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Abstract. We present a new algorithm to compute the watershed transform on a massively
parallel machine. Logic minimization, together with a novel approach to the notion of dynam-
ics, allow the implementation of the watershed algorithm on a cellular automata grid, such
as the programmable retina. We then investigate the profit acquired from computing some
parts of the algorithm in an asynchronous way, in terms of time and energy consumption.

Key words: watershed, programmable retina, dynamics, Buffon’s method, synchronous/asyn-
chronous parallelism, SIMD, FIFO

1. Introduction

Implementation of morphological algorithms on massively parallel machines is
not a challenging issue in itself, since the translation invariance and local knowl-
edge had already been set as principles of the morphological operators by its
creators [10]. But on the one hand, the deceiving success of large size array
SIMD machines, due to conception difficulties, cost of the I/O flow, and lack of
efficiency of certain operations, and on the other hand, the great production of
the algorithmicists [9] to optimize the implementation on sequential architec-
tures, have pushed the affinities between mathematical morphology and SIMD
into the background.

Today, the constant improvement of CMOS technologies allows to introduce
a rough intelligence within every pixel of an electronic camera, thus leading to
the integration of more and more powerful programmable retinas (Section 2).
But unfortunately (resp. fortunately), the algorithmic problems remain dif-
ficult (resp. interesting), as we wish to illustrate in this paper through the
example of the watershed (Section 3). First, because of the harsh constraints
due to the limited capability of the processors, that force to a constant effort of
logic minimization (Section 4). And second, because of the inherent limitation
of the SIMD programming, that incite to investigate the possibilities offered
by architectural sophistications of the SIMD mesh (Section 5).

* This work has been partially realized at CTA/GIP and INT/ARTEMIS, with the finan-
cial support of EADS.
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Fig. 1. (1) The four functional layers of the programmable retina. (2) The NSIP digitizing
process: time-amplitude coding for level-sets processing and anamorphoses computation.

2. The programmable retina

An artificial retina is a circuit combining image acquisition and processing
functions. The interest of such device is to reduce dramatically the flow of
information within a vision system, by performing the image processing com-
putations in the focal plane. The programmable retina [5], [2], [8] is a CMOS
sensor and a cellular SIMD machine at the same time, with a very small digital
processor integrated into every pixel. Such a circuit is adapted to real-time
constrained image processing system, thanks to its high degree of parallelism,
as well as embarkable or autonomous systems, thanks to its performances in
terms of compactness and low-power.

Figure 1(1) shows (in 1D) the organization of the acquisition and processing
functions in the programmable retina. The analog processing layer is considered
here as the simplest possible and dedicated to very early image processing, such
as spatio-temporal filtering. In fact, we will suppose that the signal processed
by the digital part can be the luminance image itself, but also a temporal
differenciation, or a spatial gradient intensity, both functions being computable
with small analog circuitry [7].

Our algorithmic interest actually begins with the third layer: analog/digital
conversion (ADC). Through the NSIP (near sensor image processing) principle
[4], a very compact ADC can be performed under the form of a capacity which
unloading time is inversely proportional to the value to measure. The analog
value obtained from phototransduction and analog processing can then be dig-
itized through a multiple thresholding (Figure 1(2)) that will produce a set of
binary images. From a morphological point of view, these images represent the
level sets of the signal to process, that can be coded in the digital memory, or if
possible, processed during the ADC. Furthermore, modifying the number and
position of the thresholds along the time axis correspond to the application of
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procedure dilates(p) { procedure dilates(p) { R
Boolean plane p1; Boolean plane Py
pr=p" VPt pL=pVpo VP Pop | F
p=pPVPp1LVpy ; p=pP1Vpr Vpi;
t t | et
TABLE 1

Retinal code of the basic operators in 4- and 8-connectivity. On the right, the notations
used for the translations. The erosions are obtained by turning the V (OR) into A (AND).

a morphological anamorphose.

The digital layer, which is the main matter in this paper, is made of a mesh
of digital processors. It is an SIMD machine, with an important originality
related to a limited computation capability, due to a tiny memory (only a few
bits per pixel). The data we operate on are a few binary images, called Boolean
planes (which can represent the grey levels of the same image). The only hard-
wired operations on these data are: (1) One-pixel translation of one image.
(2) Boolean operation between two images (OR, AND, XOR, ... ).

With its Boolean language, the programmable retina is naturally fitted for
the non linear processing. Table I shows the computation of the elementary
morphological operations, which are computed in a few elementary operations
and use 2 bits of memory: 1 bit of data, and 1 bit for the computation.

More generally, the time complexity of a retinal operator is the number of
elementary operations that compose it, and the space complexity the number
of bits needed to perform it. In our very constrained context of memory, the
space complexity is a critical factor for the implementation of algorithms. The
consequence is a constant effort to reduce the amount of data memory coded
in the digital processors, in order to maximize the computation power.

The computation of the watershed [3] is a significant example of this effort.
Indeed, the watershed produces a binary image, which can intrinsically repre-
sent a wide-dynamics signal, and thanks to time-to-amplitude coding, it can
be processed “on the fly” on the incident signal of the digital layer.

3. Computation of the watershed transform

From now on, we will suppose that the computation is made on a digital bidi-
mensional signal I of range value [0,n], known by its n binary thresholds, or
level sets, {I;}ic[1,n), with I; = {x € Z? I(x) < i}, which are either read on the
fly from the ADC, or produced from an inner digital coding, thus occupying
log,(n + 1) bits of memory.

In the retinal algorithms presented below, the operations are performed
within a fully parallel framework over the pixels. The instructions are either
elementary operations, or procedures presented earlier. The operators used are
A, V and -, respectively AND, OR and NOT. The space complexity of each
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- ; procedure opening_by_reconstruction,. (p) {
procedure r@con.s.tructwn(p7 p') { Boolean plane p1;
Repeat until stability, { 1 =D .
dilation(p); Repeat r times {
f —pAp; erosion(p);
} reconstruction(p,p1);
}
TABLE I1

Retinal code of the geodesic reconstruction (left), and opening by reconstruction (right).

procedure geodesic.SKIZ(p,p’) {
Repeat until stability,
and for X in {EAST, SOUTH, WEST, NORTH}

procedure homotopic_dilation . EAST(p) {
Boolean plane phbpz;

p1="p AP 5. (periodically repeated) {
p2=p1Vp; VpT; homotopic_dilation_X(p);
P1L=Tp2 AP —pAp:

p=rVin ' p=phvs

TABLE III
Retinal code of the homotopic dilation (left, the other directions are deduced by rotation),
and of the geodesic SKIZ (right).

procedure will be measured, as the sum of the data bits (the parameters) and
the computation bits (the “local” variables of the procedure, including the
hidden variables used by sub-procedures).

The procedures in this section can be presented briefly, as it is a classical
implementation of the watershed by immersion simulation. It is based on two
binary functions: the geodesic reconstruction and the geodesic SKIZ.

The geodesic reconstruction is computed by the left procedure of Table II.
It uses 3 bits of memory. The right procedure of Table II shows a direct
application in morphological filtering: the opening by reconstruction by a ball
of radius r. This procedure, that needs 3 bits of memory too, will be used in
the next section.

The classical approximation of the SKIZ by the dual homotopic kernel is
computed thanks to the relaxation of the homotopic dilation operator, shown
on Table III (left), that uses 3 bits of memory. The geodesic SKIZ is simply
obtained by computing a logical AND with the image of reference, so it uses 4
bits of memory.

Finally, the watershed of the digital signal I of range value [0, n] is computed
thanks to the procedure of Table IV (left), where p is the binary output. This
procedure uses 4 bits of memory. To overcome the well-known problem of over-
segmentation (Figure 2 (2)), a classical solution consists in using an image of
markers (Figure 2 (3)) to constrain the topology of the final watershed (Figure 2
(4)). The constrained procedure is shown on Table IV (right), where m is the
image of markers. Its space complexity is: 5 bits of memory.
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procedure watershed(I,p) {
11?(2)1;33«111. plane p1, p2; procedure watershed_bis(I, m,p) {
For k =2 ton{ I]?():()lﬁ%n plane p1;
p1 = I[i]; For k =1 ton{
P2 = p; ) p1 = I[i];
zscgnf‘tgu/stlz)(l):n(pmpl)? geodesic.SKIZ(p,p1);
P=p Vs PY f:me;
geodesic.SKI1Z(p, p1); }
}
}
TABLE IV

Retinal code of the watershed transform (left), and of the watershed with mark-
ers (right).

Fig. 2.  Results of the watershed transform. The computed signal in this example is the
gradient intensity of Image (1). The raw watershed transform is shown on image (2). The
markers are the (white) connected components of image (3): one disk marks the white taxi at
the center, another disk marks the dark car on the left, the rectangle marks the background.
The watershed computed with these markers is shown on Image (4) (a post-process is used
to eliminate the curve between the two catchment basins).

It can be seen that the computation of the watershed lends itself naturally
to a compact implementation, well adapted to our architecture. Nevertheless,
the markers need to be computed before, and in most cases of segmentation,
they are not easy to find. Another way to avoid over-segmentation is to discard
non-significant minima. This is done thanks to filtering and dynamics setting.

4., Filtering and dynamics setting

Indeed, non-significant minima can appear for two reasons: (1) noise on the
signal, and (2) poor-dynamics catchment basins. The noise problem is ad-
dressed through morphological filtering (see Figure 3): let p be the minimal
thickness of a basin admissible, the filtering consists in performing an opening
by reconstruction by a ball of size p on every level set of I. This can be done
without extra-memory.

The dynamics problem is more critical. The classical solution [6] to remove
minima of dynamics inferior to h (basins of depth inferior to h) consists in
reconstructing I over I + h. This can be done in the retina by performing the
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Fig. 3. The first cause of over-segmentation in the watershed: noise on the signal. Basins
of thickness inferior to p (1) are suppressed thanks to morphological filtering (2).

binary reconstruction of —I; in —I; j, for every level set such that ¢ > h. But
this method implies that two level sets distant of A must be available in the
memory at the same time. If the signal is not already coded in the digital
memory, this costs h — 1 bits of memory. The solution proposed in this paper
addresses differently the dynamics issue, and uses only 1 extra bit of memory.

Fig. 4. The second cause of over-segmentation in the watershed: poor dynamics minima.
Basins of depth inferior to h (1) are discarded thanks to the Buffon’s method (2), (3), (4).

The principle of our solution (see Figure 4) is to compute two watersheds
of the same signal. The level sets of the signal are sub-sampled with a regular
step of h, and two consecutive level sets are used for computing two distinct
watersheds. So the two watersheds are computed over a sub-sample of the
level sets, with a regular step of 2h, in such a way that the two sub-samples
are in phase quadrature (see Figure 4 (2) and (3)). We then postulate that
the only significant curves of the segmentation are those that appear in both
watersheds, and then the results is computed by performing a logical “AND”
between the two watersheds(see Figure 4 (4)) .

This “Buffon’s” method is indeed based on the monodimensional version of
the needle experience of the french naturalist. Throwing randomly a segment
of length ! (the needle) over a line marked by samples regularly spaced of h,
what is the probability that the segment hits two samples 7 It is easy to see
that it is the continuous piece-wise affine function of [ that is equal to 0if I < h,
and 1 if [ > 2h. For the watershed computed by the procedure of Table V, it
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Boolean plane p1, p2, p3;
p = I[h]; .
opening.by_reconstruction,, (p);
p1 = I[2h];
opening.by_reconstruction, (p1);
for i =3 to [2] {
p2 = I[i X hl;
opening_by.reconstruction,, (p2);
if (i%2 ==0) {
p3 = p; )
reconstruction(ps, p2);
p3 = p3 N\ p2;

P=pV ps;
geodesic.SKI1Z(p, p2);

procedure watershed_ter(, n,o)(I,p) {

else
¥ p{a =pi;
reconstruction(ps, p2);
p3 = —p3 A p2;

P1 = Pp1V P3;
geodesic.SKIZ(p1,p2);
fori=1too
erodes(p);

p=pVpi;
fKIZ(P);

7

TABLE V
Retinal code of the watershed with parameters (p, h, o).

means that:

— No minimum of dynamics § < h can appear in the watershed.

— All minima of dynamics § > 2h will appear in the watershed.

— A mimimum of dynamics h < § < 2h will appear in the watershed with a
probability %.

In fact, the actual combination of the two watersheds is a bit more difficult
than a simple AND. Indeed, the quantization of the level sets discriminates
minima of poor dynamics, but also induces a shift on the frontiers of the other
minima, i.e. their positions can vary in the two watersheds. If o is the maxi-
mal shift admitted, W; and W5 the two “semi-watersheds”, the intersection is
computed as: Wi A (W2 @ B, ), where @ is the dilation and B, a digital ball
of radius o. The value of the shift depends on (1) the quantization step h,
(2) the local sharpness of the peak in the signal. So the parameter o will be
choosen according to the minimal sharpness of a contour desired, and propor-
tionnally to h. Furthermore, the right combination is not the common points,
but the common closed curves of the two watersheds, so the final watershed
is W =HK(W; A(Ws® B,)), where HK is the homotopic kernel. See end
of procedure of Table V: as we are working on complementary watersheds, we
compute in fact W = SKIZ(Wy VvV (W, © B,)).

A result of computation is shown on Figure 5. The important achievement
of this method is that computing the watershed with filtering and dynamics
setting can be performed at a constant memory cost, independant of the pa-
rameters: 5 bits.

5. Benefits of asynchronism

We have shown that the watershed transform, with its refinements used in mor-
phological segmentation, can be implemented at a very low material cost (AND,
OR, NOT, translation, 5 bits of memory), on a cellular automata grid. This
means that, today, it can be computed within the pixels of a digital camera, at
the output of the ADC. But what about the efficiency of this computation ?
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(0) (2) ]/ (3)

Fig. 5. Results of the watershed with parameters. (0) Original image (200 x 200 x 8 bits).
(1) Raw watershed (p = 0,h = 0). (2) Filtering with no dynamics setting (p = 2,h = 0).
(3) Dynamics setting with no filtering (p = 0,h = 8). (4a) and (4b) Dynamics setting
by Buffon’s method: two filtered watersheds (p = 2) are computed by sub-sampling the
greylevels with a step A = 16, such that the two sub-samples are in phase-quadrature.
(5) The result is obtained by combination of the two watersheds (p = 2,h = 8,0 = 2).

Indeed, by performing the segmentation directly in the sensor, we aim at
saving time and energy, thanks to the in-site massively parallel computation.
However, if we examine the efficiency of the SIMD parallelism used in the
previous procedure, it turns out that the computation of relaxation operators
like the geodesic reconstruction can be very inefficient. In the typical case of
the reconstruction of a curve from one of its points, only a few pixels change
their value at every iteration, then the SIMD computation speed is not better
than the sequential one, and the energy waste is much greater !

This drawback of the SIMD parallelism can be minimized within the digital
layer of the programmable retina, thanks to asynchronous propagation. The
use of semi-static shift registers as digital memories [1] makes possible the fol-
lowing asynchronous phenomenon: a set of “active” pixels copy their value on
their neighbors, that become active too, and so on until stability. This sim-
ple asynchronous function become very interesting if the connections are pro-
grammable. Indeed, it allows the computation of the geodesic reconstruction in
one relaxed asynchronous propagation (see Figure 6(1)). This computation is
faster, because the propagation takes much less time than the synchronous (di-
lation+intersection): the asynchronous propagation time has been estimated
[1] to 1.5 ns per pixel, which correspond to the (unrealistic) control frequence
of 12 GHz in synchronous. And it is much more efficient, because during the
propagation, only the active pixels/processors consume energy.

What are the algorithmic implications of this asynchronous parallelism 7 In
fact, it is more than a simple economical way to get the reconstruction, because,
thanks to the synchronous parallelism, the topology of the programmable mesh
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Fig. 6. Use of an asynchronous parallelism on a programmable topology. (1a) The geodesic
reconstruction on a static mesh is obtained through iterated dilation/intersection. (1b) On
a programmable mesh, after disabling the connections to background (black) pixels, the
reconstruction is obtained through one asynchronous propagation from the marker pixels.
(2a) When computing the SKIZ on a static mesh, the synchronous algorithm become very
inefficient as soon as the background (black) become one pixel thick. (2b) On a programmable
mesh, after disabling the connections to foreground (white) pixels, and to multiple points of
the background, the reconstruction from the extremities of the background allows to remove
the open curves in one asynchronous propagation.

can be constrained not only by the image itself, but by the result of an SIMD
operator over the image. Figure 6(2) shows an example for the SKIZ, which
is the other relaxation operator used in the watershed computation. In our
system, the SKIZ is then computed in two phases: one synchronous, and one
asynchronous.

More generally, the asynchronous operations can be algorithmically seen as
an implementation of a limited class of FIFOs. The FIFO data structure and
algorithmics [11] is of special interest for us, because its computing capabilities
are, in some measure, diametrally opposed to the capabilities of the SIMD
machine, and then the coexistence of the two systems on the same circuit is
very promising.

6. Conclusions

On the base of the two last circuits design [2], [8], the next generation of
programmable retina will have between 15 and 20 bits of digital memory per
pixel, a control frequence adjustable between 1 and 100 MHz, and a resolution
of 200x200 pixels. The expected computation time has been estimated (see Ta-
ble VI) on the image of Figure 5(0), which is an 8 bits image of size 200x200, for
a control frequence of 10 MHz, and for the two modes: synchronous, and mixed
synchronous/asynchronous. Obviously, the mixed mode is more efficient, and
in addition, unlike the synchronous mode, whose computation time is strongly
dependent of the data, the time of the mixed mode is not much different in
the worst case, because the asynchronous propagation time is almost negligible
with respect to the synchronous period.

These results show the interest of a mixed synchronous/asynchronous paral-
lelism in order to enhance the efficiency of cellular SIMD machines, by extend-
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watershed(I,p) | watershed-ter(z s 2y (I, p)
Synchronous 1.4 ms 1.9 ms
Mixed Sync/Async 0.3 ms 0.5 ms
TABLE VI

Estimation of the computation time.

ing their computation capabilities, from the local to the regional. Such mixity
is already possible at a low material cost and will probably exist in the next
generation of programmable retinas, in which the algorithms presented here
will be easily implemented. Now, other ways to exploit the asynchronous prop-
agations should be explored. In particular, how to constrain the propagations
by something “smarter” than the simple topology, typically local configura-
tions that appear during the propagation, thus obtaining the implementations
of more classes of FIFOs 7 Future works will address this issue.
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