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Abstract The design and characterisation of a magnetic vibration absorber (MVA), completely relying on
magnetic forces, is addressed. A distinctive feature of the absorber is the ability of tuning the linear stiffness
together with the nonlinear cubic and quintic stiffnesses by means of repulsive magnets located in the axis of the
main vibrating magnetic mass, together with a set of corrective magnets located off the main axis. The tuning
methodology is passive and relies only on three geometrical parameters. Consequently the MVA can be adjusted
to design either a nonlinear tuned vibration absorber (NLTVA), a nonlinear energy sink (NES), or a bi-stable
absorber with negative linear stiffness. The expressions of the stiffnesses are given from a multipole expansion
of the magnetic fields of repulsive and corrective magnets. A complete static and dynamic characterisation is
performed, showing the robustness of the modelling together with the ability of the MVA to work properly
in different vibratory regimes, thus making it a suitable candidate for passive vibration mitigation in a wide
variety of contexts.

Keywords Magnetic vibration absorber - tunable linear and nonlinear stiffnesses

1 Introduction

The vibration mitigation of mechanical structures is a long standing problem which receives a considerable and
continuous interest due to its importance in engineering applications. The most famous vibration absorber is the
linear Tuned-Mass Damper (TMD), originally proposed by Frahm [10] and theoretically studied by den Hartog
in 1934 [20]. Whereas the original work by Ormondroyd and den Hartog considered the primary structure (PS)
as a linear undamped oscillator [33], further research extended their results to a damped oscillator as PS, in
order to derive the optimal parameter values for a given set of optimisation criteria [40,3,48]. The extension of
these results to flexible structures having an infinite number of modes is also a topic for current research, see
e.g. [24].

The drawbacks of the TMD as a vibration absorber are well known and documented. The main associated
problem is related to the narrow bandwidth of optimal control, asking for an accurate tuning which must
continue over times. In the last decades, a number of investigations have been conducted in order to overcome
these limitations, one of the main ideas being to use a nonlinearity in order to improve the vibration absorber
design. The concept of a Nonlinear Energy Sink (NES) relies on a vanishing linear stiffness, giving rise to an
essentially nonlinear restoring force. Having no natural frequency, the NES can thus adapt itself to the frequency
of the PS [11,41,44]. A targeted energy transfer (TET) can then occur in an irreversible fashion [42,43]. The
concept has been demonstrated theoretically and experimentally in a series of papers [31,27,26,14,25,32,12].

As also remarked by a number of investigators, the frequency range over which a linear passive vibration
isolator is effective, may be limited by the mount stiffness required to support a static load. Hence, the idea
of selecting the eigenfrequency of the vibration isolator as small as possible lead to the concept of ”quasi-zero
stiffness” (QZS) absorber, which has been studied both theoretically and experimentally [6,23,5,46].

Another idea which has emerged recently is to use the nonlinearity of the absorber in order to control the
nonlinearity of the primary structure. As remarked in [45], a TMD is less effective as soon as the PS is nonlinear
and exhibit typical features of nonlinear dynamics. In this context, an extension of den Hartog’s equal peak
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method has been proposed in [17], leading to the definition of a nonlinear tuned vibration absorber (NLTVA),
which can be used e.g. for suppressing the limit cycle oscillations in a Duffing-Van der Pol system [18].

A recognised drawback of the NES is that a sufficient energy level is required for the targeted energy transfer
to occur [42,43]. Recent studies have considered the case of a negative linear stiffness, leading to a bi-stable
vibration absorber device. For example, it has been shown in [29,37] that such a vibration absorber may be
more efficient than an NES as the energy barrier for activation is smaller in the bi-stable case.

Numerous experimental devices have been proposed including for example thin rods with no pretension
for an NES [31], or vibro-impact oscillator [2,13]. For the absorber with quasi-zero stiffness, the case of Euler
buckled beams have been proposed in [28]. Recent realisations of the NLTVA have been built with 3D printed
beams having a particular cross-section in order to correctly tune linear and nonlinear characteristics [15,16].
The vibration suppression of beams using eddy current dampers have been proposed in [38,4,9] for pendulum
and normal motions respectively. A variety of nonlinear absorbers of more general forms have also been proposed
including for example the case of centrifugal pendulum for torsional vibration mitigation [19].

In this contribution, a passive magnetic vibration absorber (MVA) is proposed with the ability of properly
tuning its linear and nonlinear characteristics. Our goal is to propose a flexible device that can be used either
as an NES, an NLTVA, or a bi-stable vibration absorber, all these tunings being realised passively with a
simple change in the system’s geometry. The device relies on the use of magnetic forces in order to be able to
tune the stiffnesses. The idea of using magnetic forces for designing a vibration absorber can be traced back
to the pioneering work of Yamakawa and Kojima [47,22,21]. In these articles, they use a simple arrangement
with a mobile magnet at centre in the repulsive magnetic fields of fixed magnets. The device being vertical,
the gravity force was also taken into account (the center magnet being levitating), in order to design a QZS
absorber [36]. Other arrangements where the correction forces are provided by springs have also been studied in
[7,46]. Moreover, the study of nonlinear magnetic systems goes over the vibration reduction field with energy
harvesting devices, see for example [30]. Finally, Al-Shudeifat proposes an asymmetric arrangement of the
initial design of Yamakawa and Kojima in order to realise an NES [1]. In general, we note that the realisation
of vibration absorber devices are not flexible and are tuned for the purpose of realising a specific case, TMD,
NES, NLTVA, or bi-stable.

The paper is organised as follows. In the first section we introduce the geometry of the device. The basic
idea is the same as those already used since Yamakawa and Kojima, the originality being the use of a set of
four fixed corrective magnets placed at an offset position of the main axis. A multipole expansion is used to
model the magnetic forces, so that the linear, cubic and quintic nonlinear stiffnesses can be evaluated. Their
variations with respect to geometric parameters are studied in order to show how one can select the desired
absorber: NES, NLTVA or bi-stable. Static and dynamic tests are then experimentally conducted in order to
obtain a complete characterisation of the MVA.

2 The Magnetic Vibration Absorber (MVA)
2.1 Main Characteristics

The proposed vibration absorber is shown in Fig. 1. It is composed of 7 permanent ring magnets located on

2R

Fig. 1 Schematic representation of the magnetic vibration absorber (MVA).

plastic rods, shown in grey in Fig. 1. Their length, internal and external diameters are denoted L, D;,: and D
respectively. The mass of the absorber oscillating around the central position z = 0 is given by the magnet 1.
This mass can be easily tuned by adding a massive object at center as proposed e.g. in [2]. The main vibration
axis is horizontal so that the gravity has no influence on the restoring force exerted on magnet 1. The other
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magnets, respectively numbered 2, 3, 4, 5, 6 and 7, are fixed on the rods. The black and white parts of each
magnet indicates the direction of their axial magnetisation. Regarding the main magnet (1), magnets 2 and
3 have an opposite magnetisation. As they apply a repulsive force on the magnet 1, pushing it in its central
position, they are named the repulsive magnets. The amplitude of the repulsive force can be tuned by modifying
the geometric parameter r, or the magnetisation. Magnets 4, 5, 6 and 7, named the corrective magnets, have the
same direction of magnetisation as magnet 1 and apply an attractive force on it. The amplitude of this force is
adjustable by modifying the geometric parameters R and d. Therefore, the total force applied on the magnet 1
is tuned by the independent modifications of the geometric parameters r, R and d.

2.2 Experimental Realisation

Numerous experimental configurations can be built following the model of the proposed MVA, and a number
of them have been tested in the laboratory in order to characterize the MVA. In this section we focus on a
practical realization, convenient for a number of static and dynamical tests. A picture of this selected device
is shown in Fig. 2. In particular, the same type of ring magnets has been retained for vibrating, repulsive and
corrective magnets. The characteristics of these ring magnets are given in Table 1. Of course, different magnets

Fig. 2 A realization of the magnetic vibration absorber with the definition of the additional length L.

can be used in the device for tuning the desired properties. To get a corrective force that is large enough in

Length (L) Internal Diameter (D;n:) External Diameter (Dezt)  Weight (Mimag) Type  Grade
5 mm 10 mm 20 mm 10 g NdFeB N42

Table 1 Characteristics of the magnets.

comparison to the repulsive force, the corrective magnets are in fact composed of 3 rings stuck together, in
order to increase their total magnetic moments. So as to fit with the schematic representation of Fig. 1, the
length 2R corresponds to the distance between the two magnetic moments of the corrective magnets located on
the same axis. The magnetic moment is assumed to be located at the centre of the 3 stuck magnets. Hence, R
represents the distance between the middle of the three corrective magnets and the central position, as shown
in Fig. 2. Consequently, in the experimental realisation, the length R is set equal to r — L, with L the thickness
of one magnet, see Fig. 2. As this experimental device has been mostly used in the remainder of the study, we
will generally select R as R =r — L.

2.3 Theoretical Expression of the Stiffnesses

Let us now derive the expression of the force applied on magnet 1. The mutual energy of two similar permanent
magnets with a magnetic moment m, a volume V' and creating a magnetic field B is given by

E,=-— /V M.B dv, (1)
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where M = m/V is the corresponding uniform magnetisation. The force created by the magnetic field B(p)
on the vibrating magnet is given by

F(p) = V(m.B(p)), (2)

where p is the coordinates of the magnet 1 relative to the fixed magnet as shown in Fig. 3. In this study,

Fig. 3 Geometrical representation for computing the magnetic force applied on the moment m, located at p and created by the
ring magnet of external diameter Deg¢, internal diameter D;,; and length L. Angles are defined such as ¢’ = (e, pl,) with p/,,

the orthogonal projection of p’ in the plane (ez,e.), ¥’ = (ey, p’) and 6 = (ey,P).

a multipole expansion is used to give the expression of the magnetic field in order to improve the dipole
approximation which could give inaccurate results for small distance between magnets.

2.3.1 Multipole Expansion

The multipole expansion is briefly presented here for cylindrical permanent magnets axially magnetised. The
calculation is first presented for a cylindrical magnet without hole. The hole is taken into account at the end of
the calculation, by adding the magnetic field created by another cylindrical permanent magnet with opposite
magnetisation, and a diameter equal to that of the hole. The interested reader is referred to [35] for a more
detailed presentation of magnetic forces and multipole expansion. The used approach is known to be relevant
if the distance between the magnets is larger than their characteristic lengths (usually the radius of a sphere
containing the magnet). Fig. 3 gives the geometric parameters used for the computation when the fixed magnet
is located at the origin of the basis (es, ey, e.) and the magnet 1 at the origin of the basis (ep, eq,e;). All
primed variables are defined relative to the fixed magnet for integration. The magnetic field reads

Lom (L/2)"+2 dD,,
B(p) = )Dne, — "es | = 3 Bu(p),
(p) 1V 2 (n+1)Dyep 7 2 (p) (3)

where i is the void permeability, p and m are respectively the magnitudes of the vector p and of the magnetic
moment m of the fixed magnet. Using the substitution v = cos(¢'), the term ((n+ 1)D,e, — %Pxey) takes
into account the shape of the fixed magnet with

1 27 A )

P, (p.

2/ / 7@;5 )dqﬁ’d% n odd,
L_Jo "

Dy (p,B) = T (4)

0, n even,

where 8 = De,¢/L if the magnet is a fully solid cylinder and P, () the Legendre polynomials. Using the notations
of Fig. 3, (p.p') = /1 —~?% sinf cos¢’, with p = p/||p|| and p’ = p’/||p’|| the unit vector of the integration
point in the fixed magnet.
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Finally, rewriting m cos(6) e, = (pp? — Id)m and m sin(0) es = pp’ m, the first terms of the magnetic

field read

1
Bi(p) = L2— [3pp” — Id] m,

2 _ 9pn2
Batp) = 1% (5) (55 ) [@0mT )~ 15) 50" ~ (150075 - 3)1d] m,
4
—(105(m™p)* — 70(m”p)? + 5) Id] m,
_po 1 (L\° /64— 33662+ 2808" — 353°
Bilp) = 170 <5) < 1024 )

[(6435(™p)® — 9009(r” p)* + 3465(rn” p)* + 315) pp”
—(3003(m"p)® — 3465(m” p)* + 945(m " p)* — 35) Id] m,

where Id is the unit matrix and 7 stands for the transpose. As shown in section 3.2, the first four terms
(dipole, quadrupole, hexapole and octupole) of the magnetic field gives an accurate model for the MVA.

In order to take into account the shape of the magnet, the ring is defined by the addition of two cylinders
of equal length L [35]. The magnetic field of the largest is computed as previously using the diameter D, and
a positive magnetisation M, whereas the magnetic field of the hole is computed using the diameter D;,,; and a
negative magnetisation —M. The latter is simply computed replacing De,: by Dint and m by —m in Eq. (5).

2.3.2 Total Stiffness Force

The total force applied on magnet 1 due to the repulsive and corrective magnets is computed using Eq. (2) for
magnets 2 to 7 and finally reads

7
mm=§:F@m (6)

where p; is the vector between the centre of the magnets ¢ and 1.
For i = (2, 3) one has
Ipi| = (r + ), (7)

while for i = (4,5,6,7),
Ipi| = (R + )+ d*)'/2, (8)

where x is the displacement of the magnet 1 around its central position. According to Eq. (7), the repulsive force
is tuned using the length r while Eq. (8) shows that the lengths R and d tune the corrective force. Truncating
the Taylor series around x = 0 at the fifth order, the total force applied on the magnet 1 can be written as

Fro(w) = ~(K{7(r) = K{™ (R, d))a — (K37 (r) = K57 (R.d))a® = (K57 (r) = K§™ (Rod))a®,  (9)
%*Klszg $37K5 1'5. (10)

This magnetic force is factorised to give a linear, a cubic and a quintic stiffness terms. Modifying the geometric
parameters r, R, and d, these three terms can be tuned to change the properties of the MVA. The detailed
expressions of these coefficients are given in Appendix A.

2.3.3 Stiffness Cartography

The aim of this section is to show how the geometry of the device, parametrised by 7, R and d, can be used for
tuning the stiffnesses of the MVA. Fig. 4 shows the evolution of the coefficients K7, K3 and K5 as a function
of r and d. As explained in section 2.2, R is selected as R = r — L in all this section. The central row of Fig. 4,
i.e. Figs. 4(d-f), corresponds to the experimental device shown in Fig. 2 with R = r — L. In order to explore
numerically the possible stiffnesses of the MVA, the first row, i.e. Figs 4(a-c), shows a case where a larger value
of R has been selected. More specifically, denoting ry the minimal distance numerically computed (ro = 20 mm
in Fig. 4), the length R has been increased of rg. This minimum distance is arbitrarily chosen according to
the model limitations. Then, in Figs. 4(g-i), the distance R has been decreased so as to observe the effect of a
stronger correction brought by the corrective magnets. In this case, R has been decreased of ro/2.

The stiffness cartography has been computed from the model presented in the previous section, with as input
parameters two different magnetic moments, m, and m., respectively for the repulsive and corrective magnets.
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The selection of the numerical values relies on an identification procedure for the MVA design shown in Fig. 2
and used as a reference case for the study of the stiffness variations. The parameter values are m, = 0.89 and
m. = 0.71. Moreover a shift Ad = 3 mm is added to d in order to better fit the model with the experimental
realisation. The choice of this parameter is more deeply explained in section 3.2.

70 7 70 70
s (a) (b) (©)
60| 7 60 60
= 50 50 50
E
= 40 40 40

K1.102 [N/m] K3.106 [N/m3] K5.10° [N/m°]

Fig. 4 Theoretical evolution of the linear (first column), cubic (second column) and quintic (third column) stiffness coefficients as
functions of r and d for R=r — L+ 20 mm (a, b,c), R=r—L (d, e, f) and R=r — L — 10 mm (g, h, i). Zeros are shown using
black dashed lines. Configurations of Fig. 5 are denoted with the markers as: A, ¢, o.

Figure 4 demonstrates that many stiffness configurations can be reached using the proposed MVA. Modifying
the geometric parameters, all the stiffness coefficients can be either positive, equal to zero or negative. According
to Figs. 4(a-c), for a large value of R, linear (K1) and quintic (K5) coefficients are positive in almost all geometric
configurations while the cubic coefficient K3 is always above zero. Largest values of the coefficients are found
for small values of r. When the corrective magnets are far from the magnet 1, the parameter d has a small effect
on stiffness coefficients. As shown in Figs. 4(d-f), when R is roughly equal to r, more geometric configurations
are able to produce negative coefficients. The parameter d has now an important effect on the coefficients.
For example, K5 can be either positive or negative by modifying d when r = 25 mm, see Fig. 4(f). Finally,
when R is smaller than r as in Fig. 4(g-i), the cartographies of the stiffness coefficients become more complex.
Interestingly enough, one can notice that in this configuration, it is possible to have negative values for the two
nonlinear coefficients and a positive value for K;. This could be useful to tuned the MVA as an NLTVA for the
damping of shells (or arches) vibrations. Indeed, for some values of the curvature, a shallow shell may exhibit a
softening nonlinearity, see e.g. [34,39]. As the nonlinear term of an NLTVA should be tuned as the ”mirror” of
the nonlinearity of the primary structure to be damped [45,17], then in this case one needs to design an NLTVA
with a positive K7 and a negative K3.
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To sum up the results of Fig. 4, the linear coefficient is large for small values of r, or in other words when
magnets are close together. Negative values of K; are given by large r. The extremum values of coefficients
can be increased by modifying the magnetic properties of the device. For instance, a larger magnetisation may
be used in order to increase the difference between minimum and maximum values of K;. If one changes the
magnet grade from N42 to N50, an increase of the linear stiffness of the order of about 10% can be awaited.
Another option is to add more magnets to the absorber. As the magnetisation is proportional to the volume
occupied by the magnetic material, a substantial increase in the forces can be obtained.

In the following sections, R is equal to r — L as in Figs. 4(d-f). In order to investigate the behaviour of the
MVA, this paper focuses on the modification of the linear stiffness coefficient. In Fig. 4(d), the blue, red and
green markers present geometric configurations where K is respectively positive, equal to zero and negative.
Hence in this three selected configurations, the MVA is tuned either as a vibration absorber (TVA, marker A),
a nonlinear energy sink (NES, ¢) or a bi-stable damper (o) respectively. In each case, the nonlinear coefficients
are positive. The remainder of the study is focused on these three different realisations. Numerous other test
configurations could have been investigated, by tuning the nonlinear characteristic of the MVA (in order to
obtain hardening or softening nonlinearity), or by adjusting the magnetic parameters, or the mass of the MVA.
However all these further case study are postponed to the next step of this research, where the MVA will be
used in real conditions on a given structure.

3 Static Behaviour

The MVA is now experimentally studied. Static force measurements are reported, in order to investigate the
behaviour of the absorber for the three cases indicated with the markers in Fig. 4. A thorough identification of
the model parameters is then conducted.

3.1 Static Force Measurements

The proposed model of the tunable MVA is compared with static force measurements for the three geometric
configurations indicated with the markers in Fig. 4 and described by r and d in Table 2. The magnet 1 is moved
around its central position £ = 0 with a 1 mm step. The static force applied on the magnet is measured for
each step and presented using blue crosses in Fig. 5. The inserts show the measurements around the central

-6 i i i -3 i i i -2.5 y X y
-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40
z [mm] 2 [mm)] z [mm]
(a) K1 >0 (a) (b) K10 (#) (c) K1 <0 (o)
Fig. 5 Static force applied on the magnet 1 as a function of its displacement. Measurement [+], experimental fit | | and
theoretical fitted model [— — -] (see text). Colored markers refer to geometric configurations given in Table 2 and shown in Fig. 4.

position where the effects of the nonlinear terms can be neglected. Therefore the sign of the linear coefficient
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K can be directly observed. Since the force is given by Frot(z) ~ —Kjz for small displacements, Figs. 5(a),
5(b) and 5(c) show that the linear coefficient is respectively positive, quasi-equal to zero, and negative. These
results are in agreement with the theoretical conclusions of Fig. 4(d) and demonstrate that the MVA can be
experimentally tuned as a TVA, an NES or a bi-stable damper, which has a linear negative stiffness and thus
possess two stable equilibria around the unstable central position.

3.2 Identification of the Model Parameters

In order to find the experimental values of the stiffness coefficients, the measurements are fitted using Eq. (10).
For the three configurations the linear, cubic and quintic fitted terms, named K%, K. f P and K f P are given
in Table 2. The plot of Eq. (10) using these values is presented in Fig. 5 and shows that this simple function is
able to accurately estimate the behaviour of the MVA.

Param. Fig 5(a) Fig5(b) Fig 5(c)

r [mm)] 47 47 47

d [mm] 36 24 22
KPP [N/m] 29.90 1.84 —13.39
K1 [N/m] 25.59 —211  —1277

KPP [N/m3]  0.6410° 0.66 105 0.74 10°
K3 [N/m3] 0.59 10° 0.7310° 0.57 10°
KPP [N/m®] 0.2010% 1.2110° 1.04 108
K5 [N/m5] 0.3210% 1.2810% 1.36 108

Table 2 Experimental fitted and theoretical optimised stiffness coefficients.

Then, the experimental linear stiffness coefficients are used to optimise the model presented in section 2.3.
In the expression of K; detailed in Appendix 1, three parameters are used for this optimisation. Since the
theoretical value of the magnetic moment mspe, depends on the approximate remanent magnetic field B, given
by the manufacturers, the two first variable parameters are m, and m.. Moreover, to take into account the
errors of the length measurements, the third parameter is a shift Ad, added to the length d. This adjusting
parameter is used as an overall free variable taking into account the measurement errors in geometry for each
magnet which occur when the experimental realisation of the MVA is not perfectly symmetric. To optimise
these parameters, the method of least squares using the experimental and the theoretical stiffness coefficients
is applied for a large number of geometric configurations V. Thus, the cost function to minimise is

N N
Feostmpsme, Ad) = 3 (KL = Ka(my, me., Ad))2 =3 (K& = (K[, Ad) = K5 (e Ad)})2

i=1 =1

Fig. 6(a) shows the experimental linear coefficients for 50 different configurations used to find the optimal values
of the variable parameters given in Table 3.

my Me Ad
0.89 0.71 3 mm

Table 3 Optimal values of the variable parameters.

In order to confirm these magnetic moment values found from the fitting procedure, magnetic field measurements
along the axis of a ring magnet, as well as shifted from the same axis, have been conducted. These measurements
clearly demonstrate that the optimized value of m, is in good agreement with the magnetic field measurements.
Nevertheless, outside of the magnet axis, measurements show that the magnetic field deviates from the multipole
expansion theory. This is the reason why an equivalent magnetic moment m., different from m,., is introduced.
Moreover it is in good agreement with the calculation of K7, K3 and Kj5. For the three cases presented in
section 3.1, the stiffness coefficients computed using the optimal model are given in Table 2 and shown with
black dashed lines in Fig. 5. Since theoretical and experimental values are close, the optimal model is believed
to give a reliable description of the MVA.

To conclude this section, a discussion on the accuracy of the multipole expansion as compared to the dipole
approximation, is provided. For every configuration the theoretical stiffness coefficients are compared to the
experimental results and presented in Fig. 6 with dashed and full lines respectively. Each point represents a
geometric configuration corresponding to a pair (r,d) linked together for the same 7. The optimal model gives
very accurate results for the linear stiffness which is always close to the experimental coefficient. When the
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150 \

Ky [N/m]

K5 [N/m?]

Fig. 6 Linear (a), cubic (b) and quintic (c) stiffness coefficients for r = 35mm | ], 7 = 40mm | ] and r = 45mm | ]. Full
lines are the results of the experimental fit, dotted lines are the results of a dipole approximation and dashed lines are the results
of the multipole expansion.

distances r and d are large, the model gives also very accurate results for the nonlinear coefficients K3 and
K. The accuracy of the model decreases when r and d also decrease, see e.g. Fig. 6(b) and 6(c). For instance,
K5 is incorrectly predicted when 7 = 35 mm, or » = 40 mm and d < 30 mm, but the figure definitely shows
that using a multipole expansion improves significantly the accuracy of the model for small values. Indeed,
the dotted lines show the theoretical stiffness coefficients given by a dipole approximation, whereas the dashed
line shows the result predicted with the multipole expansion. Note that when using only the dipole term, the
optimisation procedure provides different (though close) values: m, = 0.82, m. = 0.72 and Ad = 3 mm. Fig.
6(a) shows that the two models give similar results for the linear stiffness coefficients. However, the multipole
expansion provides better results for the modelling of nonlinear coefficients as shown in Fig. 6(b) and 6(c), and
even for small values of r and d. For instance, when » = 35 mm, the error on K3 and Kj is divided by 2 almost
everywhere using the multipole expansion.

To conclude this section, the model proposed in section 2 gives accurate results for the modelling of the linear
and cubic stiffness coefficients. For the quintic term the accuracy is ensured only for large values of r and d. For
almost every geometric configuration the multipole expansion is more accurate than the dipole approximation,
this being especially true for nonlinear coefficients.
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4 Dynamical Behaviour

This section is devoted to the dynamical behaviour of the MVA, tuned either as an NLTVA, an NES or a bi-
stable absorber. In order to investigate its general dynamics, experiments are compared to numerical simulations
for the 3 geometric configurations. The MVA which has been used to study the NLTVA and the NES is the
experimental realisation presented in section 2.2. Nevertheless, the linear stiffness of the NLTVA has been
increased slightly in order to cope with experimental limitations in low-frequency range due to the use of a
shaker. For practical reasons, the MVA selected to study the bi-stable absorber is built with smaller magnets.
Thus, the characteristics of the new magnets are L = 6 mm, D;,; = 6 mm, D¢y = 15 mm, myeg = 6.6 g and
the results of the optimisation step give m, = 0.67, m, = 0.54 and Ad = 2 mm.

4.1 Experimental set-up and model comparison

sensor

displacement

shaker

Y 4

Fig. 7 Experimental set-up for dynamical measurements. The external frame of the MVA (shown in black) is mounted on the
shaker. The displacement of the mobile magnet (shown in red) is measured relatively to the displacement of the external frame.

As shown in Fig. 7, the external frame of the MVA is excited using a LDS V455 shaker and the displacement
x of the magnet 1 is measured with a Keyence LS-7070M optical sensor. The absorber is placed horizontally to
avoid the gravity effect. Indeed, the restoring force would be asymmetric in case of a vertical MVA. The force
applied on the vibrating magnet is harmonic. For a given experiment, the amplitude of the forcing is fixed and
the frequency is varied. Increasing and decreasing values of the forcing frequency are used in a step-by-step
experiment, as is usual for nonlinear vibrations where hysteretic behaviours are awaited due to the presence of
multiple equilibria for a certain frequency range. Using this experimental set-up, the equation of motion for the
vibrating magnet reads

mmagi' + Xvisc:b + g Kfric Mmag sgn(x) + le + K3.Z‘3 + K5.Z‘5 = ]:ezt Sin(Qt)v (11)

with 1,44 the mass of the vibrating magnet, xyisc & viscous damping coefficient, p¢r;c a dry friction coefficient
(and sgn(.) represents the sign function), ¢ the gravitational acceleration, K1, K3, K5 the stiffness coefficients
and Fe,+ and (2 the amplitude and the frequency of the external force respectively. The identification of all the
model parameters (namely Mumag, ffric, K1, K3, K5 and Xuisc) is realised as follows. The mass of the vibrat-
ing magnet my,q4 is directly measured. The dry friction coefficient jif.;. is found by comparing experimental
measurements and theoretical values. A set of specific measurements have been realised by applying a static
force of increasing amplitude on a free magnet placed on the same lubricated plastic rod as those used for the
MVA. The measured force threshold initiating the magnet displacement gives approximately p¢ric = 0.4 with
an accurate repeatability. This value is exactly within the generic range of static frictional coefficient between
lubricated Plexiglas and steel (0.4 — 0.5) found in tables. Therefore, the value of 0.4 has been retained for all
numerical simulations.

Then, one defines the selected geometry for the MVA in order to use it as an NLTVA, an NES or a bi-stable
absorber. These 3 arrangements are given fixing the geometric parameters r and d (with R selected as r — L).
From these parameters, together with the magnetic moments derived from the static measurements, the theo-
retical model using the multipole expansion of section 2 provides the stiffnesses K1, K3 and K5. The values of
these parameters are given in Table 4 for the 3 configurations .

The last parameter to evaluate is the viscous damping coefficient X,;sc. This coefficient includes all loss mecha-
nisms which are not detailed in the model. For example, these losses could be due to lubricated viscous friction,
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Param. NLTVA (§4.2.1) NES (§4.2.2) Bi-stable absorber (§4.2.3)
7 [mm] 38 47 37.5
d [mm] 38 24 16
Mmag [g] 10 10 6.6
Xvise [kg/s'] 0.09 0.044 0.079
Pric [ 0.4 0.4 0.4
K1 [N/m] 70.49 —2.11 —44.22
K3 [N/m3] 1.36 10° 0.73 10° 2.57 10°
K5 [N/mP] 1.27 108 1.28 108 12.98 108

Table 4 Characteristics of the studied configurations.

heat transfer and eddy currents. As the damping behaviour of the MVA in free vibration is dominated by the
dry friction for free oscillations, s is difficult to evaluate experimentally by using free decay tests. Therefore,
the value of the viscous damping coefficient has been estimated by fitting measured and theoretical frequency
response curve. Experimental frequency-response curves are obtained with a step-by-step increase and decrease
of the excitation frequency (with a step of 0.5 Hz). Numerical solutions are found by continuation, using a
pseudo-arclength continuation method implemented in the software AUTO [8]. All the values used to feed the
model are given in Table 4. One can observe that slight variations of the viscous damping coefficients are found.
They should be due to different physical mechanisms : eddy currents in the fixed magnets are present due to the
oscillations of magnet 1. These damping forces depend on the configuration used so that finding different values
of xvisc appears logical. Finally the lubrication on the axis changes slightly from one experiment to another
one, once again explaining the observed differences.

4.2 Results
4.2.1 The NLTVA
First, the MVA is tuned as a TVA with a positive linear stiffness Kj. The case is termed "NLTVA” as we

are also interested in the nonlinear characteristics of the MVA, which have been chosen positive for this case,
see the values given in Table 4, second column. Fig. 8 shows the frequency-response curves for five different
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Fig. 8 MVA tuned as an NLTVA. Maximum amplitude of the displacement of the vibrating magnet for increasing external forces:
Fext = 0.02 N [—],0.08 N [—], 0.16 N [—], 0.20 N [—] and 0.32 N [—]. (a): measurements - Forward [O] and backward
[+] sweeps. (b): simulations. continuous line: stable solutions, dotted lines: unstable solutions.

amplitudes of the forcing, for a frequency range in the vicinity of the eigenfrequency of the MVA oscillator.
For each amplitude of the external force, experimental and numerical frequency response curves give very close
results. The typical backbone curve due to nonlinear terms appears when the external force is increased. As
the K3 and K5 are both positive, a hardening nonlinearity is observed. In order to illustrate the tuning of
the resonance frequency and of the backbone curve, Fig. 9 shows several NLTVA configurations for the same
external force Fe;+ = 0.32 N. These examples demonstrate that the frequency response of the MVA greatly
depends on its geometric configuration. According to Table 5, the frequency of the peaks is tuned by K; and
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Fig. 9 Examples of experimental NLTVA behaviour for (r,d) = (38,38) mm [O], (36,26) mm [O], (30,66) mm [O], (30,20) mm [O]
and (30,27.5) mm [O]. Forward sweeps with circles [O] and backward sweeps with [+].
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the nonlinear terms saturate the large amplitudes of the vibrations of the MVA. It must be noticed that the

Legend O O O O O

r [mm)] 38 36 30 30 30

d [mm] 38 26 66 20 27.5
K [N/m] 70.49 93.96 11844 183.75 260.26

K310° [N/m®] 136  4.75 5.20 21.49 8.72
K5 108 [N/m®] 127  4.63 1241  48.78 2.65

Table 5 Stiffness coefficients for the NLTVA examples of Fig. 9.

maximum amplitude of the vibrating magnet depends on the geometric configuration. Indeed, this amplitude
is obviously limited by r. As shown in Fig. 4, largest values of K are given for small values of r. Thus, it seems
not possible to have large vibrating amplitude in high frequency. However, this can be overcome by modifying
other parameters like magnet dimensions or magnetic characteristics.

4.2.2 The NES

The MVA is now tuned as an NES, the characteristics of which are given in the third column of Table 4.
Measurements and simulation results are shown in Fig. 10. Due to intrinsic limitations of the shaker used in
the experiments, applying a constant external force in low frequency is out of reach, so that the smallest tested
excitation frequency is 10 Hz. Below this value, the behaviour of the NES can be studied using the simulation
results.

At first sight, the general behaviour of the frequency-response curves share similarities with the case of
the NLTVA, the main difference being the vanishing resonance frequency, implying a different behaviour of
the solution branches in the low frequency part. However, a main difference is found : the lower branch in
high frequencies presents an instability. More precisely, a pitchfork bifurcation point is found numerically for a
frequency slightly larger than the saddle-node usual limit point (see Fig. 10(a) where the bifurcation point is
indicated with a circle as PF for pitchfork bifurcation). From this bifurcation point, the lower branch is unstable
and a couple of stable periodic solutions arise. It has also been found numerically that the basins of attraction of
the stable periodic orbits emanating from the pitchfork are very small. Hence, for these parameter values, three
solutions coexist in the phase space : a quasi-periodic solution and two stable periodic orbits. The solution that
is most likely to be observed being the quasi-periodic one. In fact the only way to observe the periodic solutions
emanating from the pitchfork is to continue the solutions slowly from the bifurcation point with increasing
excitation frequencies. Only a small portion of the lower branch is stable, in the vicinity of the saddle-node
bifurcation point. Thus in an experiment with increasing and decreasing step-by-step harmonic excitation, the
following observations are expected:

e when increasing the excitation frequency, the upper branch with large amplitude is followed, until the jump
point. At this point, the quasi-periodic regime is expected.

e when decreasing the excitation frequency, the quasi-periodic regime is first observed. Then after the pitchfork
bifurcation point and before the jump to the upper branch at the saddle-node point, periodic orbits are
observed, corresponding to the stable part of the lower branch. Finally the jump to the upper branch is
observed.



