A. H. Nayfeh, Nonlinear interactions: analytical, computational and experimental methods, Wiley series in nonlinear science, 2000.

M. Amabili, Nonlinear vibrations and stability of shells and plates, 2008.
DOI : 10.1017/CBO9780511619694

C. Touzé, S. Bilbao, and O. Cadot, Transition scenario to turbulence in thin vibrating plates, Journal of Sound and Vibration, vol.331, issue.2, pp.412-433, 2012.
DOI : 10.1016/j.jsv.2011.09.016

G. Düring, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Physical Review Letters, vol.97, issue.2, p.25503, 2006.
DOI : 10.1103/PhysRevLett.97.025503

S. Bilbao, Numerical Sound synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, 2009.
DOI : 10.1002/9780470749012

A. Chaigne and V. Doutaut, Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars, The Journal of the Acoustical Society of America, vol.101, issue.1, 1997.
DOI : 10.1121/1.418117

C. Lambourg, A. Chaigne, and D. Matignon, Time-domain simulation of damped impacted plates. II. Numerical model and results, The Journal of the Acoustical Society of America, vol.109, issue.4, 2001.
DOI : 10.1121/1.1354201

URL : https://hal.archives-ouvertes.fr/hal-00830699

S. Bilbao, A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numerical Methods for Partial Differential Equations, vol.194, issue.1, pp.193-216, 2007.
DOI : 10.1002/num.20260

A. Torin and S. Bilbao, A 3D multi-plate environment for sound synthesis, Proceedings of the 16th International Conference on Digital Audio Effects, 2013.

J. Chadwick, S. An, and D. James, Harmonic shells: a practical nonlinear sound model for near-rigid thin shells Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals, SIGGRAPH ASIA Conference Proceedings), pp.313-331, 2009.

O. Thomas and S. Bilbao, Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, Journal of Sound and Vibration, vol.315, issue.3, pp.569-590, 2008.
DOI : 10.1016/j.jsv.2008.04.014

P. Hagedorn and A. Dasgupta, Vibrations and Waves in Continuous Mechanical Systems, 2007.
DOI : 10.1002/9780470518434

M. Ducceschi, C. Touzé, S. Bilbao, and C. J. Webb, Nonlinear dynamics of rectangular plates: investigation of modal interaction in free and forced vibrations, Acta Mechanica, vol.26, issue.1, pp.213-232, 2014.
DOI : 10.1007/s00707-013-0931-1

URL : https://hal.archives-ouvertes.fr/hal-01134793

J. Woodhouse, LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION, Journal of Sound and Vibration, vol.215, issue.3, pp.547-569, 1998.
DOI : 10.1006/jsvi.1998.1709

A. Boudaoud, O. Cadot, B. Odille, and C. Touzé, Observation of Wave Turbulence in Vibrating Plates, Physical Review Letters, vol.100, issue.23, p.234504, 2008.
DOI : 10.1103/PhysRevLett.100.234504

URL : https://hal.archives-ouvertes.fr/hal-00326634

N. Mordant, Are There Waves in Elastic Wave Turbulence?, Physical Review Letters, vol.100, issue.23, p.234505, 2008.
DOI : 10.1103/PhysRevLett.100.234505

URL : https://hal.archives-ouvertes.fr/hal-00712175

P. Cobelli, P. Petitjeans, A. Maurel, V. Pagneux, and N. Mordant, Space-Time Resolved Wave Turbulence in a Vibrating Plate, Physical Review Letters, vol.103, issue.20, p.204301, 2009.
DOI : 10.1103/PhysRevLett.103.204301

M. Ducceschi, O. Cadot, C. Touzé, and S. Bilbao, Dynamics of the wave turbulence spectrum in vibrating plates: A numerical investigation using a conservative finite difference scheme, Physica D: Nonlinear Phenomena, vol.280, issue.281, pp.280-281, 2014.
DOI : 10.1016/j.physd.2014.04.008

URL : https://hal.archives-ouvertes.fr/hal-01135260

S. Bilbao, O. Thomas, C. Touzé, and M. Ducceschi, Conservative numerical methods for the Full von K??rm??n plate equations, Numerical Methods for Partial Differential Equations, vol.4, issue.281, p.2015
DOI : 10.1002/num.21974

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: structure-preserving algorithms for Ordinary differential equations, 2006.

M. Ducceschi, Nonlinear vibrations of thin rectangular plates. A numerical investigation with application to wave turbulence and sound synthesis, 2014.
URL : https://hal.archives-ouvertes.fr/pastel-01068284

C. Touzé, O. Thomas, and A. Chaigne, ASYMMETRIC NON-LINEAR FORCED VIBRATIONS OF FREE-EDGE CIRCULAR PLATES. PART 1: THEORY, Journal of Sound and Vibration, vol.258, issue.4, pp.649-676, 2002.
DOI : 10.1006/jsvi.2002.5143

C. Touzé, M. Vidrascu, and D. Chapelle, Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models, Computational Mechanics, vol.298, issue.4???5, pp.567-580, 2014.
DOI : 10.1007/s00466-014-1006-4

T. Humbert, O. Cadot, G. Düring, C. Josserand, S. Rica et al., Wave turbulence in vibrating plates: The effect of damping, EPL (Europhysics Letters), vol.102, issue.3, p.30002, 2013.
DOI : 10.1209/0295-5075/102/30002

URL : https://hal.archives-ouvertes.fr/hal-01134801