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Abstra
t. We present a new algorithm to 
ompute the watershed transform on a massively

parallel ma
hine. Logi
 minimization, together with a novel approa
h to the notion of dynam-

i
s, allow the implementation of the watershed algorithm on a 
ellular automata grid, su
h

as the programmable retina. We then investigate the pro�t a
quired from 
omputing some

parts of the algorithm in an asyn
hronous way, in terms of time and energy 
onsumption.

Key words: watershed, programmable retina, dynami
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hronous parallelism, SIMD, FIFO

1. Introdu
tion

Implementation of morphologi
al algorithms on massively parallel ma
hines is

not a 
hallenging issue in itself, sin
e the translation invarian
e and lo
al knowl-

edge had already been set as prin
iples of the morphologi
al operators by its


reators [10℄. But on the one hand, the de
eiving su

ess of large size array

SIMD ma
hines, due to 
on
eption diÆ
ulties, 
ost of the I/O 
ow, and la
k of

eÆ
ien
y of 
ertain operations, and on the other hand, the great produ
tion of

the algorithmi
ists [9℄ to optimize the implementation on sequential ar
hite
-

tures, have pushed the aÆnities between mathemati
al morphology and SIMD

into the ba
kground.

Today, the 
onstant improvement of CMOS te
hnologies allows to introdu
e

a rough intelligen
e within every pixel of an ele
troni
 
amera, thus leading to

the integration of more and more powerful programmable retinas (Se
tion 2).

But unfortunately (resp. fortunately), the algorithmi
 problems remain dif-

�
ult (resp. interesting), as we wish to illustrate in this paper through the

example of the watershed (Se
tion 3). First, be
ause of the harsh 
onstraints

due to the limited 
apability of the pro
essors, that for
e to a 
onstant e�ort of

logi
 minimization (Se
tion 4). And se
ond, be
ause of the inherent limitation

of the SIMD programming, that in
ite to investigate the possibilities o�ered

by ar
hite
tural sophisti
ations of the SIMD mesh (Se
tion 5).

�
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Fig. 1. (1) The four fun
tional layers of the programmable retina. (2) The NSIP digitizing

pro
ess: time-amplitude 
oding for level-sets pro
essing and anamorphoses 
omputation.

2. The programmable retina

An arti�
ial retina is a 
ir
uit 
ombining image a
quisition and pro
essing

fun
tions. The interest of su
h devi
e is to redu
e dramati
ally the 
ow of

information within a vision system, by performing the image pro
essing 
om-

putations in the fo
al plane. The programmable retina [5℄, [2℄, [8℄ is a CMOS

sensor and a 
ellular SIMD ma
hine at the same time, with a very small digital

pro
essor integrated into every pixel. Su
h a 
ir
uit is adapted to real-time


onstrained image pro
essing system, thanks to its high degree of parallelism,

as well as embarkable or autonomous systems, thanks to its performan
es in

terms of 
ompa
tness and low-power.

Figure 1(1) shows (in 1D) the organization of the a
quisition and pro
essing

fun
tions in the programmable retina. The analog pro
essing layer is 
onsidered

here as the simplest possible and dedi
ated to very early image pro
essing, su
h

as spatio-temporal �ltering. In fa
t, we will suppose that the signal pro
essed

by the digital part 
an be the luminan
e image itself, but also a temporal

di�eren
iation, or a spatial gradient intensity, both fun
tions being 
omputable

with small analog 
ir
uitry [7℄.

Our algorithmi
 interest a
tually begins with the third layer: analog/digital


onversion (ADC). Through the NSIP (near sensor image pro
essing) prin
iple

[4℄, a very 
ompa
t ADC 
an be performed under the form of a 
apa
ity whi
h

unloading time is inversely proportional to the value to measure. The analog

value obtained from phototransdu
tion and analog pro
essing 
an then be dig-

itized through a multiple thresholding (Figure 1(2)) that will produ
e a set of

binary images. From a morphologi
al point of view, these images represent the

level sets of the signal to pro
ess, that 
an be 
oded in the digital memory, or if

possible, pro
essed during the ADC. Furthermore, modifying the number and

position of the thresholds along the time axis 
orrespond to the appli
ation of
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TABLE I

Retinal 
ode of the basi
 operators in 4- and 8-
onne
tivity. On the right, the notations

used for the translations. The erosions are obtained by turning the _ (or) into ^ (and).

a morphologi
al anamorphose.

The digital layer, whi
h is the main matter in this paper, is made of a mesh

of digital pro
essors. It is an SIMD ma
hine, with an important originality

related to a limited 
omputation 
apability, due to a tiny memory (only a few

bits per pixel). The data we operate on are a few binary images, 
alled Boolean

planes (whi
h 
an represent the grey levels of the same image). The only hard-

wired operations on these data are: (1) One-pixel translation of one image.

(2) Boolean operation between two images (or, and, xor, . . . ).

With its Boolean language, the programmable retina is naturally �tted for

the non linear pro
essing. Table I shows the 
omputation of the elementary

morphologi
al operations, whi
h are 
omputed in a few elementary operations

and use 2 bits of memory: 1 bit of data, and 1 bit for the 
omputation.

More generally, the time 
omplexity of a retinal operator is the number of

elementary operations that 
ompose it, and the spa
e 
omplexity the number

of bits needed to perform it. In our very 
onstrained 
ontext of memory, the

spa
e 
omplexity is a 
riti
al fa
tor for the implementation of algorithms. The


onsequen
e is a 
onstant e�ort to redu
e the amount of data memory 
oded

in the digital pro
essors, in order to maximize the 
omputation power.

The 
omputation of the watershed [3℄ is a signi�
ant example of this e�ort.

Indeed, the watershed produ
es a binary image, whi
h 
an intrinsi
ally repre-

sent a wide-dynami
s signal, and thanks to time-to-amplitude 
oding, it 
an

be pro
essed \on the 
y" on the in
ident signal of the digital layer.

3. Computation of the watershed transform

From now on, we will suppose that the 
omputation is made on a digital bidi-

mensional signal I of range value [0; n℄, known by its n binary thresholds, or

level sets, fI

i

g

i2[1;n℄

, with I

i

= fx 2 Z

2

; I(x) < ig, whi
h are either read on the


y from the ADC, or produ
ed from an inner digital 
oding, thus o

upying

log

2

(n+ 1) bits of memory.

In the retinal algorithms presented below, the operations are performed

within a fully parallel framework over the pixels. The instru
tions are either

elementary operations, or pro
edures presented earlier. The operators used are

^, _ and :, respe
tively and, or and not. The spa
e 
omplexity of ea
h
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TABLE II

Retinal 
ode of the geodesi
 re
onstru
tion (left), and opening by re
onstru
tion (right).
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 SKIZ(p; p

0

) f

Repeat until stability,

and for X in feast, south, west, northg

(periodi
ally repeated) f

homotopi
 dilation X(p);

p = p ^ p

0

;

g

g

TABLE III

Retinal 
ode of the homotopi
 dilation (left, the other dire
tions are dedu
ed by rotation),

and of the geodesi
 SKIZ (right).

pro
edure will be measured, as the sum of the data bits (the parameters) and

the 
omputation bits (the \lo
al" variables of the pro
edure, in
luding the

hidden variables used by sub-pro
edures).

The pro
edures in this se
tion 
an be presented brie
y, as it is a 
lassi
al

implementation of the watershed by immersion simulation. It is based on two

binary fun
tions: the geodesi
 re
onstru
tion and the geodesi
 SKIZ.

The geodesi
 re
onstru
tion is 
omputed by the left pro
edure of Table II.

It uses 3 bits of memory. The right pro
edure of Table II shows a dire
t

appli
ation in morphologi
al �ltering: the opening by re
onstru
tion by a ball

of radius r. This pro
edure, that needs 3 bits of memory too, will be used in

the next se
tion.

The 
lassi
al approximation of the SKIZ by the dual homotopi
 kernel is


omputed thanks to the relaxation of the homotopi
 dilation operator, shown

on Table III (left), that uses 3 bits of memory. The geodesi
 SKIZ is simply

obtained by 
omputing a logi
al and with the image of referen
e, so it uses 4

bits of memory.

Finally, the watershed of the digital signal I of range value [0; n℄ is 
omputed

thanks to the pro
edure of Table IV (left), where p is the binary output. This

pro
edure uses 4 bits of memory. To over
ome the well-known problem of over-

segmentation (Figure 2 (2)), a 
lassi
al solution 
onsists in using an image of

markers (Figure 2 (3)) to 
onstrain the topology of the �nal watershed (Figure 2

(4)). The 
onstrained pro
edure is shown on Table IV (right), where m is the

image of markers. Its spa
e 
omplexity is: 5 bits of memory.
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TABLE IV

Retinal 
ode of the watershed transform (left), and of the watershed with mark-

ers (right).

( 2 ) ( 3 ) ( 4 )( 1 )

Fig. 2. Results of the watershed transform. The 
omputed signal in this example is the

gradient intensity of Image (1). The raw watershed transform is shown on image (2). The

markers are the (white) 
onne
ted 
omponents of image (3): one disk marks the white taxi at

the 
enter, another disk marks the dark 
ar on the left, the re
tangle marks the ba
kground.

The watershed 
omputed with these markers is shown on Image (4) (a post-pro
ess is used

to eliminate the 
urve between the two 
at
hment basins).

It 
an be seen that the 
omputation of the watershed lends itself naturally

to a 
ompa
t implementation, well adapted to our ar
hite
ture. Nevertheless,

the markers need to be 
omputed before, and in most 
ases of segmentation,

they are not easy to �nd. Another way to avoid over-segmentation is to dis
ard

non-signi�
ant minima. This is done thanks to �ltering and dynami
s setting.

4. Filtering and dynami
s setting

Indeed, non-signi�
ant minima 
an appear for two reasons: (1) noise on the

signal, and (2) poor-dynami
s 
at
hment basins. The noise problem is ad-

dressed through morphologi
al �ltering (see Figure 3): let � be the minimal

thi
kness of a basin admissible, the �ltering 
onsists in performing an opening

by re
onstru
tion by a ball of size � on every level set of I . This 
an be done

without extra-memory.

The dynami
s problem is more 
riti
al. The 
lassi
al solution [6℄ to remove

minima of dynami
s inferior to h (basins of depth inferior to h) 
onsists in

re
onstru
ting I over I + h. This 
an be done in the retina by performing the
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1 2

ρ ρ

Fig. 3. The �rst 
ause of over-segmentation in the watershed: noise on the signal. Basins

of thi
kness inferior to � (1) are suppressed thanks to morphologi
al �ltering (2).

binary re
onstru
tion of :I

i

in :I

i�h

, for every level set su
h that i > h. But

this method implies that two level sets distant of h must be available in the

memory at the same time. If the signal is not already 
oded in the digital

memory, this 
osts h� 1 bits of memory. The solution proposed in this paper

addresses di�erently the dynami
s issue, and uses only 1 extra bit of memory.

2 3 41

h

h

Fig. 4. The se
ond 
ause of over-segmentation in the watershed: poor dynami
s minima.

Basins of depth inferior to h (1) are dis
arded thanks to the Bu�on's method (2), (3), (4).

The prin
iple of our solution (see Figure 4) is to 
ompute two watersheds

of the same signal. The level sets of the signal are sub-sampled with a regular

step of h, and two 
onse
utive level sets are used for 
omputing two distin
t

watersheds. So the two watersheds are 
omputed over a sub-sample of the

level sets, with a regular step of 2h, in su
h a way that the two sub-samples

are in phase quadrature (see Figure 4 (2) and (3)). We then postulate that

the only signi�
ant 
urves of the segmentation are those that appear in both

watersheds, and then the results is 
omputed by performing a logi
al \and"

between the two watersheds(see Figure 4 (4)) .

This \Bu�on's" method is indeed based on the monodimensional version of

the needle experien
e of the fren
h naturalist. Throwing randomly a segment

of length l (the needle) over a line marked by samples regularly spa
ed of h,

what is the probability that the segment hits two samples ? It is easy to see

that it is the 
ontinuous pie
e-wise aÆne fun
tion of l that is equal to 0 if l < h,

and 1 if l > 2h. For the watershed 
omputed by the pro
edure of Table V, it
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TABLE V

Retinal 
ode of the watershed with parameters (�; h; �).

means that:

� No minimum of dynami
s Æ < h 
an appear in the watershed.

� All minima of dynami
s Æ > 2h will appear in the watershed.

� A mimimum of dynami
s h < Æ < 2h will appear in the watershed with a

probability

Æ�h

h

.

In fa
t, the a
tual 
ombination of the two watersheds is a bit more diÆ
ult

than a simple and. Indeed, the quantization of the level sets dis
riminates

minima of poor dynami
s, but also indu
es a shift on the frontiers of the other

minima, i.e. their positions 
an vary in the two watersheds. If � is the maxi-

mal shift admitted, W

1

and W

2

the two \semi-watersheds", the interse
tion is


omputed as: W

1

^ (W

2

� B

�

), where � is the dilation and B

�

a digital ball

of radius �. The value of the shift depends on (1) the quantization step h,

(2) the lo
al sharpness of the peak in the signal. So the parameter � will be


hoosen a

ording to the minimal sharpness of a 
ontour desired, and propor-

tionnally to h. Furthermore, the right 
ombination is not the 
ommon points,

but the 
ommon 
losed 
urves of the two watersheds, so the �nal watershed

is W = HK(W

1

^ (W

2

� B

�

)), where HK is the homotopi
 kernel. See end

of pro
edure of Table V: as we are working on 
omplementary watersheds, we


ompute in fa
t W = SKIZ(W

1

_ (W

2

	B

�

)).

A result of 
omputation is shown on Figure 5. The important a
hievement

of this method is that 
omputing the watershed with �ltering and dynami
s

setting 
an be performed at a 
onstant memory 
ost, independant of the pa-

rameters: 5 bits.

5. Bene�ts of asyn
hronism

We have shown that the watershed transform, with its re�nements used in mor-

phologi
al segmentation, 
an be implemented at a very low material 
ost (and,

or, not, translation, 5 bits of memory), on a 
ellular automata grid. This

means that, today, it 
an be 
omputed within the pixels of a digital 
amera, at

the output of the ADC. But what about the eÆ
ien
y of this 
omputation ?
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( 4b ) ( 5 )( 4a )

( 0 ) ( 1 ) ( 2 ) ( 3 )

Fig. 5. Results of the watershed with parameters. (0) Original image (200 x 200 x 8 bits).

(1) Raw watershed (� = 0; h = 0). (2) Filtering with no dynami
s setting (� = 2; h = 0).

(3) Dynami
s setting with no �ltering (� = 0; h = 8). (4a) and (4b) Dynami
s setting

by Bu�on's method: two �ltered watersheds (� = 2) are 
omputed by sub-sampling the

greylevels with a step � = 16, su
h that the two sub-samples are in phase-quadrature.

(5) The result is obtained by 
ombination of the two watersheds (� = 2; h = 8; � = 2).

Indeed, by performing the segmentation dire
tly in the sensor, we aim at

saving time and energy, thanks to the in-site massively parallel 
omputation.

However, if we examine the eÆ
ien
y of the SIMD parallelism used in the

previous pro
edure, it turns out that the 
omputation of relaxation operators

like the geodesi
 re
onstru
tion 
an be very ineÆ
ient. In the typi
al 
ase of

the re
onstru
tion of a 
urve from one of its points, only a few pixels 
hange

their value at every iteration, then the SIMD 
omputation speed is not better

than the sequential one, and the energy waste is mu
h greater !

This drawba
k of the SIMD parallelism 
an be minimized within the digital

layer of the programmable retina, thanks to asyn
hronous propagation. The

use of semi-stati
 shift registers as digital memories [1℄ makes possible the fol-

lowing asyn
hronous phenomenon: a set of \a
tive" pixels 
opy their value on

their neighbors, that be
ome a
tive too, and so on until stability. This sim-

ple asyn
hronous fun
tion be
ome very interesting if the 
onne
tions are pro-

grammable. Indeed, it allows the 
omputation of the geodesi
 re
onstru
tion in

one relaxed asyn
hronous propagation (see Figure 6(1)). This 
omputation is

faster, be
ause the propagation takes mu
h less time than the syn
hronous (di-

lation+interse
tion): the asyn
hronous propagation time has been estimated

[1℄ to 1.5 ns per pixel, whi
h 
orrespond to the (unrealisti
) 
ontrol frequen
e

of 12 GHz in syn
hronous. And it is mu
h more eÆ
ient, be
ause during the

propagation, only the a
tive pixels/pro
essors 
onsume energy.

What are the algorithmi
 impli
ations of this asyn
hronous parallelism ? In

fa
t, it is more than a simple e
onomi
al way to get the re
onstru
tion, be
ause,

thanks to the syn
hronous parallelism, the topology of the programmable mesh
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( 1b ) ( 2a ) ( 2b )( 1a )

Fig. 6. Use of an asyn
hronous parallelism on a programmable topology. (1a) The geodesi


re
onstru
tion on a stati
 mesh is obtained through iterated dilation/interse
tion. (1b) On

a programmable mesh, after disabling the 
onne
tions to ba
kground (bla
k) pixels, the

re
onstru
tion is obtained through one asyn
hronous propagation from the marker pixels.

(2a) When 
omputing the SKIZ on a stati
 mesh, the syn
hronous algorithm be
ome very

ineÆ
ient as soon as the ba
kground (bla
k) be
ome one pixel thi
k. (2b) On a programmable

mesh, after disabling the 
onne
tions to foreground (white) pixels, and to multiple points of

the ba
kground, the re
onstru
tion from the extremities of the ba
kground allows to remove

the open 
urves in one asyn
hronous propagation.


an be 
onstrained not only by the image itself, but by the result of an SIMD

operator over the image. Figure 6(2) shows an example for the SKIZ, whi
h

is the other relaxation operator used in the watershed 
omputation. In our

system, the SKIZ is then 
omputed in two phases: one syn
hronous, and one

asyn
hronous.

More generally, the asyn
hronous operations 
an be algorithmi
ally seen as

an implementation of a limited 
lass of FIFOs. The FIFO data stru
ture and

algorithmi
s [11℄ is of spe
ial interest for us, be
ause its 
omputing 
apabilities

are, in some measure, diametrally opposed to the 
apabilities of the SIMD

ma
hine, and then the 
oexisten
e of the two systems on the same 
ir
uit is

very promising.

6. Con
lusions

On the base of the two last 
ir
uits design [2℄, [8℄, the next generation of

programmable retina will have between 15 and 20 bits of digital memory per

pixel, a 
ontrol frequen
e adjustable between 1 and 100 MHz, and a resolution

of 200x200 pixels. The expe
ted 
omputation time has been estimated (see Ta-

ble VI) on the image of Figure 5(0), whi
h is an 8 bits image of size 200x200, for

a 
ontrol frequen
e of 10 MHz, and for the two modes: syn
hronous, and mixed

syn
hronous/asyn
hronous. Obviously, the mixed mode is more eÆ
ient, and

in addition, unlike the syn
hronous mode, whose 
omputation time is strongly

dependent of the data, the time of the mixed mode is not mu
h di�erent in

the worst 
ase, be
ause the asyn
hronous propagation time is almost negligible

with respe
t to the syn
hronous period.

These results show the interest of a mixed syn
hronous/asyn
hronous paral-

lelism in order to enhan
e the eÆ
ien
y of 
ellular SIMD ma
hines, by extend-
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watershed(I; p) watershed ter

(2;8;2)

(I; p)

Syn
hronous 1.4 ms 1.9 ms

Mixed Syn
/Asyn
 0.3 ms 0.5 ms

TABLE VI

Estimation of the 
omputation time.

ing their 
omputation 
apabilities, from the lo
al to the regional. Su
h mixity

is already possible at a low material 
ost and will probably exist in the next

generation of programmable retinas, in whi
h the algorithms presented here

will be easily implemented. Now, other ways to exploit the asyn
hronous prop-

agations should be explored. In parti
ular, how to 
onstrain the propagations

by something \smarter" than the simple topology, typi
ally lo
al 
on�gura-

tions that appear during the propagation, thus obtaining the implementations

of more 
lasses of FIFOs ? Future works will address this issue.
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