N. Yamaki, Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates, Zeitschrift fur Angewandte Mathematik und Mechanik, pp.501-510, 1961.
DOI : 10.1002/zamm.19610411204

G. C. Kung and Y. H. Pao, Nonlinear Flexural Vibrations of a Clamped Circular Plate, Journal of Applied Mechanics, vol.39, issue.4, pp.1050-1054, 1972.
DOI : 10.1115/1.3422827

A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, 1979.

S. Sridhar, D. T. Mook, and A. H. Nayfeh, Non-linear resonances in the forced responses of plates, part 1: Symmetric responses of circular plates, Journal of Sound and Vibration, vol.41, issue.3, pp.359-373, 1975.
DOI : 10.1016/S0022-460X(75)80182-9

J. Hadian and A. H. Nayfeh, Modal interaction in circular plates, Journal of Sound and Vibration, vol.142, issue.2, pp.279-292, 1990.
DOI : 10.1016/0022-460X(90)90557-G

S. I. Chang, A. K. Bajaj, and C. M. , Non-Linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance, Nonlinear Dynamics, vol.25, issue.5, pp.433-460, 1993.
DOI : 10.1007/BF00053690

C. Touzé, O. Thomas, and A. Chaigne, ASYMMETRIC NON-LINEAR FORCED VIBRATIONS OF FREE-EDGE CIRCULAR PLATES. PART 1: THEORY, Journal of Sound and Vibration, vol.258, issue.4, pp.649-676, 2002.
DOI : 10.1006/jsvi.2002.5143

O. Thomas, C. Touzé, and A. Chaigne, Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: experiments, Journal of Sound and Vibration, vol.265, issue.5, pp.1075-1101, 2003.
DOI : 10.1016/S0022-460X(02)01564-X

URL : https://hal.archives-ouvertes.fr/hal-00830696

M. Amabili, Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections, Journal of Sound and Vibration, vol.291, issue.3-5, pp.539-565, 2006.
DOI : 10.1016/j.jsv.2005.06.007

M. Amabili, Nonlinear vibrations and stability of shells and plates, 2008.
DOI : 10.1017/CBO9780511619694

M. Ducceschi, C. Touzé, S. Bilbao, and C. J. Webb, Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations, Acta Mechanica, vol.26, issue.1, pp.213-232, 2014.
DOI : 10.1007/s00707-013-0931-1

URL : https://hal.archives-ouvertes.fr/hal-01134793

C. Touzé, O. Thomas, and M. Amabili, Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates, International Journal of Non-Linear Mechanics, vol.46, issue.1, pp.234-246, 2011.
DOI : 10.1016/j.ijnonlinmec.2010.09.004

C. Touzé, S. Bilbao, and O. Cadot, Transition scenario to turbulence in thin vibrating plates, Journal of Sound and Vibration, vol.331, issue.2, pp.412-433, 2012.
DOI : 10.1016/j.jsv.2011.09.016

J. Awrejcewicz and V. A. Krysko, Feigenbaum scenario exhibited by thin plate dynamics, Nonlinear Dynamics, vol.24, issue.4, pp.373-398, 2001.
DOI : 10.1023/A:1011133223520

J. Awrejcewicz, V. A. Krysko, and A. V. Krysko, SPATIO-TEMPORAL CHAOS AND SOLITONS EXHIBITED BY VON K??RM??N MODEL, International Journal of Bifurcation and Chaos, vol.12, issue.07, pp.1465-1513, 2002.
DOI : 10.1142/S021812740200525X

I. Chueshov and I. Lasiecka, Inertial Manifolds for von Karman Plate Equations, Applied Mathematics and optimization, vol.46, pp.179-206, 2002.
DOI : 10.1007/978-0-387-87712-9_13

I. Chueshov and I. Lasiecka, Attractors and Long Time Behavior of von Karman Thermoelastic Plates, Applied Mathematics and Optimization, vol.148, issue.2, pp.195-241, 2008.
DOI : 10.1007/s00245-007-9031-8

G. Düring, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Physical Review Letters, vol.97, issue.2, p.25503, 2006.
DOI : 10.1103/PhysRevLett.97.025503

A. Boudaoud, O. Cadot, B. Odille, and C. Touzé, Observation of Wave Turbulence in Vibrating Plates, Physical Review Letters, vol.100, issue.23, p.234504, 2008.
DOI : 10.1103/PhysRevLett.100.234504

URL : https://hal.archives-ouvertes.fr/hal-00326634

N. Mordant, Are there waves in elastic wave turbulence ? Physical Review Letters, p.234505, 2008.

B. Miquel and N. Mordant, Nonlinear dynamics of flexural wave turbulence, Physical Review E, vol.84, issue.6, p.66607, 2011.
DOI : 10.1103/PhysRevE.84.066607

URL : https://hal.archives-ouvertes.fr/hal-00712156

T. Humbert, O. Cadot, G. Düring, C. Josserand, S. Rica et al., Wave turbulence in vibrating plates: The effect of damping, EPL (Europhysics Letters), vol.102, issue.3, p.30002, 2013.
DOI : 10.1209/0295-5075/102/30002

URL : https://hal.archives-ouvertes.fr/hal-01134801

N. Yokoyama and M. Takaoka, Weak and Strong Wave Turbulence Spectra for Elastic Thin Plate, Physical Review Letters, vol.110, issue.10, p.105501, 2013.
DOI : 10.1103/PhysRevLett.110.105501

B. Miquel, A. Alexakis, C. Josserand, and N. Mordant, Transition from Wave Turbulence to Dynamical Crumpling in Vibrated Elastic Plates, Physical Review Letters, vol.111, issue.5, p.54302, 2013.
DOI : 10.1103/PhysRevLett.111.054302

URL : https://hal.archives-ouvertes.fr/hal-01009494

M. Ducceschi, O. Cadot, C. Touzé, and S. Bilbao, Dynamics of the wave turbulence spectrum in vibrating plates: A numerical investigation using a conservative finite difference scheme, Physica D: Nonlinear Phenomena, vol.280, issue.281, pp.280-28173, 2014.
DOI : 10.1016/j.physd.2014.04.008

URL : https://hal.archives-ouvertes.fr/hal-01135260

T. Von-kármán, Festigkeitsprobleme im maschinenbau, Encyklopdie der Mathematischen Wissenschaften, vol.4, issue.4, pp.311-385, 1910.

H. Chu and G. Herrmann, Influence of large amplitudes on free flexural vibrations of rectangular elastic plates, Journal of Applied Mechanics, vol.23, pp.532-540, 1956.

C. Y. Chia, Nonlinear Analysis of Plates, 1980.

O. Thomas and S. Bilbao, Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, Journal of Sound and Vibration, vol.315, issue.3, pp.569-590, 2008.
DOI : 10.1016/j.jsv.2008.04.014

L. D. Landau and E. M. Lifschitz, Theory of Elasticity, 1986.

Z. P. Bazant and L. Cedolin, Stability of structures, World Scientific, 2010.

Z. Yosibash and R. M. Kirby, Dynamic response of various von-K??rm??n non-linear plate models and their 3-D counterparts, International Journal of Solids and Structures, vol.42, issue.9-10, pp.2517-2531, 2005.
DOI : 10.1016/j.ijsolstr.2004.10.006

M. Amabili, A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach, Journal of Sound and Vibration, vol.264, issue.5, pp.1091-1125, 2003.
DOI : 10.1016/S0022-460X(02)01385-8

S. Bilbao, A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numerical Methods for Partial Differential Equations, vol.194, issue.1, pp.193-216, 2008.
DOI : 10.1002/num.20260

P. Ribeiro and M. Petyt, Nonlinear vibration of plates by the hierarchical finite element and continuation methods, International Journal of Mechanical Sciences, vol.41, issue.4-5, pp.437-459, 1999.
DOI : 10.1016/S0020-7403(98)00076-9

P. Ribeiro, Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods, Computers & Structures, vol.82, issue.17-19, pp.1413-1423, 1719.
DOI : 10.1016/j.compstruc.2004.03.037

F. Boumediene, A. Miloudi, J. M. Cadou, L. Duigou, and E. H. Boutyour, Nonlinear forced vibration of damped plates by an asymptotic numerical method, Computers & Structures, vol.87, issue.23-24, pp.1508-1515, 2009.
DOI : 10.1016/j.compstruc.2009.07.005

URL : https://hal.archives-ouvertes.fr/hal-00494489

C. Touzé, M. Vidrascu, and D. Chapelle, Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models, Computational Mechanics, vol.298, issue.4???5, 2014.
DOI : 10.1007/s00466-014-1006-4

R. M. Kirby and Z. Yosibash, Solution of von-K??rm??n dynamic non-linear plate equations using a pseudo-spectral method, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.6-8, pp.575-599, 2004.
DOI : 10.1016/j.cma.2003.10.013

J. C. Simo, N. Tarnow, and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Computer Methods in Applied Mechanics and Engineering, vol.100, issue.1, pp.63-116, 1992.
DOI : 10.1016/0045-7825(92)90115-Z

J. C. Simo and N. Tarnow, A new energy and momentum conserving algorithm for the non-linear dynamics of shells, International Journal for Numerical Methods in Engineering, vol.4, issue.15, pp.2527-2549, 1994.
DOI : 10.1002/nme.1620371503

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structurepreserving Algorithms for Ordinary Differential Equations, 2006.

R. Mclachlan, Symplectic integration of Hamiltonian wave equations, Numerische Mathematik, vol.150, issue.2, pp.465-92, 1994.
DOI : 10.1007/BF01385708

A. Nayfeh and P. Pai, Linear and Nonlinear Structural Mechanics, 2004.
DOI : 10.1002/9783527617562

S. Lukasiewicz, Local loads in plates an shells. Sijthoff and Noordhoff, Alphenaan der Rijn, 1979.

J. Reddy, Mechanics of Laminated Composite Plates, 2004.

C. Chia, Nonlinear Analysis of Plates, 1980.

D. Tataru and M. Tucsnak, On the Cauchy problem for the full von K??rm??n system, NoDEA : Nonlinear Differential Equations and Applications, vol.4, issue.3, pp.325-340, 1997.
DOI : 10.1007/s000300050018

K. Graff, Wave Motion in Elastic Solids, 1975.

J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 1989.