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Article history: While the origin of language remains a somewhat mysterious process, understanding how human language takes
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human languages) from speech communication principles. We introduce a model of the cognitive architecture of a
communicating agent, called COSMO (for “Communicating about Objects using Sensory—-Motor Operations') that allows
a probabilistic expression of the main theoretical trends found in the speech production and perception literature. This
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1. Introduction
1.1. Universality of language forms

While the general question of language origins still seems beyond testable assumptions, the question of the origins of
language forms — that is, assuming that language emerged for some reason, predicting what its units and systems should be -
seems to be more amenable to an experimental approach. This question has gained much interest in recent decades and now
attracts a large body of research from a wide range of disciplines. Indeed, human languages display a number of regularities,
called “universals”, and consequently, all human languages, while they are different from one another, are based on general
principles and follow strong statistical trends. This makes them appear merely as variants of a single system. The issue that we
address in this paper concerns the origins of these general principles and statistical trends, focusing on the universals of sound
systems for human languages.

Universality of language forms has generated three kinds of explanation. In the Chomskyan view of a genetically specified
language organ (Chomsky, 1965), a common innate language competence shared by all humans would explain the common
denominator of the different languages. Another view about the universal properties of human languages may be found in the
hypothesis of a common origin, by which human languages would derive from an African mother tongue (Ruhlen, 1996),
imposing some common traces in spite of further cultural evolution producing their diversity (Atkinson, 2011; Gell-Mann &
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Ruhlen, 2011; however, see Boé&, Bessiere, Ladjili, & Audibert, 2008 for strong methodological caveats against the common
origin hypothesis).

A third view considers that the forms of human language are the emergent product of an optimization process, inducing some
commonality in the achieved solutions because of commonality in the cognitive mechanisms at hand in the dynamic mechanisms involved,
and because of common exterior constraints. This is the view first popularized by Lindblom (1984), through a proposal to “derive language
from non-language”. In the 1990s,a series of computational models emerged, following the seminal proposal of “language games” by Steels
(Steels, 1994, 1997, 1999). In these multi-agent models, agent populations are made to interact and evolve, leading to the emergence of
global properties from local interactions, with these properties being analyzed in relation to those of language.

1.2. Deriving some properties of phonological systems from general communication principles

The wide range of proposals and debates on this topic diverge in their linguistic focus (mostly syntax and to a lesser extent, lexicon or
phonology); in their basic objective (e.g. explain invariance vs. illustrate and explain variability of human languages; stress phylogenetic
continuities by attempting to derive human language from animal communication vs. stress discontinuities by showing what cannot be
explained in human languages from pre-human cognitive abilities); in their underlying assumptions (including physical, biological, cognitive,
cultural ingredients). It is out of the focus of the present paper to propose an exhaustive review of these works (see a recent review in
Oudeyer, 2006, 2013).

The present paper’ is focused on phonological universals, embracing the view that some properties of the sound systems for
human languages can be derived from the communicative and perceptuo-motor abilities of the human species. This work has two
major ambitions: (1) to attempt to simulate in a single integrated framework universals of various components of human sound
systems, namely vowels, plosives and their associations in CV syllables; and (2) to connect within this framework various theories of
speech communication that have seldom be considered together, that are theories of speech sound systems on one hand (e.g. the
dispersion theory or the quantal theory, see later) and theories of speech communication on the other hand (e.g. auditory, motor or
perceptuo-motor theories, see later).

For this aim, we adopt the framework of a multi-agent system, in which each agent is initially constrained by a set of prelinguistic abilities.
Our aim is to examine how basic properties of phonology could emerge in such a system. A number of variants of these multi-agent models
can be identified (Berrah, Glotin, Laboissiére, Bessilere, & Bog, 1996; de Boer, 2000; Oudeyer, 2005; De Boer & Zuidema, 2010), which offer
simulations that display some of the properties of sound systems, such as vowel systems with dispersion, or sound sequences with
phonotactic properties comparable with those of human speech. However, none of them addresses the two major challenges mentioned
previously, that are associating various categories of speech sounds in the same set of predictions, and connecting simulations with the
classical theories of speech communication.

Within this framework, our work is based on an analysis of the required components of a communication system. Communication is
based on the modification of the internal-knowledge state of a listener, by a speaker, through the use of communication stimuli. In essence,
communication is possible and efficient provided that three subproblems are conjointly solved by the speaker and the listener. Firstly, they
must select adequate communication stimuli that are reasonably easy to produce by the speaker and to process by the listener (adequacy).
Secondly, a good correspondence must be ensured between the speaker's motor repertoire and the listener's perceptual repertoire so that
they can then exchange roles and still communicate smoothly (parity). Thirdly, they must know the correspondence between these motor and
perceptual repertoires and the objects of the external world (“reference”, which is an aspect of a more general symbol-grounding problem,
Harnad, 1990; Steels, 2008).

Solutions to each of these three subproblems have motivated theoretical proposals about the emergence of language that are
related to both phylogenetic and ontogenetic arguments. Let us consider some of them.

Firstly, the Frame-Content Theory (MacNeilage, 1998; MacNeilage & Davis, 2000) suggests an evolutionary path to articulated speech
from ingestive mandibular cyclicities and claims that this provides an elegant solution to the generation of communication stimuli that are
easy to produce and to process. By supporting a prelinguistic ability to produce modulated vocalizations efficiently, such cyclicities could have
produced a bootstrap for a solution to the adequacy problem. Secondly, recent proposals about the existence of mirror neurons (located in
the premotor and parietal cortex of the macaque, active both when the macaque performs a transitive action and when it observes another
individual performing the same action, Rizzolatti & Arbib, 1998) and the mirror system in humans (active when a human both performs and
observes a particular transitive action, Rizzolatti, Fadiga, Gallese, & Fogassi, 1996; Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995), are claimed
to provide a solution for parity (Arbib, 2005a; Rizzolatti & Arbib, 1998). Starting from the very definition of parity by Liberman and Mattingly
(1989), summarized by Liberman and Whalen (2000) by the well-known formula “what counts for the speaker must count for the listener”,
Arbib (2005b) is explicit on this point:

“The parity requirement for language in humans — that what counts for the speaker must count approximately the same for the
hearer — is met because Broca's area evolved atop the mirror system for grasping with its capacity to generate and recognize a set
of associations.”

" The present paper compiles a series of experiments performed during the PhD thesis of Clément Moulin-Frier, supervised by Jean-Luc Schwartz, Julien Diard and Pierre Bessiére
(Moulin-Frier, 2011). It is based on our previous works linking standard speech communication theories to the study and simulation of phonological system emergence in interacting
sensory—motor agents (Moulin-Frier, Schwartz, Diard, & Bessiere, 2008, 2010, 2011). Here, we present these results in a larger framework, including unpublished original research on the
simulation of stop and syllable emergence and emphasizing our view on the cognitive nature of speech sound systems in line with the focus of the present special issue.
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Finally, the reference problem has generated strong debates between proponents, on the one hand, of a gestural origin for language,
which involves a strong iconicity of gestures (Corballis, 2002; Gentilucci & Corballis, 2006) and the use of complex gestural imitation
procedures (Arbib, 2005a), and proponents, on the other hand, of a vocal route, possibly using vocal deixis as a bootstrap (Abry,
Vilain, & Schwartz, 2004). In both cases, shared attention would be a crucial aspect of these processes (Leavens & Bard, 2011).

We do not claim that solving these three subproblems explains human phonology completely. It could be argued that specific
mechanisms are necessary, such as those that deal with the question of compositionality in phonology (Hauser, Chomsky, & Fitch,
2002), although we will provide some perspective on this point in our final discussion. Moreover, interactions among the suggested
phylogenetic precursors during language evolution are certainly a crucial point. It has been suggested that mirror neurons, for
example, can provide a solution for the reference problem through action recognition (Arbib, 2005b) and that synchrony of mandibular
cyclicities (adequacy) and deictic pointing gestures (reference) could provide a developmental rendezvous toward first-words
production (Abry, Ducey Kaufmann, Vilain, & Lalevée, 2008). Our main claim in this paper is that, if cognitive processes capable of
solving the three subproblems of adequacy, parity and reference exist in a society of interacting agents, then a number of properties
could be obtained by multi-agent simulation, which would appear similar to those of human phonological systems.

1.3. Assumptions, predictions and summary

The present work therefore aims (i) to define interacting agents equipped with a basic ability to produce and perceive sounds and
with a cognitive system able to solve the “adequacy”, “parity” and “reference” subproblems, (ii) to implement simulations within which
these agents orally interact, (iii) to study oral communication systems emerging from the interactions between these agents and
(iv) to assess whether these systems display a number of properties of human phonological systems.

Therefore, we do not attempt in this work to derive language from nothing. On the contrary, we capitalize on a number of
assumptions about orofacial production and auditory perception, and about cognitive abilities described previously. From these, we
propose a computational framework for expressing communication between agents and for defining how a society of agents might
evolve through inter-agent communication. We then analyze the results of these simulations and make comparisons with some
known properties of human sound systems.

To address these aims, the next section presents the universals and statistical properties of phonological systems that we are
interested in, and the way that they have been described and sometimes simulated in previous theoretical and modeling studies.

We then offer our three main contributions:

Firstly, in the Section 3, we present the core of our own approach; namely, the analysis of the communication paradigm and the
basic constraints that this imposes on the form of an adequate communication system. This leads to the cognitive architecture at the
center of our modeling approach; namely, “Communicating about Objects using Sensory—Motor Operations” (COSMO). We show that
COSMO integrates various theoretical proposals about speech communication into a single framework, and we introduce a Bayesian
implementation that leads to a computational version of COSMO. In Section 4, we define “deictic games” as the key tool for our
simulations, in which computational agents interact in the presence of objects that they attempt to designate by the voice.

Our second contribution, in Section 5, is an experimental study involving deictic games in a simplified sensory—motor space, of our
main theoretical proposals about speech communication. It enables us to extract some cognitive conditions necessary for the
emergence of a speech code in COSMO.

Our third and final contribution, in Section 6, shows how the model is able to predict coherent vowel, consonant and syllabic
phonological systems by using a realistic vocal-tract model and a phylogenetically and ontogenetically plausible control framework.
We analyze our simulation results with respect to some of the regularities in the sound systems for human languages described
previously.

In the final section, Section 7, we discuss the validity, limitations and perspectives offered by our work in the field of theories about
the emergence of human language forms.

2. Regularities in phonological systems
2.1. Universals and major trends in sound systems for human languages

Languages are characterized by a “double articulation” in meaning and sound units. That is, there is a combination of elementary
meaning units, typically words, which are themselves a combination of elementary sound units, typically phonemes. Considering
sound, which will be the main focus of this paper, it appears that phonological systems display more or less regular alternations of
vowels and consonants in syllables, usually corresponding to open and close configurations of the vocal tract, respectively. Within the
phonological systems themselves, strong regularities can be observed.

2.1.1. Vowels

Vowels can be characterized by their formant values. The debate between local parametric representations based on formants and global
spectral representations, based on e.g. critical band spectra or cepstral parameters, is classical (see a discussion in Schwartz, Bog, Vallee, &
Abry, 1997a). While global parameters are the only adequate way to deal with automatic processing of acoustic stimuli, formants remain the
reference in simulations about phonological inventories, therefore they will be used in the present work.



8 C. Moulin-Frier et al. / Journal of Phonetics 53 (2015) 5-41

Vowel system inventories available in the phonological database UPSID, which samples about 10% of human languages
(Maddieson, 1984; Maddieson & Precoda, 1989), display clear regularities (Maddieson & Precoda, 1989; Vallee, 1994; Schwartz
et al., 1997b). In particular, almost every language has /a,i,u/, with /a/ as in “car” (from a low jaw and a low and central tongue), /i/ as
in “bee” (from a high jaw and a high and front tongue) and /u/ as in “food” (from a high jaw and a high and back tongue). The most
common system is the five-vowel system /i,e,a,o,u/, with two additional vowels /e/ and /o/ (from jaw-tongue configurations
intermediate between those for /a,i,u/). These vowels are distributed rather evenly in the space of the two first formants (F1, F2)
(see Fig. 1).

2.1.2. Consonants

Consonants are more difficult to characterize as a class than vowels, both acoustically and from an articulatory point of view.
Among the consonants, the stop consonants (or “stops”), which are characterized by a complete “closure” of the vocal tract, are
relatively well described (see Schwartz, Boé, Badin, & Sawallis, 2012b). We therefore use them as the focus of the present study. For
stops, either the tongue or the lips are put in such a configuration that there is a place inside the vocal tract of complete closure where
air cannot pass. It is only when the closure is “released” by an appropriate articulatory maneuver that the characteristic sound of the
stop is uttered. Stops are best characterized by the place of the closure (called the “place of articulation”) and the formant values (F1,
F2, F3) at the time of release (Schwartz,et al., 2012b) (see Fig. 2).

The “best” stops in phonological systems (clearly demonstrated in UPSID) are bilabial, coronal and velar plosives. Indeed, if a
language has three stops (as in 3% of UPSID languages), it has plain voiceless /p t k/, rather than other combinations of place or of
place and secondary articulations. If a language has six stops, which is the most frequent number (in 24% of the languages of
UPSID), it has mostly /p t k b d g/. With 9 stops, the basic /p t k b d g/ series combines with secondary feature sets such as aspiration,
prenasalization, palatalization or laryngealization. Altogether, in the UPSID extension to 556 languages (Maddieson, 2001), 45% of
the systems include the 6 stops /p t k b d g/. In the following, we will not deal any more on voicing, which is out of the field of our
simulations, and concentrate on plosive place of articulation. Voiceless stops are more frequent than voiced in human languages
(Boé, Vallée, Badin, Schwartz, & Abry, 2000), but the formant transitions are more fully visible in voiced than in voiceless stops, and
hence easier to model in the articulatory models that will be described later. Therefore, for expository convenience, we will use and
cite voiced rather than voiceless stops for the discussion and simulation of plosive place throughout this paper.

F2

/

Space of possible
(F1, F2) values
achievable by a
human vocal tract

Fl

Fig. 1. Vowel characterization. The vowel (F1, F2) space and the most common system /i,e,a,o,u/.

F2 F2

Fig. 2. Plosive consonant characterization. Top: the closure places for stops. Bottom: acoustic spaces for stops. Adapted from Schwartz et al. (2012)b — vocal tract infography by Sophie
Jacopin.
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Stops are all produced with a rather closed jaw, enabling a vocal tract closure at the lips (for the bilabial /b/), toward the front of the
palate with the tip of the tongue (for the alveolar /d/) and toward the middle of the palate with the tongue dorsum (for the velar /g/) (see
Fig. 2, top). They correspond to small F1 values and are rather well differentiated in the (F2, F3) plane (see Fig. 2, bottom).

In contrast, the “back” stops from /a/ to / 2/ are performed with the dorsum of the tongue closing the vocal tract toward the back of
the mouth (see Fig. 2, top), with the jaw being lower and even largely open in order to push the back of the tongue toward the
pharyngeal part of the palate in /2/. They are less favored in phonological inventories, despite their rather distinctive high F1 values
(see Fig. 2, bottom).

2.1.3. Co-occurrences in syllables

Finally, it has been suggested that some associations in human languages between stops and vowels are more frequent when the
tongue is in the same region of the vocal tract for both the consonant and the vowel. Examples include the tongue being toward the
front (with a front /i/ and an alveodental /d/ in /di/), toward the middle (with a central /a/ and a labial /b/ with no active tongue
movement in /ba/) and toward the back (with a back /u/ and a velar /g/ in /gu/) (MacNeilage & Davis, 2000; Vallee et al., 2009).

2.2. Predicting form from substance

At the beginning of the 1970s, evidence for the existence of such regularities in sound inventories led researchers to develop what
Lindblom called “substance-based theories”, in which form was supposed to emerge from properties of the articulatory-acoustic
substance of speech communication. Two such theories were introduced in the 1970s and developed over the subsequent 20 years.

According to Lindblom's “Dispersion Theory” (Liljiencrants & Lindblom, 1972; Lindblom, 1984, 1986, 1990; Schwariz et al., 1997a),
human languages have sound systems for which auditory distances between pairs are maximal in order to enhance distinguishability.
In this context, auditory distances are typically defined in the formant (F1, F2) space. This leads to clear-cut predictions about vowel
systems, for which sounds would be most distant from one another in the vowel triangle, generating such systems as /i,a,u/ for three-
vowel systems and /i,e,a,o,u/ for five-vowel systems (see Fig. 1 for a visualization of these vowels in the (F1, F2) space).

Stevens' “Quantal Theory” (Stevens, 1972, 1989; Stevens & Keyser, 2010) claims that nonlinearities in the articulatory-to-acoustic
transformation may lead to the existence of so-called “quantal regions”, where plateaus, in which percepts are almost invariant to
articulation, are separated by sharp natural boundaries, where sound changes quickly for very small articulatory displacements.
These “substance” natural boundaries provide, according to Stevens, optimal niches for phonological contrasts in sound systems.

However, these theories appear as “phenomenological laws” associating a phonological contrast (form) to a phonetic behavior
(substance): auditory distinctiveness in one case, articulatory-to-acoustic nonlinearity in the other. Emergence simulations are a way
to ground these phenomenological laws in principles of communication per se. The next section proposes a set of such principles.

3. The COSMO model

This section presents the cognitive architecture at the center of our modeling approach; namely, “Communicating about Objects
using Sensory—Motor Operations” (COSMO). We first expose the conceptual principles of COSMO, where an agent fully internalizes
the structure of a communication situation. Then we propose a computational version based on a Bayesian implementation, to finally
show that COSMO integrates various theoretical proposals about speech communication.

3.1. COSMO principles

3.1.1. A speech-communication prototypical paradigm

The scenario that we propose for the emergence of speech communication assumes that the three evolutionary requirements
suggested in the introduction — namely, those related to adequacy, parity and reference — are solved in one way or another. In its
general form, our scenario is agnostic in relation to choices about adequate phylogenetic precursors of these requirements.

However, in the implementations of the model that we describe in the following sections, we make several choices that guide the
simulations. For present purposes, it suffices to say that the speech-communication situation that we consider is illustrated in Fig. 3.
Here, a speaker has the desire to communicate about an object Os to a listener.

Before describing Fig. 3 in more detail, we emphasize that the term “object” in COSMO may take a variety of meanings. It can be a
physical object related to a word, or an event or a concept related to a more complex syntactic structure. It can also refer directly to a

Speaker Environment Listener

c

Fig. 3. Schema of the speech communication situation.
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“first articulation unit”; i.e., a phoneme or a syllable. Of course, this assigns to the “object” category a very general sense, which will
have to be specified and developed in future work. In the present work and for the sake of simplicity, we consider that a physical
object (e.g. an apple) is associated with a single phonological unit (e.g. a vowel or a syllable). In the simulations that we will describe,
the number of objects (and therefore the number of phonological units) will be fixed in advance, and the challenge will be to learn a
mapping between these units and articulatory—auditory configurations, allowing the agents to communicate efficiently about the
physical objects. “Objects” will then refer to the phonological units used to name physical objects, providing the communication units
for the systems studied.

In Fig. 3, the speaker is provided with a brain that includes a set of cognitive control processes acting on a vocal tract through
different articulators. We denote this set of articulators globally as M (for Motor). The vocal tract then produces a sound wave, from
which the listener has to infer the communication object by means of an ear allowing perception of the sound and a brain that
includes a set of auditory processing capabilities. We denote this set globally as S (for Sensory), with O, being the object inferred by
the listener. Finally, communication success is defined by the condition Os=0, and denoted by C=1.

To summarize, in this speech-communication situation

« the path from Os to M represents the speaker's production task,

« the path from M to S is the articulatory-to-acoustic transformation resulting from the physics of sound creation and transmission,
« the path from S to O, represents the listener's perception task, and

» C is the communication success condition, simply defined as O, =Os.

3.1.2. COSMO and the “internalization” hypothesis

We now present the COSMO model for speech communication and language emergence. The COSMO acronym also represents
the five variables around which the basic structure of the model is built (see Fig. 3). In COSMO, communication (C) is a success
when an object Og in the speaker's mind is transferred, via sensory and motor mechanisms S and M, to the listener's mind, where it is
correctly recovered as O;.

The central hypothesis of the COSMO model is that a communicating agent, which is both a speaker and a listener, is able to
internalize fully the communication situation described previously (see Fig. 3) inside an internal model (see Fig. 4).

Firstly, the agent can take both roles, listener and speaker, and therefore contains both motor and sensory subsystems. Secondly,
the agent has acquired by learning some knowledge about the articulatory-to-acoustic transformation performed by the environment.
When it is internalized, it takes the form of an internal forward model, allowing the agent to predict the sensory consequences of
motor gestures. Finally, the communication condition is also internalized, with the agent having two internal representations of an
object, linked by a system that verifies whether they refer to the same object. This “internalization” hypothesis therefore results in an
architecture combining

» a motor system able to associate communication objects Os with motor gestures M,

» an auditory system able to associate communication objects O, with auditory stimuli S,

 a sensory—motor link able to associate motor gestures M with auditory stimuli S (providing an internal model of the articulatory-to-
acoustic transformation), and

« a fusion system able to associate the communication objects in both the motor (Os) and auditory (O,) branches through C.

The C variable is interpreted somewhat differently in Figs. 3 and 4. Although it corresponds to the success of the communication
between two agents in the first case, it is treated as an internal variable of the cognitive architecture of an agent in the second case.
As explained below, the latter form is used for the coherence variable (Bessiere, Mazer, Ahuactzin, & Mekhnacha, 2013; Gilet, Diard,
& Bessiére, 2011; Pradalier, Colas, & Bessiere, 2003) that enables an agent to perform a fusion of the information available in both its
motor and auditory branches.

This internalization hypothesis could be discussed within the framework of general cognitive theories of social communication and
human evolution (Baron-Cohen, 1997; Tomasello, Carpenter, Call, Behne, & Moll, 2005) (see also Moore, 2007 for similar views
about internalization, expressed in a control theory framework).

Communicating Agent

Fig. 4. Schema of the communicating agent model.
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An agent with this cognitive architecture possesses a model of the entire communication situation and is therefore able to perform
both production and perception tasks within an integrated perceptuo-motor architecture. The internalization hypothesis provides, as
we show below (Section 3.3), a basis for the unification of various theories of speech communication.

3.2. A Bayesian implementation of COSMO

3.2.1. From a conceptual model to a computational model

The first step in our simulation program is to propose a computational implementation of COSMO sensory—-motor agents. This is
done in the Bayesian programming framework. Applying Bayesian modeling, particularly when dealing with sensory-motor
behaviors, finds its justification in the fact that any model of a real phenomenon is by nature incomplete (Lebeltel, Bessiere,
Diard, & Mazer, 2004): there are always hidden variables that influence the phenomenon and are however not taken into account in
the model. Thus, the use of classical logic quickly finds its limits and Jaynes (2003) proposed the use of probability theory as an
alternative to logic for reasoning about incomplete and uncertain knowledge. In this framework, the subjective interpretation of
probability theory allows the programmer to specify in a rigorous and precise way incomplete and uncertain knowledge of the
sensory—-motor agent, to propose learning and interaction processes and to simulate them by automated processes of probabilistic
inference.

Bayesian modeling provides a mathematical framework that allows comparative assessment of cognitive theories, by embedding
them within a common mathematical framework based on probabilities. Such comparisons are more and more widespread in
cognitive science; see for instance the recent works on causal inference and probability matching strategies in multimodal perception
(Kording et al., 2007), or on theoretical comparison of memory models (Myung & Pitt, 2009). This is why Bayesian programming is at
the heart of the present work for comparing various kinds of theories and simulations — though no assumption is done in this paper
about the view that Bayesian computations could be indeed at work in the human brain.

In Bayesian programming (Bessiére et al., 2013; Lebeltel et al., 2004), one specifies knowledge of a sensory—-motor agent as a
joint probability distribution over variables of interest (typically motor, sensory and internal variables). This joint probability distribution
is generally broken down into a product of simpler distributions, using Bayes' rule and conditional independence hypotheses. Once it
is defined, this knowledge can then be used, with sensory—-motor behavior being defined as a conditional probability distribution
computed from the joint distribution. For example, given the values of some sensory variables, what is the probability distribution over
the motor variables? The term to be computed is called a question, one that is to be answered using Bayesian inference. We
describe the mathematical bases of this framework in Appendices A.1-A.3.

The Bayesian model of COSMO is a direct translation of the conceptual cognitive architecture of Fig. 4, which can be interpreted
as the structure of a Bayesian Network model. We define five variables M, S, Os, O, and C, where

* M represents the motor gestures that an agent is able to produce,

» S represents the auditory stimuli that an agent is able to perceive,

* Og and O, represent the communication objects (when the agent takes the speaker and listener point of view, respectively), and

» C represents the internalization of the communication success condition and will allow the fusion of motor and auditory branches
(it is a Boolean variable that is frue (denoted by the value 1) when O, =Os and false otherwise).

We then define four subsystems:

» The motor subsystem is defined as a conditional probability distribution P(M | Os): given an object to communicate, this is the
probability distribution over the speaker's motor gestures.

» The sensory—-motor subsystem is defined as a conditional probability distribution P(S | M): given a motor gesture, this is the
probability distribution over the corresponding auditory stimuli.

» The auditory subsystem is defined as a conditional probability distribution P(O, |S): given a sensory stimulus, this is the
probability distribution over the objects that can be inferred by the listener.

» The fusion subsystem of motor and auditory branches is defined as a conditional probability distribution P(C | Os O.): given
objects Os and Oy, this is the probability distribution over the successful communications.

The COSMO Bayesian model is the joint probability distribution P(Os M S O, C), defined by
P(Os M 'S O. C)=P(Os)P(M | Os)P(S IM)P(O. | S)P(C | Os O). M

The mathematical assumptions behind the above equation are described in Appendix A.2
In the remainder of this paper, two of the five terms of this decomposition will have a fixed definition:

* P(Og), the prior distribution over objects Osg, is assumed to be a uniform probability distribution (which is just a helpful assumption
that a speaker talks about each talkable object with equal probability).

* P(C | Os O.), the fusion system, is defined by a Dirac probability distribution: P([C=1]|Os O,) is 1 if and only if Os=0,, and is
0 otherwise.
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The motor, sensory—-motor and auditory subsystems will be defined differently for the various simulation experiments that we
describe below. For the moment, assume that they are associated with mathematical forms, so that the joint probability distribution of
Eq. (1) is fully defined: it contains all the agent's cognitive knowledge about the communication situation.

3.2.2. Using the computational model for solving communication tasks

After the joint probability distribution of Eq. (1) is defined, production and perception tasks can be defined as questions about this
joint probability distribution (see Appendix A.3 for further details). In both tasks, the agent will activate the fusion system by setting
C=1,; i.e., ensuring that motor and auditory branches both relate to the same communication object.

In production tasks, we compute probability distributions over motor gestures, given an object to communicate about. This is an
inference path from Og to M in the Bayesian network of Fig. 4. In probabilistic terms, it involves computing a distribution over motor
gestures given an object [Os=0;] and the activation of the fusion system [C=1]; i.e., the probabilistic question
P(M |[Os = o;][C = 1]). Bayesian inference, from the joint probability distribution of Eq. (1), leads to

P(M |[Os =0/][C=1]) « P(M |[Os = 0i]) %P(S IM)P(OL=0i]1S). (2

The symbol “«” denotes proportionality: it just means that we omit a normalization factor in the equation, see Appendix A.3 for
further explanation.

In perception tasks, we compute probability distributions over objects, given an input sensory signal. This is an inference path from
S to O, in the Bayesian network of Fig. 4. In probabilistic terms, it involves computing a distribution over objects given an auditory
stimulus [S=s] and the activation of the fusion system [C =1]; i.e., the probabilistic question P(O |[S =s][C =1]). Bayesian
inference, from the joint probability distribution of Eq. (1), leads to

P(OL [[S=s][C=1]) * PO [[S=s]) 2P(M|[Os=O)P(S = s] M). ©)

The next section interprets these two complex probabilistic formulations and shows that they allow a computational expression of
the main theoretical trends in the speech production and perception literature.

3.3. Probabilistic unification of motor, auditory and sensory—-motor theories of speech communication in COSMO

3.3.1. Nature of the content of communication in speech communication theories

A key question in speech science concerns the nature of the reference frame of communication, with three major frameworks
being motor, auditory, and sensory—-motor theories of speech communication.

Motor theories consider the reference frames for speech communication as gestures. This results in speech-production models
conceived as combinations of articulatory gestures able to express the context-dependent variability of speech, without explicitly
taking into account the auditory consequences of a motor event (the Articulatory Phonology framework, Browman & Goldstein, 1986,
1989, 1992). On the speech-perception side, the Motor Theory of Speech Perception (Liberman & Mattingly, 1985) suggests that
perceiving speech amounts to perceiving gestures, supposed to be more invariant than sounds (notice that the “other” motor theory
provided by the Direct Realist Theory of speech perception does not introduce this assumption, considering that perceiving speech is
perceiving gestures for general reasons associated with direct realism as a general process, Fowler, 1986). This necessitates an
inverse model that allows retrieval of the speaker's intended motor gesture from the received acoustic stimulus.

Auditory theories consider that the reference frame for speech is auditory. In the case of speech perception, proponents of
auditory theories assume that speech perception involves auditory or multisensory representations and processing, with no explicit
call on knowledge coming from speech production (Diehl, Lotto, & Holt, 2004). In the case of speech production, the target would be
a region in the auditory space (Guenther, Hampson, & Johnson, 1998). Auditory theories therefore place the inverse problem on the
production side and limit perception to a signal-processing task.

Sensory—motor theories have emerged recently for both speech perception and production. They usually consider auditory frames
as the core of communication, but they include a sensory—motor link inside the global architecture, to deal with feedback adjustment
processes in speech production (Guenther, 2006) or speech perception in complex or adverse conditions (Skipper, Van Wassenhove,
Nusbaum, & Small, 2007; Schwartz, Basirat, Ménard, & Sato, 2012a).

We consider the COSMO model as a general, sensory—motor computational model of speech communication; i.e., a proposed
computational implementation of sensory—motor theories (Moulin-Frier, Laurent, Bessiere, Schwartz, & Diard, 2012). We now show
how, by disabling portions of the COSMO model, we can recognize implementations of either motor or auditory theories.

3.3.2. COSMO implementation of motor theories
Firstly, in motor theories, an agent only has knowledge about its motor representations® and the articulatory-to-acoustic
transformation (through the P(M | Os) and P(S | M) distributions, respectively). We disable the direct connection between S and O,

2 Henceforth, in the framework of Bayesian programming of sensory—-motor agents (Lebeltel et al., 2004; Bessiére et al., 2008) the term “representation” will refer to an instantiation of
external variables or a probabilistic relation between variables.
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by setting the distribution P(O, | S) as a uniform probability distribution, which encodes a complete lack of knowledge. Answers to the
production and perception questions are therefore simplified in the following way.

Consider first a speech production task P(M |[Os = 0;][C = 1]). Setting P(O; | S) as uniform in (2) yields a simple expression for
speech motor control; namely, P(M |[Os = o;]): what is the speaker's usual action for a given object 0,? (see, for example, Browman
& Goldstein, 1986.)

Consider next a speech perception task P(O |[S = s][C = 1]). Setting P(O, | S) as uniform in (3) yields a more complex expression;
namely, >P(M |[Os = O ])P([S = s] | M). This question can be interpreted as a probabilistic “motor theory of speech perception”. First,
it is important to notice that motor terms are involved in the equation, whereas the auditory subsystem P(O, | S) is not, which provides a
“speech specific’ way to process sensory inputs. Interpreting the probabilistic equation in algorithmic terms provides intuitive
understanding of the relationship to the classical Motor Theory of Speech Perception. Indeed, summing over M the P([S = s] | M) term
implements in a Bayesian framework the search for motor values able to lead to the perceived sensory input s (this provides a
probabilistic equivalent to the “inversion” or “analysis by synthesis” processes). This “search” is weighted by a P(M |[Os = 0;]) factor,
which can be conceived of as an “articulatory decoder”, that assumes that invariance for a given object o; lies in motor rather than
auditory cues (see, for example, Liberman & Mattingly, 1985). This should make clear that “deterministic” inversion in which ad hoc
terms are introduced to guide inversion towards a specific articulatory configuration (see a recent review in Demange & Ouni, 2013) is
replaced here by a Bayesian implementation in which no specific configuration is selected, but all configurations are considered for
articulatory decoding, and weighted by their probability of providing the corresponding auditory input.

3.3.3. COSMO implementation of auditory theories

Secondly, in auditory theories, an agent only has knowledge about its sensory representations and the articulatory-to-acoustic
transformation (through the P(O;, | S) and P(S | M) distributions, respectively). We disable the direct connection between Og and M
by setting the distribution P(M | Os) as a uniform probability distribution. Again, this simplifies the answers to the production and
perception questions.

This process leads to auditory theories of speech perception, for which Eq. (3) simplifies into P(O; |[S = s]), which involves direct
inference without any motor knowledge, typical of these theories (see, for example, Diehl et al., 2004).

For auditory theories of speech production, Eq. (2) simplifies into >sP(S | M)P([O. = 0;] | S). This estimates, through auditory
inference, the gestures that the speaker should produce to make the listener perceive the appropriate object. This corresponds to
associating auditory targets, defined by the term P(O. =0;] | S), with the inversion of the forward model, defined by the term
P(S | M), for estimating appropriate motor commands (see e.g. Guenther et al., 1998).

3.3.4. COSMO implementation of sensory—motor theories

Finally, sensory—-motor theories take into account the information provided by both motor and sensory subsystems. In other
words, neither subsystem is disabled. Bayesian inference therefore vyields Egs. (2) and (3); namely,
P(M |[Os =0/])2sP(S |M)P([OL =0;] | S) for speech production tasks and P(O. |[S=s])2uPM |[Os= O )P([S=s]|M) for
speech perception tasks.

These can be seen as combinations of the two previous inferences; i.e., fusions between purely perceptual and purely motor
inferences. This corresponds to a sensory—motor theory that takes the computational form of products of both motor and auditory
processes (Guenther, 2006; Schwartz, et al., 2012a; Skipper et al., 2007).

In the case of production tasks, given an object o; to communicate, the chosen motor gesture is then a trade-off between a usual
gesture for the speaker (the P(M |[Os=o0;]) term) and a gesture that has a good communicative value for the listener (the
2sP(S IM)P([OL = 0j] | S) term).

In the case of perception, the object is inferred using information both from the purely auditory decoder (the P(O, |[S = s]) term)
and from the motor decoder by inversion (the >y P(M |[Os = O, DP(S = s] | M) term).

3.3.5. COSMO as a unifying framework where the sensory—motor link is key

These results are summarized in Table 1. Each cell in the figure contains a computational expression, which can be seen as a
probabilistic implementation of major theories of speech communication. In other words, COSMO is a unifying Bayesian model: it
implements sensory—motor theories of speech production and perception when it is fully instantiated, and it can implement auditory or
motor theories of speech production and perception when some components are deactivated. This allows a rigorous association
between computational expressions and theories of speech communication, which constitutes the first contribution of our work.

It is important to understand that all the variants of COSMO (i.e. the “auditory”, “motor” or “sensory—motor” one) have a number of
properties in common:

« they are all able to operate as either a speaker or a listener, depending on the question asked to the model, that is a “production”
task based on computing P(M |[Os = o;][C = 1]), or a “perception” task based on computing P(O, |[S = s][C = 1]);

« they all contain and exploit knowledge about the relationship between gestures M and sounds S, either for perception, or
production, or both; this knowledge is based on the link P(S | M);

« in addition, to this direct link, there is a secondary link through the variable C, which enables us to fuse perceptual and motor
information inside both the production and perception tasks, provided that such information is available, which depends on the
type of model implemented in COSMO;
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Table 1

Synthesis of the three main theoretical frameworks in speech production and perception. Light arrows represent the corresponding information flow in the cognitive agent model (not to be
confused with the direction of probabilistic dependencies in the model). Probabilistic inferences are derived from the unified Bayesian model. Typical references to the litterature are
provided at the top of each cell.
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« this is where the difference arises between the various instantiations of COSMO. Indeed, in our formalism, no direct knowledge is
available on the link between objects and gestures in auditory theories: it is useless in perception, and indirect, mediated by
sounds, in production; and no direct knowledge is available on the link between objects and sounds in motor theories: it is useless
in production, and indirect, mediated by gestures, in perception.

4. Reference: deictic games
4.1. Deixis as the background for reference

For the experimental simulations that we present in later sections, we consider deixis as a possible bootstrap for the reference
requirement described in the introduction. Deixis is the ability to show an element of the environment to someone else, pointing to it
by the hand, the face, the eye or any posture of the body, and then to manage the shared attention. This behavior could have
provided a bootstrap to a prelinguistic reference, which would allow, combined with vocalizations, evolution toward a meaningful
language (“Vocalize-to-Localize”, Abry et al., 2004). This refers to the ability of a number of prehuman primates to “show with the
voice” by adapting their calls to different kinds of danger in the environment (Cheney & Seyfarth, 1982; Manser & Fletcher, 2004).
Deixis also seems to be a necessary developmental step toward language, with deictic gestures usually appearing just before a
child's syntax acquisition and vocabulary expansion (Goldin-Meadow & Butcher, 2003; Volterra, Caselli, Capirci, & Pizzuto, 2005).
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4.2. Deictic games

Following the language-game paradigm introduced by Steels (1997) and applied to phonological systems (Berrah, 1998; Berrah
et al., 1996; de Boer, 2000; Oudeyer, 2005), we simulate societies of evolving communicating agents by exploiting language games,
based on deixis, that we call “deictic games” and that may be considered as a variant of Steels' “haming games” (Steels, 1994, 1997).
These kinds of interaction games leading to evolution and convergence of a society of agents towards a stable communication set
whose properties are compared with those of human languages have been the topic of a very large set of studies, including in a
number of cases Bayesian paradigms as in the present work (e.g. Griffiths & Kalish, 2007; Hurford, 1989; Oliphant, 1996; Zuidema &
Westermann, 2003); see a review of this kind of algorithms applied in the field of speech sound systems in Oudeyer (2006, 2013).

In a deictic game, two agents communicate in front of a given “object” on which their attention is jointly focused via a deictic
process of some kind, such as pointing. We drastically simplify the simulations by assuming that deixis is perfect, in that agents
perfectly identify objects that they are facing with their communicating partner, and there is no ambiguity about objects. This would
obviously not be the case in realistic settings, where complex notions about categories (“a fruit” vs. “an apple”) or specifiers (“a red
apple”) refer to highly complex discovery mechanisms (see, for example, Dominey, 2007; Kemp & Tenenbaum, 2008; Roy, 2005;
Tenenbaum, Kemp, Griffiths, & Goodman, 2011). However, this simplification is in line with the topic of our work — namely, phonology
— and it allows us to focus our simulations on the “adequacy” and “parity” requirements. Fig. 5 illustrates a deictic game.

Let us define N as the number of agents in the society, Q as the number of objects on which the agents can share attention and
TransMS : M-S as the articulatory-to-auditory transformation. That is, each time an agent produces an articulatory configuration
meM, both agents involved in the deictic game will perceive the corresponding auditory stimulus s = TransMS(m)eS. The COSMO
Bayesian model of Eq. (1) is embedded in each agent, with no prior knowledge in the motor and auditory subsystems. That is, the
P(M | Os) and P(O; | S) distributions are largely uncertain, being, for example, uniform or Gaussian with a large variance. These
distributions will be refined by learning from the data collected during their interactions. In our simulations, all agents in the society
will embed the same implementation of COSMO; namely, just one of the motor, auditory or sensory-motor theories (defined
in Section 3.3 and summarized in Table 1).

The simulation loop for a deictic game has these steps, which are repeated until there is convergence of the speech code:

» random selection of a first agent from among the N agents of the society, which receives the “speaker” status,

» random selection of another agent from among the N-1 remaining agents of the society, which receives the “listener” status,

+ random selection of an object o, from among the Q objects, received by both agents as an input, via the assumed shared-attention
mechanism,

« the speaker selects a motor gesture meM in order to name o;, according to its production behavior (defined in Table 1), and

emits it,

the simulated environment propagates this motor gesture, by the articulatory-to-acoustic transformation, resulting in an acoustic

signal s = TransMS(m), possibly distorted by simulated acoustic noise, and

» both agents update their knowledge according to their respective experience, with the speaker updating its motor prototypes
based on its knowledge of the object o; and the motor gesture m, and the listener updating its auditory prototypes based on its
knowledge of the object o; and the acoustic stimulus s.

Mathematical details about the last step of this simulation loop, allowing the update of the joint distribution terms in (1), are
described in Appendix A.4.

Computationally, the shared-attention mechanism will act as a learning supervision signal, indicating to agents that C=1 (i.e., Os=0O,
in Fig. 3) before each interaction throughout the simulation process. At the end of the simulation, to assess the phonological system
emergence, we will test whether the learning process has converged to a state where agents can ensure the success of communication
(C=1) using only vocal production and perception tasks (i.e., without requiring further use of the shared-attention mechanism). This will
be the basis of the evaluation of our simulation results in the next section. Let us recall that setting the internal variable C in Fig. 4 to 1 is
not an assumption about communication but a way to fuse the auditory and motor branches inside each agent.

The end of a simulation is defined empirically, by when the agent productions for each object do not evolve further. In all the
following simulations, 200,000 deictic games were sufficient to ensure convergence.

Speaker Environment Listener
C

7

A A Ny
OI. ~V\‘,\ AN OS’
B2 g2 G
AL A
\ pYd
S + M-

Fig. 5. Schema of two communicating agents involved in a deictic game.
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5. Parity: conditions of speech code emergence

We now turn to the experimental simulations with COSMO. We argued in the introduction that there were three requirements for
communication; namely, reference, parity and adequacy. The current section focuses on parity and the conditions for ensuring
speech-code emergence. This constitutes the second contribution of our work.

5.1. Framework and assumptions

5.1.1. Objectives

Our aim is to compare three versions of the communicating agent model; namely, the motor, auditory and sensory—motor versions,
as summarized in Table 1.

The first objective in this comparative evaluation of the three kinds of models is to test the emergence of efficient codes; i.e., codes
that are similar for all agents of the society and well understood by all, enabling communication to take place in good conditions.

The second objective is to assess whether the predictions of “substance-based” theories — namely, the Dispersion and Quantal
Theories (see Section 2.2) — might be derived from simulations as properties of the emerging code. That is, we compare the
dispersion and quantal properties of the emergent codes with the predictions of the corresponding theories.

5.1.2. A simplified unidimensional articulatory-to-acoustic model

We consider a simple unidimensional instantiation of the model, which allows the extraction of the general properties of motor,
auditory and sensory-motor behaviors. The motor and sensory variables, M and S, are defined as integer values in the range
[-10,...,10]. The articulatory-to-acoustic transformation TransMS : M-S is a sigmoid function parameterized in a way that allows
changes from a purely linear function to a step function (see Fig. 6). It is defined as

“)

TransMS(m) = Spay (arctan(NL (m—D)))

arctan(NL Mp,ax)

where S;ax = Mmax = 10 according to the M and S range specifications.

5.2. Methodology

5.2.1. Agent specification

In each simulation, we consider a society of N agents interacting in an environment containing Q objects. Q is a fixed parameter,
specified explicitly for each simulation.

Each agent implements a COSMO Bayesian model as defined by Eq. (1), in which three terms remain to be clarified; namely, the
motor subsystem P(M | Os), the sensory—motor subsystem, P(S | M) and the auditory subsystem P(O, |S). They are defined within
regularly discretized motor and acoustic spaces.

P(M | Os) is a family of motor prototypes, associating with each object o; a Gaussian probability distribution parameterized by its
mean u; and standard deviation o; (the distributions are univariate because of the simplified sensory—motor space that we consider in
this section).

P(S |M) is a family of sensory—motor relationships, associating with each motor value m a Gaussian probability distribution
parameterized by its mean TransMS(m) and standard deviation ca,. We therefore consider that the agents already know the
articulatory-to-acoustic transformation (assuming, for example, a previous sensory—motor exploration) with an uncertainty encoded

by Oag-

10 ~
5+
7N
50
—10L
-10 -5 0 5 10
M

Fig. 6. Articulatory-to-acoustic transformation from Eq. (4). This sigmoid function, which maps motor gestures M to the resulting sensory stimuli S, is parameterized by NL, which allows
changes from a purely linear function (NL =0.01) to a step function (NL =5). Parameter D sets the position of the inflection point (D=0 for all curves here).
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P(O. | S) is defined as a classifier using Gaussian auditory prototypes P(S | O;). Under the assumption of a uniform prior for the
objects O,, Bayesian inference yields

P(S 1[0 =0i])
P(OL=0]]|S)=——c—+—". 5
(10.=0l 19 ="5" 5570, (5)
Auditory subsystems are therefore parameterized by the means and standard deviations of the Gaussian auditory prototypes
P(S 1[0 =0i]).

In a given simulation, all agents implement the same version of the COSMO model: they are either motor, auditory or sensory—
motor, as defined in Table 1.

Initially, the Gaussian prototypes P(M | Os) and P(S | O.) encode a complete lack of knowledge, with centered means and large
standard deviations®. A simulation then comprises a series of deictic games. During a deictic game concerning object o;, the
simulated environment propagates the proposed motor gesture m according to TransMS, adding a simulated Gaussian noise with
standard deviation og,,, resulting in an acoustic stimulus s. At the end of a deictic game, the speaker and listener agents,
respectively, update the parameters of their motor and auditory Gaussian prototypes, according to the observed (o;,m) pair for the
speaker, and the (o;,s) pair for the listener.

5.2.2. Evaluation

All along the course of simulations, we proceed to an evaluation to assess how the system evolves and possibly converges
towards efficient communication. Evaluation is an independent process, different from the deictic games involved in training. During
deictic games in training, communication always occurs as intended, with O, =Os. Therefore, since the reference requirement is
supposed to be perfectly solved through deixis, the listener agent knows which object is designated by the speaker and does not try
to recognize the object on the basis of the auditory stimulus S. However, in the evaluation process, we assess how communication
occurs when it is no more ensured by deixis. This involves a perception stage for evaluation purposes. This allows computation of the
evolution of the recognition rate in the society during a simulation. In this perception step, the listener agent infers the object
designated by the speaker using its perception behavior, ignoring the “true” object identity provided by the nonverbal deixis behavior.
The recognition rate in the society is obtained by the mean value of this perceptual inference process.

We also evaluate the ability of the simulation to allow the emergence of properties of the Dispersion and Quantal Theories
described in Section 2.2.

To evaluate the Dispersion Theory, we compute the final dispersion of the auditory prototypes, using the Dispersion Theory
formula (Liliencrants & Lindblom, 1972):

Q-1 Q 1\2
G= XY X (—) , (6)
i=1j=i+1 di,j
where Q is the number of elements in the phonological system considered (here, the number of objects), and d;; is the auditory
distance between two elements i and j, taken as the distance between the means of auditory stimuli produced by the whole society in
the last deictic game of a given simulation. In this formula, a lower G indicates a higher global dispersion for the emergent system.
Note that this equation is used here only as a measure of the ability of COSMO simulations to enable dispersion to emerge from
deictic games and is never part of the agents' knowledge.

To evaluate the Quantal Theory, we study the effects of the nonlinearity in the articulatory-to-acoustic transformation TransMS,
with respect to both robustness toward environmental noise and the structure of the emerging code. We expect to observe an
increase in robustness with sharp nonlinearities (which favor the existence of phonetic contrast) and a dependence of sound
categories on the position of the nonlinearity, with one category on each side of the natural boundary provided by the nonlinearity.

5.3. Results

5.3.1. Conditions for emergence of a speech code

Fig. 7 shows the state of agent societies at the end of three typical simulations, one for each version of the COSMO model. In this
first set of simulations, the articulatory-to-acoustic transformation TransMS is linear and the environmental noise og,, is low.

Fig. 7 (top) shows the results at the end of a simulation of “motor” agents; namely, a simulation whereby agents produce gestures
according to the motor production behavior of Table 1. We observe that the motor prototypes of the agents have evolved relatively
randomly during the learning process and that the recognition rate stays at the chance level (around 25%). Because the agents do
not use auditory knowledge, and therefore have no way to link their productions in front of each object with the auditory inputs they
receive from the others, there is no chance that such a society would enable the emergence of a structured and efficient speech code
to designate objects.

Fig. 7 (middle) shows the results at the end of a simulation of “auditory” agents; namely, a simulation whereby agents produce
gestures according to the auditory production behavior of Table 1. We observe that the motor prototypes for each object are well

3 Infinitely large standard deviations would result from applying a uniform distribution, as used in the theoretical reasoning in Section 3.3. Here, however, we want these distributions to
evolve progressively from a lack of knowledge toward acquired knowledge, thereby peaking these distributions. Therefore, the initial standard deviations are large but finite, and they
typically decrease during simulations.
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Fig. 7. Typical simulations of “motor” agents (A), “auditory” agents (B) and “sensory—motor” agents (C). Each simulation involves four agents, whose final motor prototypes are shown in
the four panels. Each panel shows P(M|[Os = 0;]) for each of the four possible objects o, The lower plots represent the evolution of successful communication rates as a function of
simulated time.
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contrasted and that an agreement between agents has emerged. Moreover, the recognition rate has increased during the simulation.
Using auditory production behavior, agents prefer to produce gestures that result in auditory stimuli favored by their auditory
subsystem; namely, those that have a high probability in the presence of o; and a low probability in the presence of other objects (5).

Fig. 7 (bottom) shows the results at the end of a simulation of “sensory—-motor” agents; namely, a simulation whereby agents
produce gestures according to the sensory—motor production behavior of Table 1. We still observe a dispersion of motor prototypes
for each object with an agreement between agents. In this case, however, prototypes are optimally distinguishable, leading rapidly to
a 100% recognition rate. Compared with the auditory production behavior, adding the motor subsystem enables a reduction in the
variability of the chosen motor gestures. This is caused by the P(M |[Os = o;]) factor in the sensory—motor speech-production
behavior (see Table 1), which results in firmer anchoring of speech production behavior around selected prototypes.

Therefore, both auditory and sensory—motor agents can provide the conditions for the emergence of a speech code, with a higher
level of communication efficiency for the latter case. However, motor agents do not provide the conditions for the emergence of a
speech code that enables communication.

5.3.2. Communication and dispersion

In the following, we analyze only those behaviors that lead to the emergence of speech codes; namely, the auditory and the
sensory—motor behaviors. The articulatory-to-acoustic transformation remains set for the linear case. The question here is to assess
possible differences between auditory and sensory—-motor agents in terms of convergence, communication and dispersion.

Fig. 8 shows how environmental noise o, affects the recognition rate for both behaviors. We observe that the sensory—motor
behavior is more robust, providing better communication scores all along the noise range. This is in line with the reduction of the
variance of motor prototypes observed in Fig. 7.

Fig. 9 shows how environmental noise o, affects prototype dispersion. We observe that the sensory—-motor behavior increases
dispersion (i.e. Lindblom's measure decreases) as the noise increases, until o£,, = 2, which suggests that there could exist an
optimal dispersion for this noise value. Above this level, the dispersion begins to decrease (i.e., Lindblom's measure increases) for
both models. Globally, once again, the sensory—-motor model, producing more dispersion than the auditory one, appears to lead to
more efficient communication systems.

We next analyze the stability condition for our simulations; i.e., the time horizon when the agents' learning processes cease
modifying their motor prototypes. Consider, for simplicity, the case of a linear articulatory-to-acoustic transformation, without noise,
where s = TransMS(m) = m. Starting from Eq. (2), with P(M | Os) being uniform and P(S | M) being a Dirac distribution with S=M, the
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Fig. 8. Recognition rate as a function of the environmental noise o¢,, at the end of simulations of auditory and sensory—-motor agents. Ten independent simulations were run for each
condition, for which means and standard deviations were computed. Each involved four agents and four objects. For all simulations, 64, was set to a low value (0.1).
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Fig. 9. Logarithm of Lindblom's dispersion as a function of the environmental noise og,,,. Low values correspond to high dispersions, as defined by Eq. (6). Conditions are the same as for
Fig. 8.
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auditory production behavior can then be rewritten as
P(M |[Os =0oj][C=1])

P(S |[OL=0/])
Y00, P(S |[OL =)y

Stability occurs when the successive motor gestures drawn according to this distribution do not change the auditory prototypes
P(S | 0Oy), which are the only updatable terms in this behavior. This happens when
2 P(S[[OL=0])*U(S), (7)

0;e0

where U(S) is the uniform probability distribution over S.

Intuitively, a solution would be to distribute the prototypes to cover the whole auditory space and therefore to disperse them as
observed in Fig. 7 (middle).

A similar kind of derivation as that leading to Eq. (7) shows that the sensory—motor production behavior tends to select motor
gestures in regions that produce sensory stimuli leading to the clear identification of objects; i.e., regions where the auditory classifier
of Eq. (5) gives distinguishable results.

In summary, simulations with both auditory and sensory-motor agents naturally result in the optimization of auditory dispersion in
the sense defined by Lindblom (Liljencrants & Lindblom, 1972). However, sensory—motor populations result in higher communication
efficiency and higher resistance to noise compared with auditory agents. This seems to be due to a reduction in the prototype
variance (that is, motor prototypes are more precisely defined since they are better anchored by the motor component).

5.3.3. Quantal aspects

To assess the effects of the nonlinearity in the articulatory-to-acoustic transformation TransMS of Eq. (4), we now consider
simulations with two objects. Fig. 10 shows how the nonlinearity strength affects the recognition rate for high environmental noise.
We observe that it considerably improves the auditory behavior performance, because the nonlinearity reduces the variance of the
auditory prototypes in stable regions, thereby making them more distinguishable. With respect to sensory—-motor agents, there is no
such improvement because the variances are already low in this case.

Fig. 11 shows how a nonlinearity shapes the emerging code, with respect to Stevens' Quantal Theory. To address our aim, we
consider a strong nonlinearity (NL = 5) and vary the position D of the inflection point in the motor space (see (4)). That is, we vary the
position of the unstable region.

We observe that motor gestures chosen by agents are strongly correlated with the position of the inflection point D, as predicted
by the Quantal Theory, in that they occupy both sides of the nonlinearity boundary. Such a structure will indeed make the code
efficient, and both the auditory and sensory—motor behaviors are able to use their auditory subsystems to let such an efficient
structure emerge.

Moreover, whereas variances of motor prototypes are almost null for the auditory agents, they are much larger when considering
sensory—motor agents. The reason is that the sensory—motor behavior tends to produce sensory stimuli which are dispersed enough
to allow the communication success. All the motor gestures in the stable regions are therefore good candidates, hence the variability
across various simulations, especially observed in large stable regions. It is not the case when considering the auditory behavior,
which rather tends to produce stimuli optimally spanning the whole sensory space (see (7) and the corresponding analysis).

In summary, these simulations are in line with the major predictions of the Quantal Theory: nonlinearity improves communication
and shapes the selected sound system, producing a natural sensory boundary exploited by the system with one prototype on each
side of the boundary.
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Fig. 10. Recognition rate as a function of the nonlinearity strength NL, at the end of simulations of auditory and sensory—-motor agents. Ten independent simulations were run for each
condition, from which means and standard deviations were computed. Each involved four agents and two objects. In all simulations, oz,, was set to a rather high value (5), and 6,4 was set
to a low value (0.1).
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5.4. Conclusion

The following results emerge from these simulations.

5.4.1. Sensory-motor parity is required for the emergence of a speech code

The first and major lesson of these simulations is the impossibility of a speech code emerging from a society of motor agents. The
only difference between motor and sensory—-motor agents is that for the former, the auditory value of gestures is never evaluated in
terms of the efficiency of allowing the communicating partner to understand the message (see Table 1). This shows that with respect
to our interaction paradigm, a sensory—motor link is needed for the emergence of efficient speech codes. This validates the parity
requirement. Without a capacity to associate what they hear from others with their own motor gestures and to select adequate
gestures in relationship with the sensory information they provide to their interlocutor, agents are unable to converge to a
conventional code. This can be related to a remark by Schwartz, Boé, and Abry (2007), who pointed out that motor theories do not
provide any prediction about phonological systems in human languages, which is a serious limitation on these theories. The crucial
point there is that the characterization of the perceptual nature of speech gestures is completely lacking in the motor theory, and this
produces a weakness which has been often discussed and debated, but which becomes insuperable when dealing with the
prediction of sound systems in human languages. One can attempt to add a perceptuo-motor component in motor theories — see e.g.
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Studdert-Kennedy and Goldstein (2003). But this implicitly modifies the very concept of gesture, which becomes a perceptuo-motor
rather than a pure motor concept, and therefore deeply changes the Motor Theory itself.

A second important, and less expected, result is that the sensory—motor behavior provides agents with increased robustness with
respect to distinguishability and environmental noise. We found that all simulations with sensory—-motor agents outperformed those
with auditory agents in terms of global communication efficiency.

5.4.2. Dispersion and quantal theories emerge from deictic games in COSMO

A third result concerns the ability of these simulations to allow the emergence from the deictic game paradigm of regularities
associated with the Dispersion and Quantal Theories.

With respect to dispersion, we showed that it might appear as a condition for convergence in the case of auditory agents. We also
observed that dispersion may be reduced if communication does not require it to be high, such as with low noise or with a strong
reduction of variance using sensory—motor agents. This is in line with further refinement of the Dispersion Theory, in which Lindblom
proposed that dispersion might be “sufficient” instead of “maximal’, and even “adaptive” to the conditions of communication
(Lindblom, 1986, 1990).

With respect to quantal behaviors, they are obtained as a consequence of nonlinearities in the articulatory-to-acoustic
transformation, for both auditory and sensory—-motor agents, and they result in vocal codes that naturally exploit optimal sensory—
motor “niches” provided by these nonlinearities, with the consequence that communication is globally favored relative to linear
situations.

These two theories can therefore be derived from communication in COSMO, provided that parity is ensured by a sensory—motor
link in auditory or sensory—motor agents. In this way, a basic level of adequacy is obtained in these simulations. The next section
describes how more realistic articulatory—auditory environments constrain adequacy in a richer way, leading to accurate predictions of
sound systems for human languages.

6. Adequacy: realistic predictions of phonological systems

We now consider a final series of COSMO simulations, in which we further specify the model and compare its predictions with
actual data about sound systems for human languages, as presented in Section 2. This will constitute our third contribution.

For this aim, we capitalize on the results of the previous section that showed that motor agents do not let an efficient
communication system emerge from deictic games. Furthermore, while both auditory and sensory—-motor agents lead to coherent
systems, sensory—-motor agents are more efficient in terms of dispersion, convergence speed and robustness to noise. We will
therefore continue by considering only the sensory—-motor version of COSMO, for which the parity requirement is solved most
efficiently.

In the simulations of the previous section with sensory—motor agents, parity was achieved via the internal link between motor M
and auditory S variables inside the agent's architecture. Reference was ensured by deixis. However, no proposal about adequacy
has yet been introduced. The objective in the current section is to make precise proposals about perceptuo-motor adequacy, to derive
quantitative simulations from these proposals and to assess these simulations in the light of quantitative data about phonological
systems. The evaluation of these simulations will therefore be based on an analysis of the structures of emergent phonological
systems and systematically compared with the properties of human sound systems presented in Section 2.

We still consider that “objects” are directly phonological, in that we do not consider here the higher levels of language (words and
morphemes) and their combination into syntactic and semantic sequences. In short, objects are phonological units. In this section, we
consider three major types of units; namely, vowels, stops and syllables.

6.1. Framework and assumptions

6.1.1. Adequacy in the frame-content theory of speech emergence

Our basis for the generation of adequate sensory—motor stimuli lies in the “Frame-Content Theory” (FCT) (MacNeilage, 1998),
which suggests an evolutionary path from ingestive mandibular cyclicities to articulated speech. According to FCT, speech would
have exploited the ability to produce orofacial movements arising out of the cyclical use of the jaw during ingestion. A crucial point is
that cyclical jaw movements naturally produce alternations between open and closed positions of the vocal tract, which result in
highly contrasted acoustic configurations with consonants linked to the closed periods with high jaw, and vowels to the open periods
with low jaw. This ensures the auditory adequacy of the articulatory modulation. This first stage, which would provide the basis for
precursors of syllables, is called the “frame”. At this stage, the open and closed portions are not independent, being characterized by
similar tongue and lip settings while only the jaw varies, thereby producing the frame. The “content” comes next, in which other
articulators (such as tongue and lips) become controlled to alternate between independent vowels and consonants. Interestingly, this
“frame-then-content sequence” is also present during language acquisition, where babbling (a jaw cycle coupled with simple
vocalizations) is a necessary step during child development, with the later development of more complex control involving the other
articulators (MacNeilage & Davis, 2000, 2001).
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In computational terms, FCT constrains the way that speakers control their vocal tract (i.e., constrains the variations in M) and the
way that consonants and vowels are coordinated, beginning with a strong dependence (frame) and evolving progressively toward
independence (content).

6.1.2. Realistic motor variables: the Variable Linear Articulatory Model (VLAM)

We use a realistic computer model of the vocal tract called VLAM (Boé&, 1999), derived from the Maeda (1989) articulatory model.
This latter model was conceived from a statistical analysis of 519 vocal-tract sagittal contours, obtained from radiographic
measurements and tomographic studies of sentences pronounced by a French speaker. These contours were segmented into 28
sections, from the glottis to the lips, from which the corresponding vocal-tract areas were calculated. This analysis provided seven
parameters that explained 88% of the data variance and that may be interpreted in terms of phonetic commands corresponding to the
jaw (J), tongue body (TB), tongue dorsum (TD), tongue tip, lip protrusion, lip separation height (LH) and larynx height. These
parameters can be linearly combined to reconstruct the sagittal contour and the area function, from which formants and a transfer
function can be computed. Sound is then generated from the formant frequencies and bandwidths.

Each configuration can also be characterized by the so-called constrictive information from the area function, comprising the
minimal area section (constriction position X;), the minimal area size (constriction area A;) and the area of the lip section (lip area A)).

To simplify the simulations, we use only four of the motor parameters — namely, J, TB, TD and LH — with the other parameters set
to a neutral position. This approximation is sufficient to generate most of the possible variability in vowels and stops.

6.1.3. Realistic sensory variables: formants and weighted Euclidean distances

As mentioned previously, the nature of auditory representations of speech sounds was debated widely in the 1970s and 1980s.
Despite the difficulty of extracting formants automatically from spectra, several perceptual experiments have pointed out the specific
role of formants in the determination of vowel quality (for example, see Carlson, Granstrom, & Klatt, 1979; Klatt, 1982), and most
simulations of phonological systems have considered formants as an adequate characterization of the auditory input. Formants are
then expressed on a perceptual scale, typically linear at low frequencies and logarithmic at high frequencies. We use the Bark scale
defined according to the formula proposed by Schroeder, Atal, and Hall (1979) and used in many studies on auditory perception.

Then, because we describe probability distributions in terms of Gaussian laws, we need to define auditory distances. Classically,
the Euclidean distances between the formants F1, F2 and possibly F3 of two sounds are considered as providing an adequate
representation of the perceptual distance between the two sounds. However, unweighted distances, which give the same importance
to all formants, do not take into account spectral masking phenomena, according to which low-frequency components decrease the
perceptual role of higher-frequency components. This led to the proposal (Schwartz et al., 1997a) that F1 should have typically three
times the weight of an “effective second formant” grouping of the roles of F2 and F3, and that in the computation of this effective
second formant F2 would be twice more important than F3. That is, F1 would have three times the weight of F2 and six times the
weight of F3. These weights were shown to produce the best agreement between simulations of vowel systems in human languages
and the major trends in vowel system inventories.

In the present study, instead of systematically varying the weights in search of the best simulations, which could be very costly
considering the dimensionality of our models, we will systematically compare two kinds of distances; namely, unweighted distances
for F1, F2 and F3 in Barks and weighted distances (with relative weights (1), (1/3) and (1/6) for F1, F2 and F3 in Barks, respectively).

Note that while FCT is proposed as an explicit landmark in human evolution toward language, we do not assume that there is any
specific discontinuity in motor and auditory processes between nonhuman and human primates. For auditory variables, this is widely
accepted (Pickles, 2012). For vocal tract anatomy and control, it is more widely debated (for example, see Lieberman, 1984, 2012 vs.
Boé et al., 2007, 2013), but this is beyond the scope of the present paper.

Taken together, VLAM and FCT, in addition to the corresponding choices of auditory parameters and distances, enable
specification of the sensory—-motor COSMO agents from which all simulations of vowel, stop and syllable systems are derived, as
described in the following sections.

6.2. Vowel systems

6.2.1. Objectives

In this first series of simulations, we consider vowel systems. Changing the unidimensional articulatory-to-acoustic model of the
previous section to the multidimensional motor and sensory spaces of VLAM produces a large increase in simulation complexity.
Therefore, a preliminary objective is to check that simulations of COSMO agents in the VLAM framework are tractable.

We study two types of vowel systems, involving either three or five vowels. Data about human languages presented in Section 2
show that three-vowel systems are most often of the type /i,a,u/, and five-vowel systems are most often of the type /i,e,a,o,u/
(statistics for UPSID, Maddieson, 1984; Vallée, 1994; Schwartz et al., 1997b). Therefore, one objective is to check that these systems
emerge from COSMO simulations in VLAM.

For this objective, the relative dimensions of the sensory space must be specified adequately. As mentioned above, we shall
compare two versions; namely, with equal weights for F1, F2 and F3 and with relative weights (1), (1/3) and (1/6), respectively, for F1,
F2 and F3.

A final objective is to test how dispersion depends on communication noise, to extend the results obtained in the previous section
with the unidimensional model.
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Fig. 12. A dictionary of motor configurations with the jaw in a neutral position yields an acoustic space. (A) Shown as a projection onto the (F1, F2) plane. (B) Shown as a projection onto
the (F2, F3) plane. The point clouds are 100,000 motor configurations randomly drawn to correspond to open configurations, which we consider as vowels.

6.2.2. Methodology

Agent specification: The motor variables M are discretizations of the (J, TB, TD, LH) parameters, and the sensory variables S are
discretizations of the (F1, F2, F3) parameters (in Barks). Because all variables are discrete, we can reduce the information loss by a
probabilistic definition of the articulatory-to-acoustic transformation. Therefore, we randomly draw a large number of values in the
motor space and compute, using VLAM, the corresponding values in the acoustic space, thereby compiling a dictionary. Then, for
each motor command region, we compute the (supposedly) unimodal distribution of the related acoustic stimuli in the space of the
first three formants, using the dictionary. This provides a P(S | M) conditional distribution, modeling the articulatory-to-acoustic
transformation performed by the environment, that we use to infer the sensory stimulus heard by the listening agent, given the motor
gesture produced by the speaking agent during a deictic game.

To study the emergence of vowel systems, we consider only open configurations of the vocal tract. To do this, we compute
probability distributions from a dictionary for which the jaw parameter J is fixed to a neutral position and where both A; and A, are
greater than 0.15 cm?. We therefore use three of the articulatory parameters in this section; namely, TB, 7D and LH (the jaw
parameter J will be used for the consonant and syllable simulations in subsequent sections). The acoustic space covered by motor
configurations in the vowel dictionary is shown in Fig. 12. Notice that the limitation induced by fixing the jaw parameter J to zero does
almost not change at all the available acoustic range, and particularly does not decrease the available F1-range: TB and TD are
sufficient to enable tongue configurations with all F1 values for vowels.

Probability distributions: Let us recall that in COSMO, three subsystems have yet to be defined; namely, the motor, sensory—motor
and auditory subsystems.

The motor subsystem is expressed as

P(M | Os)
—P(TB TD LH | Os)
=P(TB | Os)P(TD | Os)P(LH | Os).

This last equality expresses a conditional independence hypothesis; namely, that 7B, TD and LH are considered independent when
the object identity Og is given. Each term of this product is defined as a univariate Gaussian distribution, initialized with a centered
mean and large variance and then learned via simulation data. Learning of these distributions occurs when an agent is a speaker
during a deictic game, as detailed in Section 4.2.
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The sensory—motor subsystem P(S | M) corresponds here to P(F1 F2 F3 | TB TD LH) and is learned from the dictionary before
the simulation starts (thereby considering, as for the unidimensional simulation, a previous sensory—motor exploration).

Finally, the auditory model P(O, | S) is expressed as a function of the auditory prototypes P(S | O,) (see (5)), which correspond
here to P(F1 F2 F3 |O,) probability distributions. As for the motor model, they are products of learned univariate Gaussian
distributions P(F; | O.), where data are collected by the agent from its experience as a listener in deictic games, as opposed to the
speaker's experience for the motor subsystem.

Deictic games: In each deictic game, the speaker agent emits a single vowel, for which, as mentioned above, we make no
distinction between semantic and phonological categories. We study the emergence of three- and five-vowel systems by running
simulations with either three or five objects. To shorten the convergence time, we use two agents running 150,000 deictic games in
each simulation.

The simulation parameters also include the simulated environmental noise in each formant dimension, such that
oeny = (6F1,0F2,0F3). It is important to note the interpretation of these parameters: the more significant the noise in a given auditory
dimension, the less useful will this dimension be for generating dispersion and ensuring efficient communication. We therefore use
the noise parameters to control the relative significance of each auditory dimension in the simulation. In a first set of simulations
(called “1-1-17), we use equal values for 64, o2 and g3, which means that all formants (in Barks) have the same significance in the
simulations. However, in line with the proposal that F1 should have a greater weight and F3 a smaller one (Schwartz et al., 1997a),
we also consider a second set of simulations (called “1-3-6"), in which 6r> = 36£1 and og3 = 66£1, which means that F1 has three
times more weight than F2 and six times more weight than F3. For both of these sets, the value of o¢; is used to control globally the
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Fig. 13. Vowel classification. (A) The classification system used to process simulation results automatically in the (F1, F2) formant space. Each of the seven grid cells displays the
corresponding phonetic symbol. (B) An example of a three-vowel simulation that converged to a [1 3 7] system, corresponding to an /i,a,u/ vowel system. The caption at the top of the panel
indicates the noise values, in Barks, for each formant dimension. The caption in the middle of the panel maps the system elements (here, the vowels) to the ellipse colors. In this particular
example, it means that the vowels /i/, /u/ and /a/ (classification code 1-3-7), respectively, correspond to the green, red and blue ellipses (color: g-r-b). (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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communication noise level, to test its role in relation to dispersion.

Evaluation: Evaluating phonological systems in emergence simulations is a complicated task, usually done manually (Berrah
et al., 1996; de Boer, 2000; Oudeyer, 2005). Here, however, we classify emergent vowel systems automatically, using a grid in the
(F1, F2) formant plane, as shown in Fig. 13 (top). This grid defines seven categories. For a given simulation, the vowel associated
with an object is classified according to this grid, using the mean in (F1, F2), of the auditory stimuli produced by the whole society for
that object. This is performed during the last of the deictic games, before addition of the environmental noise. Fig. 13 (bottom) shows
an example of a system with three objects, after 150,000 deictic games, in the “1-3-6" set with a baseline noise o£1 = 0.4. Here, there
was convergence to a [1 3 7] system in our classification scheme. That is, to designate objects, agents in this simulation would use
vowels that approximate an /i,a,u/ vowel system.

Although using only seven categories might appear simplistic, it is sufficient for our goal of evaluating the global coherence of our
results in terms of world-language data and is compatible with the manual notation used in comparable studies (Berrah et al., 1996;
de Boer, 2000; Oudeyer, 2005). Note that with seven categories, there are 84 (or 462) possible systems for three-object (or five-
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Fig. 14. Typical systems obtained in the “1-1-1” noise ratio simulations. Same convention as in Fig. 13(B). Top line (A-C): three-vowel simulations. Bottom line (D-F): five-vowel
simulations. Left column (A, D): low noise level, with 61 = 6£2 = o3 = 0.1. Center column (B, E): medium noise level, with 6£1 = 62 = 63 = 1.6. Right column (C, F): high noise level, with
0F1 =0Fp =0F3 =2.6.

Table 2
Simulation results for the “1-1-1" noise ratio experimental condition, in the three-vowel case. For each base noise value (cg7), 10 independent simulations resulted in 10 final vowel
systems. The columns sum to 10.

System Value of 654
0.1 0.6 1.1 1.6 241 26 3.1 3.6 41
fi,a,0/ 5 3 5 1
fi,a,el 3 3 1
le,a, ol 2 1 1 1
fi,a,u/ 3 5 9 5
le,a,u/ 1 2 2
le,e,ol 1 2 7
le,s,0/ 3 2
/i, , of 2
le,o,0/ 5 3
le,e,al 5 6

le,e.el
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Table 3
Simulation results for the “1-1-1" noise ratio experimental condition, in the five-vowel case. For each base noise value (c¢1), 10 independent simulations resulted in 10 final vowel systems.
The columns sum to 10 except when, for clarity, systems that would appear only once have been omitted.

System Value of 654
0.1 0.6 1.1 1.6 21 2.6 31 3.6 41
fi,e,a,a,u/ 4 1 2 2
fi,e,e,a,u/ 4 5 6 2
li,e,a,o,u/ 1 1 3
fi,e,a,a,uf 1 1 5 2
fii,e,a,ul 3 1
/e,e.e,a,ul 2
/e,e.e,a,ul 2
/e,e,0,9,0/ 2
/e,e.e,a,0/ 1 1
le.ee,0,0/ 7 5 3
le.ee.eal 1 5 5
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Fig. 15. Typical systems obtained in the “1-3-6" noise ratio simulations. Same convention as in Fig. 13(B). Top line (A-C): three-vowel simulations. Bottom line (D-F): five-vowel
simulations. Left column (A, D): low noise level, with 6r1 = 0.1,6£2 = 0.3,6r3 = 0.6. Center column (B, E): medium noise level, with 671 = 0.4,6r2 = 1.2,6r3 = 2.4. Right column (C, F): high
noise level, with 61 =0.9,6r2 =2.7,6¢3 =5.4.

object) simulations.

6.2.3. Results

Noise ratios “1-1-1": For this noise ratio condition, with the same Gaussian noise 6r1 = 6r> = 6£3 in each formant dimension, o/
varies from 0.1 to 4.1 Barks in increments of 0.5, with nine possible values altogether. We capture simulation variability by running 10
independent simulations, for each of these nine noise values. We study both three-vowel and five-vowel systems, for a total of 180
experimental simulations of 150,000 deictic games. Each simulation leads to a final vowel system, characterized in our classification
system by an [x y Z] triplet and presented in the following results as a vowel triplet.

Typical systems obtained for three-object and five-object simulations are shown in Fig. 14, for low (6g1 = 0.1 Barks), medium (1.6)
and high (2.6) noise values. The distribution of obtained systems over the 10 simulations per condition is reported in Tables 2 and 3.

Experimental results, both for three-vowel and five-vowel simulations, reproduce the variation of dispersion that we have already
observed in Section 5.3.2. At low noise values, a small dispersion suffices to make items distinguishable, such as /i,a,o/, /i,a,e/ and
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Table 4
Simulation results for the “1-3-6" noise ratio experimental condition, in the three-vowel case. For each base noise value (o), 10 independent simulations resulted in 10 final vowel
systems. The columns sum to 10.

System Value of 64
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fi,a,ol 5 8 6 2

li,e,ol 5

le,a,of 1 1

li,a,u/ 1 3 7 7 10 6 9 9

le,a,u/ 1 3 4 1

li,e,al 1
Table 5§

Simulation results for the “1-3-6" noise ratio experimental condition, in the five-vowel case. For each base noise value (c¢1), 10 independent simulations resulted in 10 final vowel systems.
The columns sum to 10.

System Value of 6¢q
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
fi,e,a,a,u/ 2 3 4 7 7
li,e,ea,uf 1 2 1 1
li,e,a,o,u/ 3 4 7 9 7 5
li,e,a,a,u/ 5 3 2 1 1 3 5
lijeaul 1
fi,e,a,a,u/ 1
fi,i,a,a,u/ 2 3

le,a,ol for three-vowel systems. At intermediate noise values, the dispersion has to be higher. Finally, at high noise values, agents no
longer converge to an efficient system, and dispersion decreases, such as /e,s,a/ or /e,e,a/ for three-vowel systems.

We further observe that systems with suboptimal dispersion dominate at low noise levels, whereas the optimally dispersed system
/i,a,u/ prevails at medium noise levels in three-vowel simulations. However, /i,e,a,o,u/ is poorly represented in five-vowel simulations.
The reason is that the application of an equal noise value to each formant allows good use of the F3 dimension to be made. This
results in other vowel systems, such as /i,e,e,a,u/ for or4 = 0.1, exploiting the dispersion in F3 rather than in (F1, F2) (see Fig. 14,
bottom, left). Note that this is not in agreement with data from UPSID.

Noise ratios “1-3-6": Because the five-vowel simulations with a noise ratio “1-1-1" are not coherent with the preferred human
system /i,e,a,o,u/, we now consider the “1-3-6” noise ratio set. In this experimental condition, the standard deviation ¢4 varies from
0.1 to 0.9 Barks in steps of 0.1, with 6> = 36F1 and or3 = 66F1.

Typical systems obtained for three-object and five-object simulations are shown in Fig. 15, for low (6rq = 0.1 Bark), medium
(61 = 0.4) and high (61 = 0.9) noise values. The distribution of systems obtained over the 10 simulations per condition is reported in
Tables 4 and 5. Note that the three-vowel simulations still yield the human-preferred three-vowel system /i,a,u/ for a large range of
medium noise values.

In contrast to the “1-1-1” set, a medium noise level in the F1 dimension corresponds to a high noise value in the F3 dimension,
which therefore cannot be used efficiently. For this case, dispersion occurs mainly in the (F1, F2) plane. Moreover, because F1 is less
noisy than F2, items are more able to disperse in F1 than in F2. We observe that the preferred five-vowel system in world languages,
li,e,a,0,u/, emerges widely in our simulations.

6.2.4. Conclusion

Simulations with COSMO in the VLAM framework with three-dimensional motor and sensory variables appear tractable. The fact
that emergent three-vowel and five-vowel systems are in line with data from UPSID is not surprising, considering that similar results
had already been obtained in previous work (for example, see Berrah et al., 1996; de Boer, 2000; Oudeyer, 2005). Of interest in these
simulations is their ability to specify the range of experimental parameters that lead to realistic predictions of vowel systems. We can
identify two major points.

Firstly, while the /i,a,u/ system emerges for both the “1-1-1” and “1-3-6" noise conditions, only the “1-3-6" set obtains the five-
vowel /i,e,a,0,u/ system, which is consistent with previous works (Schwartz et al., 1997a). This ratio will therefore be used for the next
set of simulations.

Secondly, as for the unidimensional model in Section 5.3.2, the sensory—motor behavior in COSMO yields “adaptive” rather than
“maximal” dispersion, with items being just sufficiently dispersed in the acoustic space that correct distinctions occur. Dispersion is
function of the noise level and the number of objects. A medium value of 6¢1 (around 0.4) produces both maximal dispersion and the
most realistic simulations.

We now extend these investigations to involve less-studied phonological units, for which very few computational simulations are
available; namely, stops and syllables.
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6.3. Stop consonant emergence

6.3.1. Objectives

Whereas simulations of vowel systems have been widely studied, almost no quantitative simulation of the emergence of
consonant systems exists in the literature. This is the focus of the present section, where we consider stops, which involve almost-
closed configurations of the vocal tract. The objective is to obtain simulations of three-stop systems in which /b,d,g/ emerges as a
favored system, in agreement with the statistics from UPSID presented in Section 2 — though recall our remark in Section 2 about
voiced vs. unvoiced plosives: /p,t,k/ is actually the favored system, but we concentrate here on predicting the place of articulation of
stop consonants, the (bilabial, coronal, velar) series being the most frequent one.

In Fig. 2, we showed that whereas /b,d,g/ are well differentiated in the (F2, F3) plane, other stops, such as the pharyngeal /¢ /, are
well contrasted in F1. The /b,d,g/ stops are produced with a rather high position of the jaw, whereas pharyngeals necessitate a rather
low position of the jaw, which is necessary to pull the tongue toward the pharynx at the back of the vocal tract. In a recent study of
stop systems, Schwartz et al. (2012b) proposed to exploit the constraint provided by FCT, in which stops correspond to the high-jaw
part of the syllabic jaw cycle, with vowels corresponding to the low-jaw part. This is tested in the present study, where we contrast two
sets of simulations, in which the jaw is free (“free-jaw” simulations) or biased toward high positions (“high-jaw” simulations). For the
first set, pharyngeals should provide good configurations in terms of auditory dispersion, which would tend to make them prominent in
simulations, contrary to UPSID data. For the second set, pharyngeals should occur only rarely, because the high position of the jaw is
unfavorable to them, in line with FCT.

6.3.2. Methodology

Agent specification: In these simulations, the jaw is added to the motor space, which now contains the whole set of four variables
(J, TB, TD and LH). Furthermore, to simulate stops, instead of conserving open vocal tract configurations, as for vowels simulations,
we now conserve only the almost-closed vocal tract configurations from the dictionary, with a constriction area of between 0.05 and
0.15 cm? (a minimal area is required for VLAM to be able to compute formants).

Probability distributions: The motor subsystem becomes

P(M | Os)
=P(JTB TD LH |Os)
=P(J | Os)P(TB | Os)P(TD | Os)P(LH | Os).

Considering the factor P(J | Og), which is specific to stops, two implementations are considered. In the “free-jaw” condition, jaw
configurations are allowed to vary over the whole range of the J variable. The “high-jaw” condition corresponds to the hypothesis,
derived from FCT, whereby consonants are realized in the high-jaw part of the syllabic jaw cycle. In the “high-jaw” condition, we
consider that P(J | Os) = P(J), i.e. that the jaw configuration is independent of the communication object. P(J) is defined as a
Gaussian distribution with a high initial mean and a low initial standard deviation.

The sensory motor subsystem P(S | M) is learned from the dictionary as for the vowel emergence simulations, except that the
dictionary now corresponds to closed configurations of the vocal tract. The auditory subsystem is learned as for the vowel
simulations.

Deictic games: Deictic games function as for the vowel simulations. We run three-object simulations, with two sets of simulations:
“free-jaw” and “high-jaw”. Considering noise ratio conditions, in agreement with the results of vowel simulations, we keep only the “1-
3-6" noise ratio set.

Evaluation: Consonants emerging from the simulations are classified according to the eight classes displayed in Fig. 2; i.e.,
according to their constriction places. For a given simulation, the stop associated with an object is classified according to this grid,
using the mean of the X, values (the position of the constriction inside the vocal tract, see Fig. 16, top), for the stimuli produced by the
whole society for that object, in the last of the deictic games. Fig. 16 (bottom) shows the acoustic space for stops computed by VLAM,
with the constraints defined above and the dispersion ellipses corresponding to each class. The /b,d,g/ system corresponds to
classes [1 3 5].

6.3.3. Results

As for the vowel emergence simulations, we ran 10 independent simulations for each ¢4 value, from 0.1 to 0.9 in 0.1 increments.
We set 6r, and or3 according to the “1-3-6" noise ratio. Fig. 17 shows three typical simulations, for low, medium and high noise, in
both “free-jaw” and “high-jaw” conditions. Tables 6 and 7 show the complete results, including the consonant systems that emerged
from the 180 independent simulations.

We observe that in the “free-jaw” condition, /b,d,g/ emerges at a low noise level (notice that the dental /d/ may appear instead of
the alveolar /d/, but the difference between dentals and alveolars is seldom made in phonological descriptions) but pharyngeal stops
tend to appear at medium and high levels, as expected, considering the high F1 values that make them excellent candidates for
acoustic distinctiveness. In the “high-jaw” condition, the /b,d,g/ consonant system is strongly preferred, with pharyngeal consonants
being discarded from the simulations by the “high-jaw” constraint.
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Fig. 16. Stop classification. (A) Stop classification, according to the constriction position in the vocal tract. Adapted from Fig. 5a of Schwartz et al. (2012b). (B) Acoustic consequences of
the eight stop classes in the (F1, F2) and (F2, F3) planes used in our classification scheme. 1: bilabials /b/, 2: dentals /(;1/, 3: alveolars /d/, 4: palatals / J/, 5: velars /g/, 6: uvulars /c/, 7:
pharyngeals / § / and 8: epiglottals /2 /.

6.3.4. Conclusion

Whereas vowel simulation results were in line with previous studies, our simulations of the emergence of stops are, to our
knowledge, a novel contribution. These simulations involve a realistic model of orofacial control of the vocal tract, and they lead to the
emergence of /b,d,g/, provided that a constraint on the jaw position, derived from FCT, is introduced into the model.

Of major interest in these simulations is their production via a model that used the same parameters as for the vowel emergence
simulations, in terms of the noise levels and their ratios. Globally, the whole computational architecture involving COSMO, VLAM and
FCT, with the same range of experimental parameters (including the communication noise added in F1, F2 and F3), provides
coherent simulations for both vowel and stop systems. We shall now present preliminary experiments dealing with the association of
stops and vowels in syllables.

6.4. Syllable emergence

6.4.1. Objectives
The two previous studies showed that plausible vowel and stop systems emerge from deictic games involving sensory—motor
COSMO agents equipped with a VLAM articulatory-to-acoustic model, within the framework of FCT, and with a coherent set of
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Fig. 17. Typical systems obtained in stop simulations. Same convention as in Fig. 13 B. Top line (A, B, C): “free-jaw” simulations. Bottom line (C, D, E): “high-jaw” simulations. Left column
(A, D): low noise level, with 6r1 =0.1, 62 = 0.3, 63 =0.6. Center column (B, E): medium noise level, with 6g1 =0.4,6r2 = 1.2,0r3 = 2.4. Right column (C, F): high noise level, with
orF1 =0.9,0r2 =2.7,0,3 =5.4.

Table 6
Simulation results for stop simulations, in the “free-jaw” condition. For each base noise value (1), 10 independent simulations resulted in 10 final consonant systems. The columns sum to
10.

System Value of 64

0.1 02 03 0.4 05 06 07 08 0.9
/b,d,g/ 4 6 1 1 1 1 1
ibd.g 2 1 2 2 3 1 1
/b.b,d/ 2 2 1 1
b, d/ L
Ib.d, 3! 1 1 1 1
bd, S/ 1 3 4 1 2 4 2
bg,§/ 3 1 1 2 2
Ib.b,g/ 2
bJ ¢/ 2 1 1 3
i.d, g 1 2 1 1
Ib,d,d/ 1
b, d.d/ 1 3 3
b.d, 31 2 L
iw.d,d/ 1

experimental parameters (including communication noise). In this final study, we test the emergence of systems of stop/vowel
syllables as a whole.

The first challenge is theoretical. The objective here is to study whether syllabic sequences could lead directly to the emergence of
stops and vowels compatible with existing data about stop and vowel systems, rather than performing simulations for the separate
emergence of vowels and stops as in the previous simulations.

The second challenge is computational. Mixing stops and vowels induces a higher level of complexity, related to the increased
dimensionality of the syllable motor and sensory spaces. The study of syllable emergence is a first step toward dealing with complex
sound sequences in COSMO.
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Table 7
Simulation results for stop simulations, in the “high-jaw” condition. For each base noise value (o¢1), 10 independent simulations resulted in 10 final consonant systems. The columns
sum to 10.

System Value of o1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/b,d,g/
fo,b,d/
/bd, J/
/b,b,d/
/b.b.gl 1 1 2 2
Ib.b, J/ 1

/b, le al 2 3 2
/o, ¥.9/ 1 1

i.d, 31 1

/b,g,9/ 2
b, d.d/ 1
/b.d.d/ 1
b3,/ 1

w.d.d/ 1

A a AN
N
N
-
N

A N2 W
N

Of course, it is possible to conceive syllables as sequences of completely independent sensory—motor units. In this case,
independence would simply remove the complexity and lead to simulations in which syllabic systems are just the combination of pure
vowel and stop systems. That is, the study of a three-syllable system would lead to arbitrary combinations of the stop set /b,d,g/ with
the vowel set /i,a,u/ (e.g. /bi,da,gu/ or /bu,da,gi/).

On the contrary, we should assume that there are links between stops and vowels, as described by FCT. FCT postulates that
syllables emerge from cyclic movements of the jaw, producing alternations of stops when the jaw is up and vowels when the jaw is
low. In the first stage of FCT, articulators other than the jaw do not move much within the jaw cycle. This results in preferred
combinations called “co-occurrences”, in which the stop and the vowel have no specific displacement of the tongue (central vowels
with labial consonants, as in /ba/), or both are front oriented (front vowels with coronal consonants, as in /di/) or both are back
oriented (back vowels with dorsal consonants, as in /gu/). MacNeilage and Davis (2000) show that these co-occurrences are favored
in human languages (and also in infants' first words — though see Giulivi, Whalen, Goldstein, Nam, & Levitt, 2011; Nam, Goldstein,
Giulivi, Levitt, & Whalen, 2013). We therefore aim to test this in our final set of simulations.

6.4.2. Methodology

Agent specification: The sensory—motor variables in the syllabic model are simply the concatenation of the stop and vowel
variables. In the motor space, this leads to four articulatory variables for the stops M¢ = (J¢, TBc, TD¢,LH¢), and three for the vowels
My = (TBy,TDy,LHy) (the jaw parameter Jy is set to a neutral position as for the vowel model). In the auditory space, this leads to
three variables each for the stops (F1¢, F2¢, F3¢), and vowels (F1y, F2y, F3y).

Probability distributions: In agreement with FCT, we specify a “syllable production” model in which the stop motor configuration
depends on the vowel motor configuration (see Fig. 18). To produce a syllable, we first reuse the vowel production model (see
Section 6.2). That is, given an object o;, a motor gesture my, is selected according to the sensory—motor behavior. This motor gesture
is fed as an input to a modified version of the consonant production model, where the motor model P(M¢ | Os) is refined into
P(M¢ | My Os), so that the gesture chosen to produce the preceding vowel influences the consonant gesture. The mathematical
details behind this syllable production model are provided in Appendix A.5.

We describe the knowledge expressed in P(M¢ | My, Os) intuitively. The jaw is probabilistically constrained so that it tends to be in
a neutral position for vowels and in a closed position for consonants (as in the “high-jaw” condition). This leads to a jaw half-cycle that
is in line with FCT. The other articulators are constrained so that large movements during the jaw half-cycle are less probable than
small movements.

Although this model appears to describe a vowel-consonant succession, we should note that probabilistic dependencies do not
correspond to any assumption about temporal properties.

Deictic games: Deictic games function as for the vowel and stop simulations. We ran three-object simulations. Considering noise
ratio conditions, and in agreement with the results of the vowel and stop simulations, we used only the “1-3-6” noise ratio set with
medium noise, thereby allowing a good dispersion for vowels and consonants (cg1 = 0.4).

Evaluation: Syllable system classification corresponds to the concatenation of vowel and consonant classifications, as described
in the corresponding Sections 6.2.2 and 6.3.2. A syllabic system is therefore composed of three elements, one per object, with each
associating one of seven vowel classes (see Fig. 13) with one of eight consonant classes (see Fig. 16). Therefore, 56 configurations
are possible for each syllable in the simulated system.
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[Os=0] ~M, »S, —[0,=0]
> m, Vowel production
I\fv B
[0g=0] ——M, ~S,—[0,=0]
“‘\'mc Consonant production

Fig. 18. Sensory—motor behavior of syllable production. The internalization of the communication condition [C = 1] is represented in an equivalent way by [Os = 0] and [0, = o;]. Top:
vowel production model of Section 6.2. Bottom: consonant production of Section 6.3, except for the motor subsystem receiving an additional input from vowel production, leading to a
P(M¢c|MyOg) conditional distribution.

Table 8
Three-syllable simulations, for a “1-3-6" noise ratio. Syllable system occurrences emerging from our simulations with
a motor constraint between the vowel and consonant realizations.

System Number of occurrences

w

/da,di,bu/
/ba,di,bu/
/ba,di,gu/
/da,de,bu/
/da,bi,gu/
/ba,de,gu/
/da,bi,bu/
/ga,di,bu/
/ba,di,go/

A A A A NN ON

6.4.3. Results

We ran 33 independent simulations®, which resulted in various final syllable systems. We show, in Table 8, their relative frequency
of occurrence.

The results do show co-occurrence effects, because associations between stops and vowels in emergent syllabic systems are not
random (see Table 8). Note that whereas stop configurations are defined by the place of articulation in the vocal tract, the
corresponding formant patterns may differ because of vowel context, as shown in Fig. 19.

The /ba,di,gu/ system, described by MacNeilage and Davis (2000) as having a preferred “co-occurrence” pattern, is well
represented in the simulations.

However, the co-occurrences obtained are not wholly satisfactory. Indeed, the /da,di,bu/ system is predominant. This system is
predicted by a total dependence model for which the syllable is obtained by a pure movement of the jaw for each vowel within /i,a,u’.
In fact, for the VLAM model, it has been shown (Serkhane, 2005; Serkhane, Schwartz, & Bessiere, 2005, 2007; Vilain, Abry, Badin, &
Brosda, 1999) that with a pure upward jaw movement, an /a/ configuration leads more often to a /d/ than a /b/, that an /i/ clearly leads
to a /d/, and that a /u/ leads more often to a /b/ than a /g/ (the lips being quite close during /u/). These results would appear to
contradict the predictions of FCT. However, Vilain et al. (1999) show that patterns of co-occurrences can be highly dependent on the
vocal tract morphology for a given speaker.

In these simulations, the dispersion force induced by the sensory—motor behavior is insufficient to overcome the motor constraint.
This results in a /da,di,bu/ system that is well dispersed with respect to its vowel but less so with respect to its consonant. Reaching a
/g/ configuration from an /a/, which would allow the emergence a well-dispersed system, appears to be impeded by the motor
constraint, because going from one to the other necessitates a large movement by the tongue dorsum (7D). We also observe the
absence in the simulations of two syllables, /du/ and /gi/, which involve large movements of the tongue body 7B in the front-back
dimension. Their absence is therefore in line with FCT.

Globally, the lack of independence between vowels and stops in the simulations, caused, in the model, by the initial strong
dependence between motor parameters for the vowel and the stop (and expressed by the factor P(M¢ | My Os)), results in a pattern
of dependence that is well captured by the relationship between the F2 values for the stop and the vowel. This relationship is
displayed in Fig. 20, in which we plot the F2 value for the vowel and for the consonant for the final configurations obtained in the
whole set of the 33 simulations, that is grouping altogether 99 “syllabic” plosive-vowel configurations. This relationship is considered
in classical studies as a good indicator of the “coarticulation” mechanism according to which stops and vowels in adult speech are
always produced in a coordinated way (Sussman, Fruchter, Hilbert, & Sirosh, 1998). Therefore, this pattern of dependence is in
agreement with real data.

4 Clearly, this is insufficient for complete characterization of these simulations, which are therefore considered as preliminary. However, they give an outline of the global statistical
tendencies for the way that syllable systems can be shaped by the perceptuo-motor properties of the COSMO agents.
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Fig. 19. Syllable systems observed in our simulations, shown in the (F1, F2) plane for vowels and the (F2, F3) plane for consonants. Same convention as in Fig. 13 B. (A) /da,di,bu/. (B)
/ba,di,bu/. (C) /ba,di,gu/. (D) /da,de,bul. (E) /da,bi,gu/. (F) /ba,de,gu/. (G) /da,bi,bu/. (H) /ga,di,bu/. (I) /ba,di,go/.

Finally, it must be stressed that acoustic dispersion in the stop space does play a part, in addition to motor constraints, in well-
represented systems, including not only /ba,di,gu/, of course, but also /ba,di,bu/. In fact, for /ba,di,bu/, the two /b/ exemplars
correspond to different acoustic realizations (see Fig. 19, top, middle, (F2, F3) panel).

6.4.4. Conclusion

This section has shown preliminary results on syllable emergence using the COSMO model. This is the first time that such
systems have been simulated on VLAM. We show that it is possible to combine motor dynamic principles inspired by FCT with
acoustic dispersion principles implied by the sensory—motor production behavior.

The results are not wholly satisfactory, because the simulations do not give /ba,di,gu/ as the preferred set. There are several
possible reasons for this result, including not only the particular morphology of the VLAM simulator (possibly favoring /da/ instead of
/bal, Vilain et al., 1999) but also a suboptimal compromise between acoustic dispersion and motor constraints resulting from
modeling choices.

However, the simulations do provide systems that are dispersed (in terms of vowels, certainly, and with a reasonable dispersion in
stops) and that display patterns of co-occurrence more or less in line with data from the literature. Of course, much work remains to
be done, following these preliminary simulations, to provide a complete understanding of the emergence of syllable systems.
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Fig. 20. Plot of the second formant of the stop F2¢ as a function of the second formant of the vowel F2y, in the syllable systems resulting from our simulations. The diagonal line is not a
linear model obtained from regression but is the identity function, which would indicate complete dependence. Overall, this point cloud shows the pattern of dependence between F2y and
F2c.

7. General discussion
7.1. Contributions

Let us recall the two major objectives of this work: (1) attempt to simulate in a single integrated framework universals of vowel
systems, plosive systems and their associations in CV syllables; and (2) connect within this framework theories of speech sound
systems (e.g. the dispersion theory or the quantal theory) and theories of speech communication (e.g. auditory, motor or perceptuo-
motor theories). These objectives have been reasonably well fulfilled, thanks to three major contributions.

Our first contribution (Section 3) is mainly theoretical. We extract three basic requirements from a speech-communication
prototypical scenario, related to reference, parity and adequacy. The proposed COSMO model is based on an “internalization
hypothesis” that produces a unified framework for describing speech production and perception in a global cognitive architecture that
associates motor and auditory subsystems through a sensory—-motor link. In this framework, the so-called “motor” and “auditory”
theories of speech communication can be seen as simplifications of the general COSMO sensory—motor theory that internalizes the
whole communication situation. We show that the internalization hypothesis can be formalized in a Bayesian model that allows a
probabilistic expression of the computational issues involved in the main theoretical trends in the speech production and perception
literature (see Table 1).

Our second contribution (Section 5) deals with “parity” in speech communication, by extending the model to include a referential
evolutionary bootstrap for studying speech code emergence in societies of interacting COSMO agents. We use deixis as a plausible
prelinguistic communicative behavior. A comparison of simulation results based on the three COSMO versions (motor, auditory and
sensory—motor), implemented using simplified articulatory—acoustic spaces, confirms previous theoretical propositions about the
need to take auditory expectations into account if adequate phonological system predictions (Schwartz et al., 2007; Studdert-
Kennedy & Goldstein, 2003) are to be obtained. We show that within this framework, societies of “pure motor agents” do not allow the
emergence of an efficient and structured speech code, unlike auditory and sensory—motor agents. In addition, the sensory—motor
COSMO version leads to quicker convergence and “better” speech codes in terms of sound distinctiveness. Furthermore, Lindblom's
Dispersion Theory and Stevens' Quantal Theory appear to be grounded in more general principles of communication, in the sense
that neither distance optimization nor nonlinearity detection processes were included explicitly in the computational architecture.

Our third contribution (Section 6) deals with “adequacy” in speech communication and is based on realistic predictions about the
phonological systems of human languages in the “sensory-motor” COSMO model. Firstly, we confirm previous results about
adequate formant weights for auditory distances to obtain accurate predictions (Schwartz et al., 1997a). Although these weights were
proposed for vowel systems, we extend them to stops, showing that COSMO simulations, incorporating a jaw constraint in line with
FCT, also provide adequate predictions for stop systems. Conjoint predictions about vowel and consonant systems in a unified
model, i.e., one that uses the same structure and parameters, is a novel contribution to knowledge. Using this unified framework, we
extend COSMO to sequences in which vowels and consonants are interwoven into syllables, showing that a dynamical motor
constraint expressed as a probabilistic dependency between vowel and consonant productions leads to plausible, even if preliminary,
predictions about “co-occurrence” and coarticulation effects.

Altogether, these three contributions show the value of proposing a unified formal and simulation framework that can deal with
both online speech communication and the emergence of sound systems for human languages, thereby enabling comparisons
between evolutionary hypotheses and speech theory implementations with respect to world-language data and associated
phenomenological laws.
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7.2. Perspectives

Although the present implementation of COSMO capitalizes on specific theories about the emergence of speech and language,
such as the role of deixis for reference, the use of a mirror system for parity and the use of a frame-then-content scenario for
adequacy, the COSMO conception and formalization is independent of these specific assumptions, which should encourage both
extensions and alternatives. We now consider some of these possibilities.

7.2.1. Sensory—-motor spaces and compositionality

One perspective is to consider extending the domain of sensory—motor variables M and S, both spatially (the number and control
precision of the articulators involved) and temporally (the sequences within syllables or words).

In the articulatory domain, adding parameters for the tip of the tongue or the lip protrusion in VLAM would provide more accurate
predictions, including improving the production of rounded vowels such as /u/ or frontal consonants such as /d/. In the auditory
domain, considering other acoustic features such as signal intensity, acoustic burst or turbulence detection might allow the
emergence of vowel and consonant categories, without having to specify them explicitly in the model. It would also enable predictions
about other phonological categories, such as fricative sounds.

Any extension to manage temporal sequences, as we outlined for syllables in Section 6.4, involves consideration of
compositionality, which is not yet included in the model (De Boer & Zuidema, 2010). Indeed, simulations of syllabic systems should
take into consideration the fact that in human languages, vowel and consonants are combined into syllables in a compositional way,
in the sense that each vowel can be associated with each consonant of a given phonological system. Compositionality also seems to
appear at the phonetic level (Ohala, 1979; Clements, 2003a, 2003b), put forward as a so-called principle of the “Maximal Use of
Available Features”. According to this principle, if a given set of features has emerged, then all combinations of each feature value
are generally available in the system.

Such extensions will have to deal with the computational complexity implied by Bayesian inference. One way to manage the curse
of dimensionality is to involve motor synergies and motor primitives. Motor synergies allow some articulatory dimensions to be
merged into a single parameter, such as associating lip height and lip protrusion into a single lip-rounding parameter, as in Moulin-
Frier et al. (2012). Motor primitives enable a complex temporal trajectory, often highly dimensional, to be defined as an appropriately
parameterized function of time (Konczak, 2005). Further extensions could involve adding vision to audition in the sensory domain,
and hand to mouth in the motor domain. The role of vision in the emergence of phonological systems has been mentioned in previous
studies (Schwartz et al., 2007). Manual gestures could also play a crucial role in the emergence of reference, as we will discuss in the
next section.

7.2.2. Reference and syntax

In their present state, our simulations consider that reference is provided solely by deixis, which allows us to refer to objects in the
world. These objects are typically referred to by nouns, which are considered as pure phonological units in the present paper.
However, hand gestures can provide much more information than pure deixis, as illustrated by Arbib in his expanding spiral model
(Arbib, 2005a). A second set of perspectives might then extend the domain of reference variables Os and O, and their probabilistic
link through the fusion variable C.

The “Mirror System Hypothesis” (Rizzolatti & Arbib, 1998) is a relevant framework of interest, which suggests that language has
evolved from the ability to understand another's actions as if they were one's own. This would provide a basis for verbs rather than
nouns. Further extensions of this hypothesis (Roy & Arbib, 2005) argue for a “syntactic motor system”, given that some syntactic
properties are already present in manual actions toward objects, such as “taking an object” or “threatening a congener”. Including this
proposition in the COSMO framework would require definition of the objects of communication as associations between a physical
object in the environment and a manual action through the concept of affordance. Again, the issue of compositionality is invoked here
to combine object and action denotation.

7.2.3. Interaction paradigms

COSMO agents can be tested inside other interaction paradigms. In a recent paper (Moulin-Frier et al., 2012), we used the
COSMO framework to propose a computational comparison of the motor, auditory and sensory—-motor versions of the model with
respect to speech perception tasks. The interaction paradigm was different, in that agents were considered to have already acquired
a speech code, and we studied the robustness of each COSMO version to adverse perception conditions (noise and speaker
variability). This led to the determination of “perfect” conditions, in which motor and auditory theories are in fact indistinguishable (and
the corollary, by which they can be distinguished under degraded conditions). In the context of the active, although long-standing,
debate between supporters of different theories about speech perception, the comparative computational approach is increasingly
used in cognitive psychology. The same approach might be proposed for speech production and speech development (Moulin-Frier &
Oudeyer, 2012, 2013).

A number of questions remain open at the present stage of our work. We can immediately identify two questions:

» What is the role of feedback in interaction? In the present state of our simulations, the agents are supposed to know that they face
the same object and to assume that communication is successful. Feedback could be provided at some stage, as is the case for
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some other multi-agent simulations (for example, see de Boer, 2000). This would modify the learning processes, and it is certainly
a crucial process in the course of language development.

« Can dialects within subgroups of agents emerge from simulations? So far, we have considered only a few agents, which are
assumed to represent the whole society. Of course, for more realistic simulations involving a large number of agents, the diffusion
process of phonological systems might become quite complex and might lead to inhomogeneous distributions via the constitution
of subgroups, with “dialects” and local accents (for example, see Berrah et al., 1996; Berrah, 1998).
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Appendix A

This appendix describes the Bayesian Programming framework we use for the COSMO model and provides some details about
the variations we made in the syllable model of Section 6.4.

We first define the notations used in this paper in more detail. Second, we explain how the joint probability distribution of the
COSMO model is obtained from conditional independence hypotheses. Third, we describe how Bayesian inference on the joint
distribution is used to express speech production and perception tasks. Fourth, we explain how learning occurs by updating the terms
of the joint distributions during deictic games. Fifth, we provide details about how consonant production is influenced by vowel
production in the syllable model of Section 6.4.

A.1. Notations

The notations and probabilistic principles we used in this paper are inspired by Jaynes (2003) and Lebeltel et al. (2004), Bessiére
et al. (2013).

Upper case A denotes a probabilistic variable, defined by its domain D(A), corresponding to the set of discrete values that the
variable can take (we limit our modeling to the discrete case here). The conjunction of two variables AAB can be defined as a new
variable C with domain D(A) x D(B). Lower case a denotes a particular value of the domain D(A). P(A) is the probability distribution
over A and P(AB) is the probability distribution over AAB. P(A |[B = b)) is the conditional distribution over A, given a particular value b
of variable B (also noted P(A |b) when there is no ambiguity on variable B). For simplicity in the paper, we generally do not
distinguish a variable and its domain, thus allowing notations like a<A.

A.2. Joint probability distribution decomposition

In the Bayesian Programming framework, an agent cognitive architecture is defined as the decomposition of a joint probability
distribution over variables of interest. These latter are typically motor, sensory and internal cognitive variables.

Mathematically, the joint probability distribution over a variable conjunction, V = V{A...AV,, can be expressed as the product of
simpler distributions using Bayes rule. For instance
P(V)=P(V)P(V2 |VOP(V3 | V4V2)...P(Vy | V1. V). ®

This is called a decomposition. Note that many possible decompositions can be chosen. For example, Bayes rule can also yield
P(V)=P(V3)P(V1 | V3)P(Va | V1V3)...P(Vy | V1...V 1),

and so on.

In practice, such a decomposition can be simplified by considering conditional independence hypotheses between variables. Let
us consider for example that the modeler knows that each probability distribution on variable V; only depends on variable V,-¢. Then
(8) can be simplified into

P(V)=P(V)P(Vy | V))P(V3 | V2)...P(Vp | Vp1). 9

This allows the complexity of the joint probability distribution computation to be considerably reduced.
In COSMO, the joint probability distribution deals with five variables of interest: P(Os M S O, C). The chosen decomposition is

P(Os M S O C)=P(Os)P(M | Os)P(S | M) P(OL | S)P(C | Os Op). (10)

Therefore, COSMO assumes the following conditional independence hypotheses:
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* P(S | Os M)=P(S | M): given the motor command, the auditory stimulus is independent of the speaker object;

* P(OL |Os M S)=P(0O, | S): given the auditory stimulus, the listener object is independent of the speaker object and motor
command;

* P(C|0OsMS Op)=P(C|Os O,): given the speaker and listener objects, the communication success is independent of the motor
command and auditory stimulus.

In other words, COSMO assumes that the motor command only depends on the speaker object, the auditory stimulus only
depends on the motor command, the listener object only depends on the auditory stimulus and the communication success only
depends on the speaker and listener objects.

Such a decomposition and the conditional independence hypotheses can be represented by a graph with no oriented cycle, as in
Fig. 4, thus providing a graphical representation of the chosen cognitive architecture.

A.3. Inference

In the Bayesian Programming framework, behaviors correspond to Bayesian inferences from the joint distribution.

A Bayesian inference is the computation of a conditional probability distribution P(Se | Kn), where Se and Kn are disjoint subsets
of the variables of interest, called the searched and known variables, respectively (with Se*J). Using Bayes rule and the
marginalization rule, any such conditional probability distribution can be computed from the joint probability distribution by the
following formula:

> rr P(Se Kn Fr)
>se.rr P(Se Kn Fr)’

where Fr are the variable of interest which are neither in Se nor in Kn, called the free variables. The denominator being constant
when Kn is known, it can be considered as a normalization term, assumed to be computed afterward, thus simplifying inference to

P(Se |Kn) = %%P(Se Kn Fr). (12)
This is also noted P(Se | Kn)>xX £ P(Se Kn Fr), with the « symbol denoting proportionality.

A conditional probability distribution of the form P(Se | Kn) is called a question to the joint distribution: knowing a particular value k
of Kn (the known variables), what is the probability distribution over Se (the searched variables)? The answer consists in effectively
computing the distribution, using (12) and, possibly, using efficient computational techniques.

In COSMO, a production behavior is modeled by a question of the form P(M |[Os = o;][C = 1]): given that the agent wants to
communicate ([C = 1]) object o;, what is the probability distribution about motor commands M? Using (12) on the joint distribution of
Eq. (10), the answer is

P(M |[Os =0][C=1])
*P(M |[Os =0o/])
S% P(S IMP(OL | SP(C =1]|[Os =0,] Ov)

P(Se |Kn) = 11

*P(M |[Os =0j])
%P(S IM)P([OL = 0] | S). (13)

The first derivation comes from the application of Eq. (12) on the joint distribution of Eq. (10) with Se=M, Kn= OsAC and
Fr = SAO,, considering the known values [Os = 0;] and [C = 1]. The second derivation simplifies the sum over O, given that [C = 1] if
and only if Os=0, (see Section 3.2.1), i.e. O, =0; in this particular case where Os=o0;.

Using similar reasoning, a perception behavior in COSMO is modeled by a question of the form P(O, |[S=s][C=1]) (or,
equivalently, P(Os |[S = s][C = 1]). The computation is
PO [[S=slIC=1])

*P(O |[S=s])
%P(M [[Os = OLDP(S = s] IM). (14)

Production and perception behaviors defined in (13) and (14), respectively, both involve the entire COSMO architecture: the motor
subsystem P(M |Os), the auditory subsystem P(O. |S), the sensory—-motor subsystem P(S|M) and the fusion subsystem
P(C | OsOy). This full sensory—motor version of COSMO can be simplified into a motor or an auditory version of the model, by
considering that the auditory or the motor subsystems are deactivated, respectively. Deactivation is modeled in probabilistic terms by
considering the corresponding distribution as uniform, as explained in Section 3.3.

A.4. Distribution updating

During the agent interactions in deictic games (Section 4.2), some terms of the joint probability distribution maintained by each
agent are updated online according to the new information available. During a particular deictic game, the speaker agent observes a
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new association between the motor command m it produced and the object o; in front of it. The listener agent observes a new
association between the auditory stimulus s it perceived and the object o; in front of it.

These new associations are used to update the motor subsystem P(M | Os) of the speaker and the auditory subsystem P(O, |S)
of the listener. P(M | Og) is a family of Gaussian probability distributions over M (one for each value of Og), whereas P(O, |S) is
inferred from Gaussian probability distributions over S (see (5)). Each P(M |[Os = 0;]) is updated by computing the mean and
covariance matrix of M in the last 200 deictic games played by the agent as a speaker and where [Os = o;]. Similarly, each
P(S |[OL = o)) (used to infer the auditory subsystem P(O, |S)) is updated by computing the mean and covariance matrix of S in the
last 200 deictic games played by the agent as a listener and where [O; = 0;]. Those updates are triggered each 200 deictic games in
which a particular agent is involved.

A.5. Detail on the syllable motor subsystem

In our simulations of syllable system emergence in Section 6.4, the motor subsystem P(M | Os) is modified compared to other
simulations, as mentioned in Section 6.4.2.
We consider that the consonant is dependent on the vowel:

P(M | Os) = P(McMy | Os) = P(My | Os)P(Mc | My Os)

The vowel motor subsystem P(My | Os) corresponds to the one presented in Section 6.2.2.
The consonant motor subsystem is extended to be influenced by the vowel:

P(M¢c |MyOs)=P(JcTBcTDcLHc | Jy TBy TDyLHy Os)
=P(Jc)P(TBcTDcLHc | Jy TBy TDyLHy Os) (15)

P(Mc |MyQs) =P(Jc)P(TBc | TByOs)P(TDc¢ | TDyOs)P(LHc | LHy Os) (16)

In the first derivation, the consonant jaw configuration is assumed to be independent of any other variable: it is set in a high position,
as in the consonant model of Section 6.3.2 (“high-jaw” condition). In the second derivation, the other articulator configurations are
assumed to depend only on the vowel configuration for the same articulator (in addition to the speaker object Os).

These probability distributions P(X¢ | Xy Os), Xe{TB, TD,LH} are initially defined as Gaussian probability distributions centered on
the vowel configuration X\, with a small variance. More precisely, P(X¢ |[Xv = x]Os) is initially set as a Gaussian probability
distribution of mean x and standard deviation set to a sixth of the X, range (whatever the value of Og).

Finally, the update rule is similar to the one described in the previous section, except that associations involved in the update of
P(X¢ |[Xv =x][Os = 0j]) are the last 200 deictic games where the agents produced [X = x] in front of [Os = 0;].

Altogether, consonant production is initially constrained by the vowel production but this constraint can be relaxed as learning
occurs during deictic games.
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