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 

Abstract — Rotated and cyclic-Q delayed (RCQD) 

quadrature amplitude modulation (QAM) improve DVB-T2 

system performance over highly time-frequency selective 

channels. However, when compared with conventional QAM 

demapper, the RCQD demapper requires a higher 

computational complexity. In this paper, a complexity-reduced 

max-log demapper is derived and implemented over a FPGA 

platform. The proposed demapper allows to find the maximum 

likelihood (ML) point with a search spanning only M  signal 

constellation points and guarantees to obtain the same 

log-likelihood ratio (LLR) metrics as the optimum max-log soft 

decision demapper while spanning at most 2 M signal 

constellation points. The optimized hardware implementation 

introduces only a slight  performance loss compared to the 

floating-point full complexity max-log performance.  

 
Index Terms — DVB-T2, Rotated and Cyclic Q Delayed 

(RCQD) Constellations, Log-Likelihood Ratio (LLR), Max-Log 

Demapper. 

 

I. INTRODUCTION 

VB-T2 standard [1] improves system performance over 

highly attenuated or erased time-frequency selective 

channels when compared to DVB-T [2]. One of the most 

important reasons for this improvement is the rotated and 

cyclic Q delayed (RCQD) quadrature amplitude modulation 

(QAM) [3],[4] which introduces signal space diversity (SSD). 

This SSD is implemented by two key steps: first, both the 

in-phase (I) component and the quadrature (Q) components 

contain full symbol information created by some 

constellation rotation, and the second step is that the I and Q 

components are transmitted over independently fading 

OFDM subcarriers thanks to the insertion of cyclic delay 

between the I and Q components. 

However, SSD requires the corresponding optimum 

demapper to be performed over the 2D constellation plane [7] 

instead of two independent 1D demapping for conventional 

non-rotated constellations. For high order constellations such 
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as 64-QAM or 256-QAM, the computational complexity of a 

2D-DEM has a non-negligible impact on receiver design. 

There have been many studies tackling this complexity 

problem. The decorrelation based method such as zero 

forcing (ZF) or minimum mean square error (MMSE) 

demapper [8] can achieve a low complexity but introduces a 

huge performance loss especially over channels with severe 

conditions such as deep fades or erasures. Various simplified 

2D demappers [9]-[14] were also proposed to balance a 

trade-off between complexity and performance. A simplified 

method was first presented in [9]-[11] based on the 

decomposition of signal space into sub-regions, each 

approximately corresponding to one quadrant of the QAM 

constellation; the demapping operations performed over one 

sub-region reduces by 61% and by 69% the computational 

complexity of a 64-QAM and of a 256-QAM respectively. A 

similar approach was presented in [12] by adaptively 

adjusting the sub-region with the signal-to-noise ratio (SNR). 

A so-called sub-region per dimension demapping 

(PER-DEM) method was provided in [13] with an 

exploration space down to 2 M for a RCQD M-QAM. This 

method starts by dividing the constellation space into regions 

limited by parallel lines along the imaginary axis; then it 

computes the distance to the received observation only with 

respect to points within the two regions closest to the 

received observation. Another method with sub-region 

decomposition was proposed in [14] based on the observation 

of 2D LLR contours as a function of I/Q Rayleigh fading 

channel attenuations. Although this method explores only 

M  points, no decoded performance was given so that the 

associated performance penalty was not reported. For all 

these 2D sub-region based methods, there is always a 

possibility of missing the closest constellation point to the 

channel observation due to the unbalanced (or different) I and 

Q channel attenuations. Therefore, all these methods are 

clearly not optimum.   

This paper proposes an exact max-log soft demapper with 

reduced complexity thanks to the proposed simplified 

detection algorithm and its corresponding hardware. The 

proposed exact max-log method is able to find the closest 

point to the received observation i.e., the optimum hard 

decision by exploring, at most, a space of M  points. It also 

guarantees to perform exact max-log LLR computations i.e., 

soft decision for all the bits of a symbol by exploring at most 

a space of 2 1M   points. Finally, this paper also compares 

objectively the C-floating point algorithm with a VHDL 

implementation which validates the proposed approach. 

 The remainder of the paper is organized as follows; system 

model and the conventional soft demapping process are 
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introduced in section II. The derivation and the architecture 

design of the proposed complexity-reduced exact max-log 

demapper are detailed in section III. Logic synthesis results 

and the evaluated performance are given in section IV. 

Finally, Section V concludes the paper.   

 

II. SYSTEM MODEL FOR RCQD CONSTELLATIONS 

A. Rotated and Cyclic-Q Delayed Constellations 

A conventional square M -QAM constellation can be 

regarded as a signal with two independent M -PAM 

components and takes values from the following cS set:  

 c c,I Q I Qs s js s s   S A ,       (1) 

where cA  is defined as: 

 c

2 1
1 ,

2
x x x x c

s

s s M p p


   
       

   

A I ,    (2) 

where  or x I Q ,  0,1, , 1c M I  is an integer set and 

s  is a QAM normalization factor (e.g., for 256-QAM 

170s  ). 

In order to obtain a RCQD constellation, the conventional 

square symbol is first rotated by an angle   to obtain a 

rotated symbol  expz s j . Then the imaginary part of z is 

delayed by one symbol period to build the symbol x  such 

that    Re Imx z j z  . Consequently, the real and 

imaginary parts of symbol z  are transmitted over two 

different independent and identically distributed fading 

events. Equivalently, for orthogonal frequency-division 

multiplexing (OFDM)-based systems such as DVB-T2, these 

parts are transmitted over two sufficiently spaced subcarriers 

of an OFDM symbol, therefore doubling the diversity order. 

Let 0Ih   and 0Qh   denote Rayleigh distributed fading 

coefficients that affect the two subcarriers where symbol z  

has been transmitted. The observed symbol I Qy y jy   

received by the demapper can be expressed as: 

   
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    (3) 

where I Qn n jn   represents a zero-mean circularly 

symmetric complex Gaussian noise term with variance 2

n . 

Thus, equation (3) can be rewritten as: 
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n .  

B. Soft-Demapping Process 

The RCQD constellation breaks the independency 

between the I and Q components of the signals in the signal 

space plane. Indeed, both I and Q components contribute to 

the estimation of the log likelihood  LLR ib  of each 

transmitted bit ib  with 20,1, , log 1i M  . Therefore the 

accurate LLR computation requires an exploration of a signal 

space containing all the possible M  complex-valued 

constellation points: 
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where  c ib bS  denotes the subset of cS  that contains all 

constellation points associated with ib b  and  0,1b  .  

A soft demapping solution with a negligible loss [7] can be 

obtained by applying the max-log approximation over (5):  
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where  
 

 
c

2

min 2

1
min

i
i

b b
n

b b
  

  
s S

y hs  represents the  

log-likelihood metric of ib b . Although (6) simplifies the 

computational complexity, it still implies to explore  the M  

complex-valued constellation points. However, it should be 

noted from (6) that the LLR computation becomes an 

evaluation of the Euclidean distance between the observation 

vector y  and the two closest points with bits ib  taking values 

0 and 1. Then if there exists such an algorithm that these two 

closest points can be found for each bit ib  without exploring 

the whole constellation plane, the max-log demapper can be 

achieved with reduced complexity.  

 

III. COMPLEXITY-REDUCED MAX-LOG DEMAPPER DESIGN 

A. The Derivation of the Proposed Algorithm 

For a given constellation component cQs A  (resp. 

cIs A ) in (4), the equivalent observation Ir  (resp. Qr ) of 

the other component Is  (resp. Qs ) becomes:  

2 1

1 2

,

.

I Q I

Q I Q

s s

s s

   


  

r y h h n

r y h h n
       (7) 

Then the Euclidean distance between the equivalent 

observation and the component 
2

1I Isr h  can be expressed 

as:  

   
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 

2 22

1 ,1 1,1 ,2 2,1

2
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I
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h h
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   (8) 

where 1,1 ,1 2,1 ,2

2 2

1,1 2,1

I Ih r h r
v

h h





, so that the closest candidate point 

 ,min ,I Qs s  based on a given Qs  can be computed by rounding 

v  to its nearest value xs  in cA  (see (2)). It should be noted 

from (8) that the closest point  ,min ,I Qs s  (resp.  ,min,I Qs s ) to 

the observation Ir  (resp. Qr ) can be computed without being 

compared with other Euclidean distance terms.     
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Therefore, the essential idea of this 2-D global 

minimization problem can be simplified as follows: for each 

given value cQs A  (resp. cIs A ), search the closest point 

,minIs  (resp. ,minQs ) to the equivalent observation solution Ir  

(resp. Qr ) in (7) with the known equivalent channel response 

1h  (resp. 2h ) by rounding v . The global optimum solution 

must then belong to one of the M  local optimum solutions 

 ,min ,I Qs s  (resp.   ,min,I Qs s ).  

It should also be noted that the candidate value  ,minIs , 

 ,minQs  and the Euclidean distance term  2
y hs  requires 

the implementation of many parallel dividers, multipliers and 

comparators. In order to further reduce the computational 

complexity, the following transformations over (4) are 

proposed. 

First, both sides of (4) are divided by the factor n  and are 

extended as below:   
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      (9) 

where Ip  (resp. Qp ) is defined in (2) and represents the 

equivalent constellation component of Is  (resp. Qs )   

 Second, if the last constant term in (9) is moved to the 

left-hand side, an equivalent observation model y  can be 

derived as: 
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  (10) 

where the equivalent observation terms Iy , Qy , the 

equivalent channel response terms 1,1h , 2,1h , 1,2h , 2,2h , and 

the equivalent noise terms In , Qn  are as follows: 

  
1 1

1 cos sin ,I I I

n s

y y M h 
 

 
    

 
   (11) 

  
1 1

1 sin cos ,Q Q Q

n s

y y M h 
 

 
    

 
    (12) 

1,1

1 2cos
,I

n s

h h


 
   (13)        2,1

1 2sin
,Q

n s

h h


 
    (14) 

1,2

1 2sin
,I

n s

h h


 
      (15)     

2,2

1 2cos
,Q

n s

h h


 
        (16) 

1
,I I

n

n n


   (17)     
1

,Q Q

n

n n


      (18) 

1,1 1,2

2,1 2,2

,
h h

h h

 
 
 
 

h  (19)  ,
I

Q

n

n

 
 
 

n   (20)  ,.
I

Q

p

p

 
 
 

p  (21) 

 Finally, based on the results of (8), the local optimum 

solution ,minIp  (resp. Qp ) with the given value Q cp  I  (resp. 

I cp  I ) can be derived as well: 

   

 

1,1 1,2 2,1 2,2

,min 2 2

1,1 2,1

1,1 2,1 1,1 1,2 2,1 2,2

2 2 2 2

1,1 2,1 1,1 2,1

arg min

round

round ,

I c

I Q Q Q

I I
p

I Q

Q

I Q Q

h y h p h y h p
p p

h h

h y h y h h h h
p

h h h h

r c p



  
 



  
  

   

 

I

 (22) 

   

 

1,2 1,1 2,2 2,1

,min 2 2

1,2 2,2

1,2 2,2 1,2 1,1 2,2 2,1

2 2 2 2

1,2 2,2 1,2 2,2

arg min

round

round ,

Q c

I I Q I

Q Q
p

I Q

I

Q I I

h y h p h y h p
p p

h h

h y h y h h h h
p

h h h h

r c p



  
 



  
  

   

 

I

 (23) 

where Ir , Qc , Qr  and Ic  are: 
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 Therefore, the corresponding local minimum distance with 

the corresponding value of Q cp  I  (or I cp  I ) can be 

computed as: 

     
2 2
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(29) 

Thanks to these previous derivations, the optimization of the 

proposed complexity-reduced exact max-log demapper is 

achieved at the algorithm level; we summarize it as follows: 

The complexity-reduced max-log (CRML) demapping 

algorithm: 

0.    Initialize the metric terms  min ib b     for 

20,1, , log 1i M   and 0,1ib  ; 

1.    Compute the various factor terms of the equivalent 

demapping model:  

a.  Compute the terms Iy , Qy , 1,1h , 2,1h , 1,2h  and 

2,2h  for the equivalent observation model in (10)

by using (11)-(16); 

b.  Compute the terms Ir , Qc , Qr  and Ic  for the 

equivalent Euclidean distance terms of (22) and 

(23) by using (24)-(27); 

2.    For each 0,1, , 1Ip M  , perform the following 

steps: 
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a.  Compute ,minQp  by (23); 

b.  Compute the metric term  ,min,I Qp p  by (29); 

c.  Update the bit metric terms for 

  min ,min,i i I Qb b p p   for 20,1, , log 1i M   

and for 0,1b   according to the current symbol 

 ,min,I Qp p : 

{ 

If     min ,min ,min, ,i i I Q I Qb b p p p p   ,  

then     min ,min ,min, ,i i I Q I Qb b p p p p    

};  

3.    For each ib  with 0,1, , 1Qp M  , perform the 

following steps: 

a.  Compute ,minIp  by (22); 

b.  Compute the metric term  ,min ,I Qp p  by (28); 

c.  Update the bit metric terms for 

  min ,min ,i i I Qb b p p   for 20,1, , log 1i M   

and for 0,1b   according to the current symbol 

 ,min ,I Qp p : 

{ 

If     min ,min ,min, ,i i I Q I Qb b p p p p   ,  

then     min ,min ,min, ,i i I Q I Qb b p p p p    

}; 

4.    For each bit ib  with 20,1, , log 1i M  , perform: 

     min minLLR 1 0i i ib b b          (30) 

■ 

 The proposed algorithm guarantees that the global 

optimum solution  ,min ,min,I Qp p  for finding  2
min y hs  is 

obtained at the end of step 2 after exploring  M  integer 

(constellation) points in signal space. As for the soft bit 

information i.e., the LLR value, the proposed algorithm 

allows that these values are obtained, when step 4 is finished 

after exploring at most (step 2 and step 3 may have 

overlapped points) 2 M  integer points. In this way, (6) can 

be performed without exploring the whole signal space.   

B. Architecture Design for Hardware Implementation 

 The CRML demapper presented in the previous section 

has not yet been optimized for hardware implementation and 

needs some further modifications to minimize the amount of 

required hardware complexity, and to maximize the active 

time of each hardware component, while respecting the 

constrains in terms of system throughput.   

 Since the largest constellation supported by DVB-T2 is 

256-QAM with 8 bits per symbol decoded by a LDPC 

decoder, it is reasonable to assume there are 8 clock cycles 

between two consecutive QAM symbols for the demapper. 

Among the different elementary steps, the computations in 

(11)-(16), (24)-(27) are highly dependent and have a low 

parallelism degree of 2 processes corresponding to the two 

components I and Q. Differently from step 1, steps 2 and 3 

perform computations for different candidate constellation  

points and have a high parallelism of M . Finally, step 4 has 

a 2log M  level of parallelism since it deals with pure bit-level 

computations. Therefore the proposed CRML demapper is 

divided into 3 parts: preprocessing (step 1), computing 

Euclidean distance metrics (step 2 and step 3), and bit LLRs 

generation (step 4). 

 In the preprocessing step, the inversions in (24)-(27) can 

be implemented by using Newton's method. For any positive 

number c , its inverse 1c  can be calculated iteratively as 

follows [15]: 
      1 1

2
n n n

x x c x
 

   , 1, ,n N ,   (31) 

where n  is the iteration index and   1lim
n

n
x c


 . Notice that 

(31) needs only two multiplications and one subtraction 

without any division operation.  

 The accuracy of the inverse value is highly dependent on 

the iteration number, while the iteration number relies on the 

initial value  0
x . In order to increase computation stability, 

the fixed point value c is normalized by continuously 

left-shifting S  ( 2S ) or right-shifting S  ( 2S ) so that the 

normalized value 0 2Sc c  (left-shifted) or  0 2 Sc c  

(right-shifted) satisfies 00.5 1c  . Moreover, in order to 

reduce the applied number of iterations, the initial value  0
x  

is set as [16]: 
 0

0 01.8823 2.8235x c    .       (32) 

In this way, the approximate reciprocal  
0

n
x  of 0c  can be 

obtained by substituting 0c  and  0

0x  into (31), i.e.,  

      1 1

0 0 0 02
n n n

x x c x
 

   , 1, ,n N ,    (33) 

where  
0

N
x  is sufficiently accurate after 2 or 3 iterations. 

Finally, the approximate reciprocal  N
x  can be achieved by 

compensating the factor 2S : 

 
 

 

0 0

0 0

2 , if 2 ,

2 , if 2 .

NS S

N

NS S

x c c
x

x c c 

 
 



      (34) 

 During the second step dedicated to compute Euclidean 

distance metrics for all the candidates, the operation 2 2

I Qd d  

in (28) and (29) needs 2 multiplications and 1 addition. A 

possible low-complexity approximation [17] can be provided 

by: 

   
2

2 2 1 1 1
max , min , .

2 16 32
I Q I Q I Qd d d d d d

  
       

  

(35) 

 In this way, the 2 multiplications and 1 addition are 

replaced by 1 multiplication and 3 additions. Since the 

parallelism in step 2 and step 3 is M , this approximation 

can save at least M  multipliers.  

 Therefore, the step for computing Euclidean distance 

metrics for all the candidates includes the following sub-steps 

where each sub-step represents 1 system clock cycle: 

i.    The candidate pairs   ,min, | 0,1, , 1I Q Ip p p M   

and   ,min , | 0,1, , 1I Q Qp p p M  are computed by 

using (23) and (22). The weighted channel attenuation 

coefficients  , | , 1,2 and 0,1, , 1i jh p i j p M     

can be obtained by only shifting and adding operations 

in the first clock period; 

ii.    According to (35), the terms 1,1 ,min 1,2I I Qy h p h p   

and 2,1 ,min 2,2Q I Qy h p h p   in (28) are computed. The 
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min and max of the same  ,min ,I Qp p  pair are then also 

known; 

iii.    According to (35), the terms 1,1 1,2 ,minI I Qy h p h p  , 

and 2,1 2,2 ,minQ I Qy h p h p   in (29) are computed. The 

min and max of the same  ,min,I Qp p  pair are the 

known; 

iv.    Compute the Euclidean distance metrics 

 ,min ,I Qp p  for all candidate pairs  ,min ,I Qp p  by 

using (35);   

v.    Compute the Euclidean distance metrics 

 ,min,I Qp p  for all candidate pairs  ,min,I Qp p  by 

using (35); 

vi.    According to the Gray mapping, perform metric 

comparisons among   ,min,i i I Qb b p p   for all the 

even indexed bits 20,2, , log 2i M   and find 

 min 0ib   and  min 1ib  ; 

vii.    According to Gray mapping, perform metric 

comparisons among   ,min ,i i I Qb b p p   for all the 

odd indexed bits 21,3, , log 1i M   and find 

 min 0ib   and  min 1ib  ; 

 During the step of bit LLR generation, since the maximum 

number of bits per symbol is 8 (256-QAM), only one LLR 

 LLR ib  is generated within each system clock cycle for 

each bit ib  by using (30). 

C. Computational Complexity Analysis of the Proposed 

Demapper 

 In order to simplify the complexity comparison and to get a 

direct knowledge of the proposed CRML algorithm, a 

computational complexity analysis is performed in terms of 

real multiplications (RMs) and real additions (RAs) which 

are in general the most important metrics for the complexity 

evaluation. It should be mentioned that a real subtraction is 

considered as a RA in this paper.   

1.    (Preprocessing): Iy  and Qy  in (11)-(12) need 4 RMs 

and 2 RAs; 1,1h , 2,1h , 1,2h  and 2,2h  in (13)-(16) require 

8RMs; Since 1,1 Ih y , 2,1 Qh y , 1,2 Ih y , 2,2 Qh y , 1,1 1,2h h , 2,1 2,2h h , 

2

1,1h , 2

2,1h  require 8 RMs, 1,1 2,1I Qh y h y , 1,2 2,2I Qh y h y , 

2 2

1,1 2,1h h , 2 2

1,2 2,2h h , and 1,1 1,2 2,1 2,2h h h h  need 5 RAs, and 

the inversion terms 
2 2

1,1 2,1

1

h h
 and 

2 2

1,2 2,2

1

h h
 require 8 

RMs and 4 RAs by using (33) with 2 iterations. 

Therefore, the preprocessing step globally needs 28 RMs 

and 11 RAs.  

2.    (Computing the Euclidean distance metrics): The 

computations I Q Qr c p  and Q I Ir c p  in (22) and (23) for 

all the 2 M  local closest candidate points need 

24 2logM M  RAs; the rounding operations in (22) 

and (23)  for all 2 M  candidate points require 6 M  

RAs; The computation of Euclidean distance metrics in 

(35) applies 1 RM and 3 RAs for one distance metric and 

thus 2 M  candidate distance metrics require 2 M  

RMs and 6 M  RAs; moreover, each bit metric 

 min ib b   for (30) needs 2 1M   RAs and therefore 

all the distance metrics needs   22 logM M  RAs. 

Therefore, the computations of the Euclidean distance 

metrics require 2 M  RMs and 

 2 2log 16 4logM M M M   RAs.  

3.    (Bit LLRs generation): All 2log M  LLRs by using (30) 

simply need 2log M  RAs.  

 In summary, this algorithm requires a total of 2 28M   

RMs, and 
2 2log 16 3log 11M M M M    RAs for one 

RCQD constellation symbol. 

 

IV. LOGIC SYNTHESIS RESULTS AND PERFORMANCE 

EVALUATION 

A. Logic Synthesis Results 

The general QAM demapper for rotated constellation was 

synthesized and implemented by using Xilinx ISE. 

Computational resources of the demapper take up 7637 slice 

Flip-Flops and 32764 slice LUTs. The corresponding 

occupation rates are about 3% and (resp. 15%) of a Xilinx 

FPGA 5VLX330FF1760-2 for slice registers (resp. slice 

LUTs). In addition, multiplication resources for the 

demapper module take up 16 DSP blocks. It represents 8% of 

the total DSP blocks available in the chosen device. The 

maximum system clock frequency reaches 96 MHz (the 

clock period is 10.4 ns) and there are 8 system clocks 

between two consecutive symbols. So an output LLR rate of 

96 MLLR/s for 256-QAM can be achieved at the input I/Q 

symbol rate of 12 Msymbol/s. Most importantly, only 8 

multipliers and 213 adders/subtractors are used. 

B. Performance Evaluation and Numerical Computational 

Complexity Comparisons 

 The proposed demapping algorithm is compared with 

other methods in terms of BER and computational 

complexity, such as the max-log method (see (6)), the MMSE 

method [8], the sub-region method [9], and the PD-DEM 

method [13]. In these simulations, perfect synchronization 

and channel estimation are assumed, which is different from 

the practical case [18]-[22]. 

 
Fig. 1. BER evaluations of floating-point C simulations for DVB-T2 RCQD 

256-QAM. 

 Fig. 1 further compares the floating-point bit error rate 

(BER) performance of the algorithms in section IV.B. All 

these methods are evaluated over a Rayleigh fading channel 

[7] for the RCQD 256-QAM with the 64800-bit long size and 

4/5 rate low density parity check (LDPC) channel code 

defined in the DVB-T2 standard. Without any surprise, the 

CRML algorithm achieves exactly the same best 

floating-point performance as the full-complexity max-log 
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algorithm, since they rely on exactly the same theoretical 

principles. 
TABLE I Complexity Comparison of the considered algorithms for the 

DVB-T2 RCQD 256-QAM constellation. 

Algorithm CP RM RA 

Max-Log 256 1032 776 

Sub-region 81 332 251 

MMSE 16 64 48 

PD-DEM 80 390 279 

Proposed CRML 32 60 371 

TABLE I gives the complexity comparison in terms of 

candidate point explored (CP), RM and RA to demap the 

RCQD 256-QAM signal. 

It should be mentioned that the low RM number has to be 

attributed to the equivalent observation model in (10) which 

greatly simplifies the computation of Euclidean distance 

metrics. Moreover, although the MMSE demapper seems 

also attractive over fading channel, it has a very high error 

floor over fading erasure channel [23],[24]. 

 
Fig. 2. BER evaluations of the proposed demappers in floating-point C, 

fixed-point C, and fixed-point hardware simulations for DVB-T2 RCQD 

256-QAM. 

The C and VHDL fixed-point BER performance of the 

proposed CRML algorithm is also presented on Fig. 2. In this 

figure, the C floating-point BER performance of the proposed 

CRML algorithm serves as reference. It can be observed that 

there is only a 0.4 dB loss difference between the 

floating-point version and the VHDL Implemented version 

including the loss introduced by the hardware of the 

parallelized LDPC decoder.   

 

V. CONCLUSION 

In this paper, we propose a novel complexity-reduced 

max-log demapper for RCQD QAM constellations which 

provides demapping results identical to the full-complexity 

max-log demapper. The number of operations to obtain hard 

and soft decisions are reduced to  M . Moreover, a 

hardware architecture design is detailed with additional 

simplifications over the original computations. Since the 

non-rotated constellations are special cases of the rotated 

ones with rotation angle 0  , this proposed demapper can 

also be applied to the demapping of conventional QAM 

constellations. Some future work concerns the interface of 

the proposed scheme with other iterative channel coding 

[25]-[27]. 
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