Y. S. Lee, A. Vakakis, L. Bergman, D. M. Mcfarland, and G. Kerschen, Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1: theory ", AIAA journal, issue.3, pp.45-693, 2007.
DOI : 10.2514/1.24062

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/76103/1/AIAA-24062-636.pdf

Y. S. Lee, G. Kerschen, D. M. Mcfarland, W. J. Hill, C. Nichkawde et al., Suppressing aeroelastic instability using broadband passive targeted energy transfers, AIAA journal, issue.210, pp.45-2391, 2007.

R. Viguié and G. Kerschen, Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology, Journal of Sound and Vibration, vol.326, issue.3-5, pp.780-793, 2009.
DOI : 10.1016/j.jsv.2009.05.023

G. Habib, T. Detroux, R. Viguié, and G. Kerschen, Nonlinear generalization of Den Hartog's equal-peak method, Mechanical Systems and Signal Processing, pp.17-28, 2015.

D. Hartog and J. P. , Mechanical vibrations, 1934.

T. Asami, O. Nishihara, and A. M. Baz, Analytical Solutions to H[sub ???] and H[sub 2] Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems, Journal of Vibration and Acoustics, vol.124, issue.2, pp.284-295, 2002.
DOI : 10.1115/1.1456458

S. Krenk and J. Høgsberg, Tuned mass absorber on a flexible structure, Journal of Sound and Vibration, vol.333, issue.6, pp.1577-1595, 2014.
DOI : 10.1016/j.jsv.2013.11.029

M. Zilletti, S. J. Elliott, R. , and E. , Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation, Journal of Sound and Vibration, vol.331, issue.18, pp.331-4093, 2012.
DOI : 10.1016/j.jsv.2012.04.023

G. Habib, T. Detroux, and G. Kerschen, Generalization of Den Hartog???s Equal-Peak Method for nonlinear primary systems, Proceedings of the International Conference on Structural Nonlinear Dynamics and Diagnosis, 2014.
DOI : 10.1051/matecconf/20141601005

E. H. Dowell, A Modern Course in Aeroelasticity, 1994.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 2013.

P. Manneville, Dissipative structures and weak turbulence, ChaosThe Interplay Between Stochastic and Deterministic Behaviour, pp.257-272, 1995.
DOI : 10.1007/3-540-60188-0_59

G. Iooss and M. Adelmeyer, Topics in bifurcation theory and applications, World Sci- entific, vol.3, 1998.

G. Habib and G. Kerschen, Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p.20140976, 2015.
DOI : 10.1098/rsta.2000.0753

B. Lee, L. Jiang, and Y. Wong, Flutter of an airfoil with a cubic nonlinear restoring force, 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 1998.
DOI : 10.2514/6.1998-1725

C. L. Pettit and P. S. Beran, Effects of Parametric Uncertainty on Airfoil Limit Cycle Oscillation, Journal of Aircraft, vol.40, issue.5, pp.1004-1006, 2003.
DOI : 10.2514/2.6889

G. Gai and S. Timme, Nonlinear reducedorder modelling for limit-cycle oscillation analysis, Nonlinear Dynamics, pp.1-19, 2015.

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov et al., Continuation and bifurcation software for ordinary differential equations, 2000.