X. Boutillon, Model for piano hammers: Experimental determination and digital simulation, The Journal of the Acoustical Society of America, vol.83, issue.2, pp.746-754, 1988.
DOI : 10.1121/1.396117

A. Chaigne, P. Joly, and L. Rhaouti, Numerical modeling of the timpani, European Congress on Computational Methods in Applided Sciences and Engineering, 2000.

S. Bilbao, A. Torin, and V. Chatziioannou, Numerical Modeling of Collisions in Musical Instruments, Acta Acustica united with Acustica, vol.101, issue.1, pp.155-173, 2015.
DOI : 10.3813/AAA.918813

H. Cabannes, Cordes vibrantes avec obstacles, Acustica, vol.55, pp.14-20, 1984.

M. Schatzman, A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle, Journal of Mathematical Analysis and Applications, vol.73, issue.1, pp.138-191, 1980.
DOI : 10.1016/0022-247X(80)90026-8

R. Burridge, J. Kappraff, and C. Morshedi, The Sitar String, a Vibrating String with a One-Sided Inelastic Constraint, SIAM Journal on Applied Mathematics, vol.42, issue.6, pp.1231-1251, 1982.
DOI : 10.1137/0142086

E. Rank and G. Kubin, A waveguide model for slapbass synthesis ICASSP-97, Acoustics, Speech, and Signal Processing IEEE International Conference on, pp.443-446, 1997.

G. Evangelista and F. Eckerholm, Player–Instrument Interaction Models for Digital Waveguide Synthesis of Guitar: Touch and Collisions, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.4, pp.822-832, 2010.
DOI : 10.1109/TASL.2009.2038822

D. Kartofelev, A. Stulov, H. Lehtonen, and V. Välimäki, Modeling a vibrating string terminated against a bridge with arbitrary geometry, Proceedings of the Stockholm Music Acoustics Conference, 2013.

D. Kartofelev, A. Stulov, and V. Välimäki, Pitch glide effect induced by a nonlinear string???barrier interaction, AIP Conference Proceedings, 2015.
DOI : 10.1063/1.4934387

A. Krishnaswamy and J. O. Smith, Methods for simulating string collisions with rigid spatial objects, Proc. IEEE Workshop of Applications of Signal Processing to Audio and Acoustics, pp.233-236, 2003.

S. Siddiq, A Physical Model of the Nonlinear Sitar String, Archives of Acoustics, vol.37, issue.1, pp.73-79, 2012.
DOI : 10.2478/v10168-012-0010-y

C. P. Vyasarayani, S. Birkett, and J. Mcphee, Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, The Journal of the Acoustical Society of America, vol.125, issue.6, pp.3673-3682, 2009.
DOI : 10.1121/1.3123403

C. Valette and C. Cuesta, Mécanique de la corde vibrante, Hermès, 1993.

V. Chatziioannou and M. Van-walstijn, Numerical simulation of tanpura string vibrations ISMA Energy conserving schemes for the simulation of musical instrument contact dynamics, Journal of Sound and Vibration, vol.339, pp.609-614, 2014.

S. Bilbao and A. Torin, Numerical simulation of string/barrier collisions: the fretboard, Int. Conference on Digital Audio Effects, 2003.

L. Trautmann and R. Rabenstein, Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method, EURASIP Journal on Advances in Signal Processing, vol.2004, issue.7, pp.949-963, 2004.
DOI : 10.1155/S1110865704312059

S. Bilbao, Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, 2009.
DOI : 10.1002/9780470749012

C. Issanchou, S. Bilbao, O. Doaré, J. Carrou, and C. Touzé, Méthode modale mixte pour le contact unilatéral corde / obstacle : application au chevalet de la tampoura, Congrès Français d'Acoustique, 2016.

A. Chaigne and A. Askenfelt, Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods, The Journal of the Acoustical Society of America, vol.95, issue.2, pp.1112-1118, 1994.
DOI : 10.1121/1.408459

D. Harmon, Robust, efficient, and accurate contact algorithms, 2010.

A. Banerjee, A. Chanda, and R. Das, Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review, Archives of Computational Methods in Engineering, vol.34, issue.6, pp.1-26, 2016.
DOI : 10.1007/s11831-015-9146-z

B. Brogliato and V. Acary, Numerical Methods for Nonsmooth Dynamical Systems, Applications in Mechanics and Electronics, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00423530

A. Paté, J. Carrou, and B. Fabre, Predicting the decay time of solid body electric guitar tones, The Journal of the Acoustical Society of America, vol.135, issue.5, pp.3045-3055, 2014.
DOI : 10.1121/1.4871360

K. Hunt and F. Crossley, Coefficient of Restitution Interpreted as Damping in Vibroimpact, Journal of Applied Mechanics, vol.42, issue.2, pp.440-445, 1975.
DOI : 10.1115/1.3423596

URL : https://hal.archives-ouvertes.fr/hal-01333795

P. Flores and J. Ambrósio, On the contact detection for contact-impact analysis in??multibody systems, Multibody System Dynamics, vol.18, issue.1, pp.103-122, 2010.
DOI : 10.1007/s11044-010-9209-8

C. Desvages and S. Bilbao, Two-polarisation finite difference model of bowed strings with nonlinear contact and friction forces, Int. Conference on Digital Audio Effects (DAFx-15), 2015.

J. Bridges and M. Van-walstijn, Investigation of tanpura string vibrations using a two-dimensional time-domain model incorporating coupling and bridge friction, Proc. of the third Vienna Talk on Music Acoustics, 2015.

D. Chadefaux, J. Carrou, and B. Fabre, A model of harp plucking, The Journal of the Acoustical Society of America, vol.133, issue.4, pp.2444-2455, 2013.
DOI : 10.1121/1.4792249

URL : https://hal.archives-ouvertes.fr/hal-01461747

J. Carrou, F. Gautier, N. Dauchez, and J. Gilbert, Modelling of sympathetic string vibrations, Acta Acustica united with Acustica, vol.91, issue.2, pp.277-288, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00474982