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A Bayesian Framework for Preventive Assistance at Road Intersections
Alexandre Armand1,2, David Filliat2, Javier Ibañez-Guzman1

Abstract— Modern vehicles embed an increasing number of
Advanced Driving Assistance Systems (ADAS). Whilst such
systems showed their capability to improve comfort and safety,
most of them provide assistance only as a last resort, that
is, they alert the driver or trigger automatic braking only
when collision is imminent. This limitation is mainly due to
the difficulty to accurately anticipate risk situations in order
to provide the driver with preventive assistance, i.e. assis-
tance allowing for comfortable reaction. This paper presents
a Bayesian framework which aims to detect risk situations
sufficiently early to trigger conventional curative assistance
as well as preventive assistance. By taking into consideration
the context, the vehicle state, the driver actuation and the
manner how the driver usually negotiates given situations, the
framework allows to infer which type of assistance is the most
pertinent to be provided to the driver. The principles of this
framework are applied to a fundamental case study, the arrival
to a stop intersection. Results obtained from data recorded
under controlled conditions are presented. They show that the
framework allows to coherently detect risk situations and to
identify what assistance, including preventive assistance, is the
most appropriate for the situation.

I. INTRODUCTION

Accessibility to motor vehicles has provided freedom of
movement to people and changed society. However, they
have also brought road accidents which kill more than 1.2
millions people per year in the world. Statistics show that
the great majority of accidents are caused by human errors,
favored by factors such as distractions, tiredness, etc. [12].
Among all accidents, over 40% of collisions and 20% of
fatalities happen at road intersections which represent the
most complex areas where various entities converge [9].

The problem of road safety has been of much concern for
several years in the automotive industry. The first solution
to road fatalities was to embed passive safety features in ve-
hicles, such as airbags, ABS, to diminish the consequences
of accidents. More recently, encouraged by the extensive
progress in robotics and the diminution of sensors costs,
intelligent systems progressively took place in vehicles to
assist drivers when collisions are imminent. For instance,
systems such as Automatic Emergency Braking (AEB) allow
to avoid collisions with other vehicles or pedestrians. Whilst
such functions allow to avoid collisions, they are triggered
as a last resort only.

This paper proposes a Bayesian Network framework that
aims to detect risk situations with more anticipation than
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conventional systems. The purpose is to infer risk situations
early enough to provide preventive assistance (which can be
provided in the form of advice) allowing the driver to have
sufficient time to react and decelerate comfortably. Further,
it allows to identify which type of assistance between
AEB, warning alerts and advice is the most pertinent to
be triggered, with respect to the situation and the moment
at which risk has been detected. The framework is applied
for a vehicle that is approaching to a stop intersection.

The reminder of the paper is organized as follows. Section
2 presents a review of literature focusing on risk estimation
at road intersections, followed by the problem statement.
The Bayesian Network is detailed in Section 3, and Section
4 presents the results from experimentation. Finally, Section
5 concludes the paper.

II. RELATED WORK AND PROBLEM STATEMENT

A. Related Work

Safety at road intersections is of much concern, and
extensive work has been carried out for several years.
A review of the related literature allows to identify two
major approaches to perform risk assessment: 1) Collision
prediction 2) Detection of unexpected manoeuvres.

The first approach aims to perform risk assessment in
two steps: trajectory prediction, followed by collision de-
tection. Whilst detection of imminent collisions is mainly
performed through the computation of the popular Time To
Collision (TTC) [1], there are several methods to predict the
trajectory of the subject vehicle. The simplest consists in
predicting the vehicle trajectory using conventional motion
models [11]. The main drawback of such methods is the
difficulty to take into consideration the context and other
road users. More sophisticated methods allow to tackle
these limits, for instance by using sets of context aware
trajectory prototypes, defined by parametric functions [8],
or non parametric functions such as Gaussian Processes [6].
The current vehicle trajectory is compared to the set of
trajectory prototypes, and the closest prototype is selected
to predict the trajectory. Another solution consists of the
estimation of the manoeuvre that the vehicle is performing,
followed by the estimation of the future vehicle trajectory
according to this ongoing manoeuvre. Plenty of techniques
exist for manoeuvre estimation, such as Hidden Markov
Models (HMM) [4], Support Vector Machine (SVM) [2],
neural networks [10], or also Scenario Model Trees (SMT)
[5].

The main drawback of the first approach is that trajec-
tories can be accurately predicted over short time horizons



only, which prevents from accurately predicting collisions
several seconds before they occur. The second approach
for risk assessment is not based on collision detection, but
is higher level as it is based on the detection of unex-
pected manoeuvres. This context aware approach consists
in detecting differences between the manoeuvre that the
driver is expected to perform, with the manoeuvre that he
is likely to have intention to perform. This approach has
been implemented within a Dynamic Bayesian Network and
tested in cooperative vehicles [7]. The results of the field
trials proved the capability of the model to accurately detect
risk situations.

B. Problem Statement

The literature has shown that multiple techniques allow
for the inference of likely collisions in road intersection
contexts. However, most of the techniques infer that the
situation is likely to be at risk only when the situation has
already become dangerous, i.e. when accident is imminent.
They can be classified as curative systems as they allow to
trigger warning alerts or AEB, leading to driver discomfort.
By contrast, preventive systems would aim to assist the
driver early enough to allow him to react and avoid the
situation to become dangerous. For example, an HMI could
help the driver identify the pertinent context entities he is
likely to have missed, and guide him to take good decisions.
Providing the driver with curative or preventive assistance
should depend on the situation, and on the moment at which
risk is detected. Actually, triggering AEB too early is not
pertinent, as well as triggering advice assistance too late.

In this paper, it is proposed to take benefits from context
information, the vehicle state, the driver actuation and the
driver individualities to infer risks as the vehicle approaches
to a stop intersection. For this purpose, the Bayesian frame-
work that was presented by [7] was extended to detect risk
sufficiently early to trigger preventive assistance. Moreover,
it allows to identify which of the three main types of
assistance is the most pertinent to be provided to the driver,
with respect to the situation and the moment at which risk
is detected.

III. BAYESIAN NETWORK

A. Variables Definition

Figure 1 shows the proposed Bayesian Network. It stores
five conjunction nodes which are presented bellow.

1) Vehicle Physical State: This node stores four variables
such as φnt = (Sn

t , P
n
t , B

n
t , G

n
t ). They represent the true

physical state of vehicle n at time t:
• Sn

t ∈ R, the true speed of vehicle n.
• Pn

t ∈ R, the true pose of vehicle n, which is repre-
sented in one dimension as the distance to the coming
intersection (i.e. curvilinear abscissa).

• Bn
t ∈ {on, off}, the true state of the brake pedal of

vehicle n. It is assumed that the state of the brake pedal
is binary. State on means that the driver pushes the
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Fig. 1: The proposed Bayesian Network

brake pedal, and state off means that the driver does
not push the brake pedal.

• Gn
t ∈ {on, off}, the true state of the gas pedal of

vehicle n. In the same manner as for the brake pedal,
the state of the brake pedal is assumed to be binary.

2) Observations Zn
t : This node stores four variables such

as Zn
t = (Sobsnt , Pobs

n
t , Bobs

n
t , Gobs

n
t ). They represent

the measurements of the physical state of vehicle n at time
t:

• Snobst ∈ R the measured vehicle speed of vehicle n.
• Pnobst ∈ R the measured pose of vehicle n.
• Bnobst ∈ {on, off}, the observed state of the brake

pedal of vehicle n.
• Gnobst ∈ {on, off}, the observed state of the gas

pedal of vehicle n.
3) Intended Manoeuvre Int : This node stores two vari-

ables such as Int = (IMn
t , IR

n
t ) which represent the

manoeuvres that the driver has the intention to perform. The
term “manoeuvre” concerns either the vehicle or the driver.
A manoeuvre related to the vehicle has to be understood
as a the vehicle behaviour impacting its physical state. For
example, turning right, or making a stop are considered as
manoeuvres related to the vehicle. A manoeuvre related to
the driver has to be understood as an action that the driver
is performing. For example, reacting by pushing a pedal,
or turning the steering wheel are considered as manoeuvres
related to the driver.

• IMn
t ∈ {go, stop} the intended longitudinal ma-

noeuvre of vehicle n. The driver can either have the
intention to stop, or to go at the stop intersection.

• IRn
t ∈ {reaction, no reaction} the intended manoeu-

vre of the driver of vehicle n. Here, the term “driver
manoeuvre” has to be interpreted as the reaction that
the driver shows when he starts to interact with the stop
intersection. Depending on the context, the driver can
therefore have the intention to react, or not to react.

4) Expected Manoeuvre En
t : This node stores two vari-

ables such as En
t = (EMn

t , ER
n
t ) which represent the

manoeuvres that the driver is expected to perform. These
manoeuvres are the same as the intended manoeuvres:

• EMn
t ∈ {go, stop} the expected longitudinal manoeu-

vre of vehicle n. The vehicle can either be expected to
stop, or expected to go at the stop intersection.



• ERn
t ∈ {reaction, no reaction} the expected ma-

noeuvre of the driver of vehicle n. The driver can
either be expected to react, or not to react to the stop
intersection.

5) Assistance An
t : Assistance can be provided in 3 forms:

automatic actuation, warning and advice. Thus, An
t , the

relevance of providing assistance to the driver of vehicle
n at time t is defined by An

t = (Actnt ,Warnt , Adv
n
t ), with:

• Actnt ∈ {not pertinent, pertinent} the relevance of
performing automatic emergency actuation on vehicle
n at time t. Actnt = not pertinent means that auto-
matic actuation at time t is not pertinent and Actnt =
pertinent means that automatic actuation at time t is
pertinent.

• Warnt ∈ {not pertinent, pertinent} the relevance of
warning the driver of vehicle n at time t. In the same
manner as for AEB, warning assistance can either be
pertinent or not pertinent.

• Advnt ∈ {not pertinent, pertinent} the relevance of
giving an advice to the driver of vehicle n at time t.
In the same manner as for AEB, advice assistance can
either be pertinent or not pertinent.

B. Parametric Forms

1) Expected Longitudinal Manoeuvre EMn
t : The evolu-

tion model of the expected manoeuvre is very simple as the
case study consists of the approach to a stop intersection.
Thus, the expected longitudinal manoeuvre is always to
make a stop at the intersection, independently from the ve-
hicle state and the intended manoeuvre at previous timestep.
The conditional probabilities for the expected manoeuvre are
therefore defined as follows:{

P (EMt = go) = 0

P (EMt = stop) = 1
(1)

2) Intended Longitudinal Manoeuvre IMn
t : The evolu-

tion model of the intended longitudinal manoeuvre is the
same as the one used in [7]. That is, it is based on the
comparison between the expected manoeuvre at time t and
the intended manoeuvre at time t − 1. Table I shows the
conditional probabilities. The evolution model assumes that
drivers mostly respect traffic rules. In that way, the variable
Pcomply is defined to model how much drivers comply with
rules. A low value set for Pcomply means that most of the
time drivers do not respect rules, while a high value means
that drivers usually respect rules. If the intended manoeuvre
at time t− 1 and the expected manoeuvre at time t do not
match, a uniform prior is assumed.

3) Expected Driver Reaction ERn
t : The evolution model

of ERt, the expectation that the driver is reacting at time
t, depends on how early the driver usually reacts to a stop
intersection. The moment at which a driver react depends on
γ, the average acceleration that he will have to undergo to
stop. The later the driver reacts, the higher the acceleration

TABLE I: Conditional probabilities describing the intended
manoeuvre.

It−1 Et P ([It = go]|It−1, Et) P ([It = stop]|It−1, Et)

go go Pcomply 1− Pcomply
go stop 0.5 0.5
stop go 0.5 0.5
stop stop 1− Pcomply Pcomply
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(a) Example of probability that the
driver should be reacting
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Fig. 2: Learnt driver patterns

that he has to undergo is. This acceleration depends on the
driver driving style.

The approach that was chosen considers that drivers
usually look to undergo accelerations that they are used to
undergo, i.e. accelerations that they consider as comfortable.
For each driver, it is necessary to learn when he usually starts
to react to a stop intersection. For this purpose, the average
accelerations that the driver usually do not have to undergo
to stop are learnt. It enables to determine the relationship
between average accelerations γ, and ψ the percentage of
situations in which the driver did not have to undergo
average acceleration γ. This relationship is defined as the
driver dependent function f , defined such as ψ = f(γ).
Figure 2a shows an example of function f learnt for a
particular driver.

4) Intended Driver Reaction IRn
t : The evolution model

of IRt, the driver’s intention to react to the stop intersection
at time t is based on the comparison between the expected
driver’s reaction at time t and the intended driver’s reaction
at time t − 1. This model assumes that the driver mostly
complies with the behaviour he is expected to have. This
is represented through the parameter Pcomply that was
presented before.

In that way, it is modelled that if intention at time t− 1
and expectation at time t are similar, the probability is high
that intention at time t is the same as the one at time t− 1.
Moreover, it is modelled that if the driver starts reacting
at time t − 1, the probability that he will keep on reacting
at time t is high. However, there is no prior assumption
on intention at time t when the driver was not reacting at
time t− 1 while he is expected to react at time t. Table II
summarizes these conditional probabilities.

5) True Vehicle Pose Pn
t : The evolution model of the

true vehicle pose Pt at time t depends on the true vehicle
pose Pt−1 and speed St−1 at time t − 1. The conditional
probability that describes Pt can be simplified as follows:



TABLE II: Conditional probabilities describing the intended driver reaction.

IRt−1 ERt P ( [IRt = reaction]|IRt−1, ERt) P ([IRt = no reaction]|IRt−1, ERt)

reaction reaction Pcomply 1− Pcomply
reaction no reaction Pcomply 1− Pcomply

no reaction reaction 0.5 0.5
no reaction no reaction 1− Pcomply Pcomply

P (Pt|φt−1, It−1, It) = P (Pt|Pt−1, St−1) = N (µP , σ
true
P )

(2)
with:
• µP the mean of the pose. For the sake of simplicity, it

is computed following a constant velocity model, using
the value of Pt−1 and St−1 , and the duration between
timesteps t− 1 and t.

• σtrue
P the standard deviation of the pose in the motion

model.
6) Observed Vehicle Pose Pobsnt : The evolution model

of the observed vehicle pose Pobst at time t is based
on a classic sensor model as the measurements of the
vehicle pose suffer from noise. The measurements follows a
normal distribution centred on the true vehicle pose Pt. The
conditional probability that describes Pobst can therefore
be written as follows:

P (Pobst|Pt) = N (Pt, σ
obs
P ) (3)

7) True Vehicle Speed Sn
t : The evolution model of the

true vehicle speed St at time t depends on the true vehicle
pose Pt−1 and speed St−1 at time t − 1, and of the
intended longitudinal manoeuvre at time t. Pt−1 and St−1

are used to predict the vehicle pose Pt at time t, assuming
constant speed between t− 1 and t. St is then based on the
velocity profile corresponding to the intended longitudinal
manoeuvre IMt. These velocity profiles are assumed to
follow normal distributions.

The likelihood of the true vehicle speed is defined as
following a normal distribution such as:

P (St|φt−1, It−1, It) =

{
N (µgo

S , σ
go
S ) if It = go

N (µstop
S , σstop

S ) if It = stop
(4)

The assumption that all drivers are different is taken. For
this purpose, the velocity profile representing the manner
how the driver usually decelerates when he approaches to a
stop intersection has to be customized. This was done using
Gaussian Processes as it is described in [3]. Figure 2b shows
the example of a customized velocity profile for It = stop.
For It = go, it is assumed that the vehicle speed is constant
between t− 1 and t, therefore µgo

S (t) = St−1.
8) Observed Vehicle Speed Sobsnt : The measurements of

the vehicle speed are collected from the vehicle CAN-bus,
and do not suffer from uncertainties. They are modeled as
follows:

TABLE III: Conditional probabilities describing the true
state of the brake pedal.

IRt P ([Bt = on]|IRt) P ([Bt = off ]|IRt)
reaction Pcomply 1− Pcomply

no reaction 0.5 0.5

TABLE IV: Conditional probabilities describing the true
state of the gas pedal.

IRt P ([Gt = on]|IRt) P ([Gt = off ]|IRt)
reaction 0.5 0.5

no reaction Pcomply 1− Pcomply

P (Sobst|St) = δ(St − Sobst) (5)

9) True State of Brake Pedal Bn
t : The evolution model of

Bt, the state of the brake pedal at time t is based on IRt,
the intention to react at time t. The model assumes that
pushing the brake pedal is a sign of reaction. It means that
if the driver intends to react, the probability that he pushes
the brake pedal is high. The parameter Pcomply which was
presented before, is used to model this probability. However,
if the driver does not intend to react, no prior assumption is
done about the state of the brake pedal. Table III summarizes
these conditional probabilities.

10) Observed State of Brake Pedal Bobsnt : The measure-
ments of the state of the brake pedal are collected from the
vehicle CAN-bus, and do not suffer from uncertainties. They
are modeled as follows:

P (Bobst|Bt) = δ(Bt −Bobst) (6)

11) True State of Gas Pedal Gn
t : The evolution model

of Gt, the state of the gas pedal at time t is based on IRt,
the intention to react at time t. The model assumes that
pushing the gas pedal is a sign of no reaction. It means that
is the driver pushes the gas pedal, the probability that he
is not reacting is high. The parameter Pcomply which was
presented before is used to model this probability. However,
if the driver intends to react, no prior assumption is done
on the state of the gas pedal. Table IV summarizes these
conditional probabilities.

12) Observed State of Gas Pedal Gobsnt : The measure-
ments of the state of the gas pedal are collected from the
vehicle CAN-bus, and do not suffer from uncertainties. They
are modeled as follows:

P (Gobst|Gt) = δ(Gt −Gobst) (7)
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TABLE V: Time and physical constraints

Reaction Time ��
Minimum tolerated
acceleration ����

Maximum tolerated
acceleration ����

Automatic Braking �����ℎ��� ����
ℎ��� ����ℎ���

Warning �����ℎ��� + �������� ����
ℎ��� ����ℎ���

Advice �����ℎ��� + �������� ����
�����ℎ ���������ℎ

13) Assistance An
t = (Actnt ,Warnt , Adv

n
t ): Assistance

is necessary if a risk has been detected. However, the
choice of the type of assistance that has to be provided
depends on the constraints imposed by the vehicle state.
Actually, providing an advice does not make sense if after
reaction, the driver has to undergo a too hard deceleration.
Moreover, performing automatic braking is not pertinent
if the deceleration that the vehicle has to undergo is too
smooth. Conditions have therefore to be specified to estimate
if a given type of assistance would be pertinent at time t,
with respect to the vehicle state.

For this purpose, indicator τassistancet ∈
{good, too late, too early}, with assistance ∈
{advice, warning, actuation} is defined in order to
evaluate the pertinence of each type of assistance in case
of risky situations. It indicates whether it would be time,
too late or too early to provide assistance. The three
indicators τadvicet , τwarning

t and τactuationt are defined,
respectively for advice assistance, warning assistance and
AEB assistance.

The state of τassistancet depends on:
• The value of the average acceleration γ that the vehicle

would have to undergo to stop on time if assistance was
provided. This acceleration is computed by Equation
8, considering the vehicle true speed St, the vehicle
true pose Pt and reaction time RT . The reaction time
includes the driver’s reaction time and the vehicle
response.

• An acceleration interval defined by the variables amin

and amax. Figure 3 presents how γ is compared to
this interval to get the state of τassistancet . Table V
presents the time and physical constraints imposed by
each type of assistance. Note that warning and AEB
assistance allow for harder acceleration (low values of
γ, with γ < 0) than advice assistance.

γ = − S2
t

2(Pt − St ·RT )
(8)

The pertinence at time t of each type of assistance for the
driver of vehicle n is defined as follows.

a) Advice Advnt : A behaviour is considered as suspi-
cious when the driver does not show any sign leading to
think that he is aware that he has to stop at the intersection.
This is done by comparing the intended driver reaction
IRt and the expected driver reaction ERt. In that way,
the driver’s behaviour is considered as suspicious at time
t as soon as IRt = no reaction and ERt = reaction.
Moreover, the state of indicator τadvicet has to be good.

The probability that it would be pertinent to provide the
driver with an advice is given by:

P ([Advt = pertinent]|IRt, ERt, τ
advice
t )

=

 1 if

{
[IRt = no reaction], [ERt = reaction], ...

[τadvicet = good]

0 otherwise
(9)

b) Warning Warnt : It is considered that warning the
driver is pertinent as soon as these two conditions are
satisfied at the same time:

• The comparison between the driver’s intended reaction
IRt with the expected reaction ERt shows that the
driver’s behaviour is suspicious, i.e. the driver does not
react while he is expected to react. Moreover, the state
of indicator τwarning

t has to be good.
• Risk has been detected by comparing the intended

vehicle manoeuvre IMt with the expected one, EMt,
i.e. by inferring that the driver does not have intention
to stop while he is expected to stop.

The probability that it would be pertinent to provide the
driver with warning assistance is given by:

P ([Wart = pertinent]|IRt, ERt, IMt, EMt, τ
warning
t )

=


1 if


[IRt = no reaction], [ERt = reaction], ...

[IMt = go], [EMt = stop], ...

[τwarning
t = good]

0 otherwise
(10)

c) Actuation Actnt : Risk is estimated by comparing the
intended vehicle manoeuvre IMt with the expected one,
EMt. It is considered that if the last solution to avoid
an accident is last minute automatic emergency braking,
then any sign of driver reaction does not cast doubt on
the pertinence of this assistance. Thus, the variables IRt

and ERt describing respectively the intended and expected
driver reactions are not considered. Moreover, the state of
indicator τactuationt has to be good.

The probability that it would be pertinent to provide the
driver with an AEB is given by:

P ([Actt = pertinent]|IMt, EMt, τ
actuation
t )

=

 1 if

{
[IMt = go], [EMt = stop], ...

[τactuationt = good]

0 otherwise
(11)



14) Joint Probability: The joint probability of the BN
can be simplified as follows:

P (A0:T , E0:T , I0:T , φ0:T , Z0:T )

= P (A0, E0, I0, φ0, Z0) ·
T∏

t=1
P (EMt|It−1, φt−1)

·P (ERt|Pt−1, St−1) · P (IMt|φt−1, It−1, Et)
·P (IRt|IRt−1, ERt) · P (St|Pt−1, St−1, It)
·P (Pt|Pt−1, St−1) · P (Bt|IRt) · P (Gt|IRt)
·P (Sobst|St) · P (Pobst|Pt) · P (Bobst|Bt) · P (Gobst|Gt)
·P (Actt|EMt, IMt, St, Pt)
.P (Advt|ERt, IRt, EMt, IMt, St, Pt)
·P (Advt|ERt, IRt, St, Pt)

(12)

IV. RESULTS AND DISCUSSION

A. Experimental Setup

1) Facilities: A passenger vehicle driven on closed road
was used for the experimental part. The vehicle speed, and
the state of the brake and gas pedals were extracted from
the vehicle CAN bus. The vehicle position was estimated
from an automotive type GPS receiver running at 5 Hz
(Ublox). A navigation system which takes benefits from
Open Street Map digital maps was used. It allows to perform
map matching according to the vehicle position, and to
extract the distance remaining before the vehicle reaches
the stop intersection.

2) Data Acquisition and Inferences: A dataset containing
260 runs, recorded with 4 different drivers, with different
styles was created. In this dataset, 130 runs were labeled
safe as the driver intends to stop, and 130 runs were labeled
risk as the driver does not intend to stop. For each recorded
run, the following probabilities were computed through the
Bayesian network:

• P ([Actt = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t),
the probability that performing automatic actuation at
time t is pertinent.

• P ([Wart = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t),
the probability that providing a warning to the driver
at time t is pertinent.

• P ([Advt = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t),
the probability that providing an advice to the driver at
time t is pertinent.

All inferences were performed using the following pa-
rameters: Pcomply = 0.9, σobs

P = 3m, σtrue
P = 1m,

RTmachine = 0.4s, RTdriver = 1.5s, ahardmin = −8m/s²,
ahardmax = −5m/s². The values of asmooth

min and asmooth
max

depend on the drivers’ style. Average values are asmooth
min =

−3m/s² and asmooth
max = −1.5m/s². The inferences were

performed through a particle filter running with N = 400
particles.

B. Qualitative Results

Figure 4 present the inferences obtained in the case of a
safe situation, and in the case of a risk situation.
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Fig. 4: Qualitative results.

1) Safe Situation: Figure 4a shows, in the case of a
safe situation, the probabilities that it would be pertinent
to provide the driver with each type of assistance, namely
automatic braking, warning and advice. It is noticeable that
these three probabilities stay low all over the run, meaning
that providing the driver with any assistance is not pertinent.
This is explained by the fact that the driver properly reacts
and decelerates as he is expected to do.

2) Risk Situation: Figure 4b shows, in the case of a
safe situation, the probabilities that it would be pertinent
to provide the driver with each type of assistance, namely
automatic braking, warning and advice. It is noticeable that,
as the driver does not react and decelerate as expected,
these three probabilities make peaks at different distances
to intersection:

• P ([Actt = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t)
is significant from Pt ' 15m to Pt ' 5m, meaning
that is would be pertinent to provide the driver with
automatic braking as long as the vehicle is located from
15 to 5m to the intersection.

• P ([Wart = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t)
is significant from Pt ' 25m to Pt ' 15m, meaning
that is would be pertinent to warn the driver as long
as the vehicle is located from 25 to 15m to the
intersection.

• P ([Advt = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t)
is significant from Pt ' 30m to Pt ' 20m, meaning
that is would be pertinent to provide the driver with an
advice as long as the vehicle is located from 30 to 20m
to the intersection.

C. Quantitative Results

The inferences aim to be used to estimate whether or not
assistance is necessary. To trigger assistance, the probability
that assistance is pertinent has to be greater than a threshold
λ. The dataset was used to compute Recall and Precision,



TABLE VI: Performances of the BN for triggering assis-
tance

TP (%) FP (%) (µγ , σγ)
Auto Braking 100 0 (−4.72, 0.43)

Warning 84 0 (−5.09, 1.01)
Advice 82 4 (−2.64, 0.45)

in order to identify the optimized threshold for each type of
assistance (which minimize the rate of false positive (FP)
and maximize the rate of true positive (TP)). In that way,
λactuation = 0.2, λwarning = 0.15 and λadvice = 0.3
were found as optimized values, respectively for automatic
actuation, warning and advice assistance.

Table VI presents the performances which were reached
for the three types of assistance: rate of true positive (TP),
rate of false positive (FP) and the acceleration that the vehi-
cle would undergo to stop on time, taking into consideration
the reaction time of the driver and of the machine.

• Automatic braking can be triggered 100% of the time
it is necessary, without false alarm. The average accel-
eration that the vehicle would undergo is −4.72m/s2.

• Warning assistance can be triggered 84% of the time
it is necessary, without false alarm. The average accel-
eration that the vehicle would undergo is −5.09m/s2.
Note that acceleration is lower that the one obtained
with automatic braking. This can be explained by
λactuation > λwarning, implying longer time to trigger
Warning Assistance, and thus harder deceleration.

• Advice assistance can be triggered 82% of the time it is
necessary, with 4% of false alarm. The average accel-
eration that the vehicle would undergo is −2.64m/s2.

D. Discussion

The results obtained with the dataset show that the
proposed BN allows to infer risk situations and to trigger
the three types of assistance at the most suitable moment.
In the case of automatic actuation (AEB) and warning
assistance (curative assistance), it is shown that assistance
can be provided without risk of inopportune assistance, and
allowing the vehicle or the driver to brake with realistic
emergency deceleration.

Moreover, it is shown that the BN, by taking into consid-
eration the vehicle state, the driver actuation and individual-
ities, allows to detect that the situation is likely to become at
risk, whilst it is not yet dangerous. Further, advice assistance
(preventive) triggered by this BN inferences would allow the
driver to have time to react, and to decelerate comfortably
after being provided with assistance.

The results which were presented are still theoretical
and need to be confirmed with field trials in order to
collect the drivers feedback about the pertinence of the
provided advices. For this purpose, a dedicated Human
Machine Interface (HMI) needs to be developed to provide
information to the driver.

V. CONCLUSION

This paper proposed a Bayesian Network which allows
to infer risk situations, and to identify at any time which
type of assistance is the most pertinent to be provided. The
BN takes into consideration the context, the vehicle state
and the driver actuation. Further, it considers that all drivers
may react differently for a same situation, and thus takes
benefits from customized drivers profiles to best adapt to
the driver’s style. The model was applied to the approach to
stop intersections. Results, generated using data recorded in
a passenger vehicle driven by several drivers, show that the
BN allows to detect risk situations, and to trigger coherently
automatic braking and warning assistance. Further, it infers
risks early enough to trigger preventive assistance which
could be provided in the form of advice.

Further work should consist in taking into consideration
other vehicles approaching to the same intersection, and
which could have conflicting intention with the subject
vehicle. This would imply to change the parametric form
of the manoeuvres expectation, to make it depend on the
context and on the state of the other vehicle, as it was done
in [7].
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