case, the probability amplitude of exciting level B with a single 

collision can be small. However, multiple recollisions at a rate commensurable with the transition 

frequency can lead to a high degree of excitation, because the transition probability amplitudes add 
coherently. Finally, an important characteristic of this process is the special nature of the subsequent 

emission. Indeed, at the end of the pump pulse, the polarizations of all excited molecules are locked to 

a common electronic phase imposed by the pump field via the multiple attosecond recollisions. The 

ensuing macroscopic dipole moment leads to superradiance, the collective emission of the ensemble of 
excited molecular ions [25]. The emission intensity must then be proportional to the square of the 

number of emitters [25].  

 
The amplitude aXB of the transition X  B can be evaluated according to the first order non-

stationary perturbation of the Schrödinger equation: 

                                                              
ti

XB
XB BXeV

dt

da
i


      (1) 

where VXB is the matrix element of the ion transition X  B in a collision with an electron having 

energy e > ħBX. In our case, this excitation is produced by an electron ionized at the time t = t0 (near 
the laser pulse maximum) and oscillating around the parent ion in the laser field. As the electron is 

passing around the ion many times, the matrix element can be presented as a sum of instantaneous 

perturbations at the moments of collisions ts, that is,   

s

seXB ttVV  )(1
, where index s is an integer 

numbering the subsequent collisions and  is the Dirac delta-function. The matrix element V1 is, in 
general, a function of the electron energy. For simplicity, we consider it here as a step function 

 BXeHVV   01 , where H(x) is the Heaviside step function. Then V0
2
 can be considered as the 

probability of ion excitation in a single collision with an electron. For estimates we adopt here a value 

of the matrix element V0 = 0.1, which corresponds to the typical ratio between the probabilities of 

inelastic and elastic collisions in a gas [26]. Then by integrating Eq. (1) over time one obtains the 
following expression for the transition amplitude 

  ,0 


s

ti
XB

sBXeiVa


      (2) 

where the summation is taken over all collisions where the electron energy verifies the condition e(ts) 

> ħBX. We calculated that for conditions close to the experiment, about 22 periodic recollisions occur 
involving electrons of sufficient excitation energy. (The details on electron dynamics are provided in 

the supplementary material). As the electron motion is defined by the laser field, the subsequent 

recollisions with the pair and impair index s are separated by the laser period for electrons born near 
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the laser field maximum. Consequently, the expression (2) presents a sum of two geometrical series.  

A constructive interference of the transition amplitude between consecutive collisions takes place if 

the frequency detuning between the transition frequency and the second harmonic of the laser is 

sufficiently small,  = BX/20 - 1 << 1. For a sufficiently large number of recollisions and neglecting 
the correlation between the pair and impair events the total probability of excitation WXB = |aXB|

2
 can be 

evaluated as 

                                                      
 2

2
0

2sin2 




V
WXB .                            (3) 

The details of the derivation can be found in the supplementary material. With Δ ~ 0.02, as in our 

experiment, the probability of finding the ionized nitrogen molecule in state
uB2

  at the end of the 

pulse is essentially unity for an electron born in the appropriate phase interval of the pump pulse 

carrier wave.  

 

 
Fig. 4. (a) Temporal profile of the 391 nm forward radiation measured for different nitrogen pressure in the 

presence of a constant seed pulse. The narrow peaks at zero delay are the measured seed pulse.  These temporal 

profiles are measured by frequency mixing the 391 nm radiation and a constant 800 nm pulse inside a sum 
frequency generation (SFG) BBO crystal. The SFG signal at 263 nm is recorded as a function of relative delay 

between the two pulses.  (b) The pulse delay, pulse width, and the 391 nm peak intensity are presented for 

increasing nitrogen pressure. 

 

It would be illusory to push the one-dimensional semi-classical model further and quantify the 

population transfer more precisely. A proper theory should include the dispersion of the free electron 
wave function, the Coulomb attraction that acts as a refocusing mechanism especially effective after 

multiple recollisions, the effect of laser intensity clamping in a filament, the effect of the Lorentz force 

and the competition between recollision and other processes such as high harmonic generation and 
double ionization.  
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Nevertheless, it is possible to verify experimentally a prediction of our model, namely the 

super-radiant nature of the transition. It is well known that the emission delay and pulse duration of a 

superradiance scales like N
-1

, and the radiation power scales like N
2
, where N is the number of 

emitters, itself directly proportional to the gas pressure. We therefore measured the temporal profile of 

the 391 nm emission for increasing gas pressures, in the presence of a constant external seed pulse. 

The results are presented in Fig. 4(a). The emission delay, pulse duration, as well as the peak power of 
the radiation are presented in Fig. 4(b) together with best fits. The overall agreement between the 

experimental scaling and the theoretical expectation confirms the superradiance nature of the 391 nm 

lasing. We attribute the slight deviation from theoretical expectations to the presence of the self-

generated seed pulse that increases with gas pressure, and therefore accelerates the super-radiation 
process even further. We also note that a signature of superradiance has been reported recently by G. 

Li and co-workers [13].  

 
In conclusion, we have proposed a scheme explaining the optical amplification of ionic origin 

occurring in air or in pure nitrogen molecular gas irradiated with intense femtosecond laser pulses. At 

sufficiently high laser intensities, a sequence of field-assisted inelastic recollisions takes place, 
promoting nitrogen molecules to the excited ionic state and possibly preparing an inverted population 

with respect to the ground ionic state. This scenario explains naturally the ultrafast gain built-up (since 

the inelastic recollisions occur within the pump pulse), the sharp dependence of gain upon pump 

polarization, as well as the superradiance nature of the emission.  
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