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Abstract

This paper studies optimal control problems on networks without controllability assumptions at the
junctions. The Value Function associated with the control problem is characterized as solution to a
system of Hamilton-Jacobi equations with appropriate junction conditions. The novel feature of the
result lies in that the controllability conditions are not needed and the characterization remains valid
even when the Value Function is not continuous.
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1 Introduction

In this paper we are interested in a Hamilton-Jacobi approach for control problems on networks. The latter
are connected closed sets constituted by 1d smooth curves with some isolated intersections that we will
call junctions. This is a special case of a more general setting of control problems where the admissible
trajectories are constrained to stay in a stratified domain [18]. The general motivation for control problems
in networks comes from traffic flows. For this reason, it is natural to impose different dynamics and costs
on each branch of the network. Consequently, the resulting Hamiltonian is by nature discontinuous at the
junction point, which poses several difficulties in applying the known results on Hamilton-Jacobi theory.

Control problems on networks have attracted an increasing interest in the last years, and many authors
have investigated the characterization of the Value Function, see for instance [1, 21, 2]. In all these papers, a
common controllability assumption has been considered at the junction points. More precisely, it is assumed
that around the junction points, it is always possible to move both backward and forward in each branch, as in
figure 1(a). As a consequence of this assumption, the Value Function is continuous and can be characterized

(a) (b) (c)

Figure 1: Different situations of transmissions conditions at a junction

by means of a system of Hamilton-Jacobi equations posed on the branches with transmission conditions at
the junctions.
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By contrast, in the present work, we consider situations where the controllability conditions are not
satisfied. These include cases where the trajectories are constrained to move forward on the network without
being allowed to stay on the junction and/or without having the possibility to move in both directions
at the junctions (see Figures 1(b)-(c)). In addition, we generalize to multidimensional networks (called a
“generalized network”) consisting of d-dimensional manifolds glued together at lower dimensional junctions
(cf. [10, 20, 25]); see Definition 2.2 below.

In this setting, our main result is a characterization of the Value Function as the unique solution of a
system of Hamilton-Jacobi-Bellman (HJB) equations in a bilateral viscosity sense (see Definition 2.3). The
main difficulties here come from the fact that the constraint set (the network) has an empty interior, and the
dynamics as well as the distributed cost functions are defined and continuous on each branch without being
globally continuous everywhere on the network. To obtain uniqueness for the system of HJB equations, it
is essential to define some junction conditions on the behavior of solutions where branches of the network
meet (see Theorem 3.1 and Theorem 3.2). In Section 5 of the paper we show that the Value Function is the
smallest bilateral viscosity solution. In Section 6 we prove that it is also the largest such solution. The main
theorems are stated in Section 3.

State-constrained optimal control problems have been well studied in the literature under rather restric-
tive controllability constraints requiring, in particular, that the constraint sets be closures of open sets; see
[31, 32, 15, 22]. A characterization of the epigraph of the Value Function is obtained without any con-
trollability condition in [3]. Recently, a new characterization of the Value Function has been derived for
control problems in stratified constraint sets with possible empty interiors [18]. To obtain this result, a
weak local controllability assumption is required only on strata where a chattering phenomena may occur.
The arguments apply in a quite general setting where the dynamics and the cost function are defined and
Lipschitz continuous on the set of constraints. In this paper, we follow the approach of [18] to characterize
the Value Function of the problem as the unique solution to a suitable Hamilton-Jacobi-Bellman equation on
a generalized network. Our result includes situations where the dynamics and the cost function depend on
the position on each submanifold without being Lipschitz continuous on the whole network. In these cases
the arguments from [18] have to be extended in many points.

Control problems in networks of dimension 1 have been recently studied by many authors [1, 2, 21, 19].
A specific case of Eikonal equations have also been considered in [10, 11]. In all these studies the junctions
are nodes (submanifolds of dimension 0) and a quite strong controllability assumption is considered at the
junctions. This condition allows the admissible trajectories to move from one branch to another, and in this
context it can be proved that the Value Function is continuous. The main difficulty remains the comparison
principle and in particular the extension of the variable doubling techniques for comparing the sub- and
super- viscosity solutions. Note that because of the discontinuity of the dynamics and the cost functions at
the junctions, the Hamiltonian is discontinuous and the definition of the viscosity notion, as introduced by
Ishii [22] can still be used, however this notion is not enough to get a uniqueness result for the corresponding
HJB equation. In [1, 2, 21, 19] a junction condition is derived to describe a “transmission” condition
satisfied by the Value Function at the junctions. It turns out that these transmission conditions make it
possible to derive a comparison principle using a specially constructed test function at junctions, extending
the classical variable doubling method. Such an approach is not amenable to the situation described in our
paper, however, mainly because we dispense with the strong controllability assumption. Instead, we compare
solutions directly to the Value Function.

Note that control problems in networks share some similar difficulties that one encounters when dealing
with control problems in multi-domains [7, 8, 27, 26]. Indeed, in this context, the multidomains constitute a
partition of the whole space RN , the dynamics and the cost functions are discontinuous and the discontinuities
are located on interfaces of sub-manifolds of the same dimension. The question of transmission conditions on
the interfaces is very relevant here again to get a comparison principle. However, control problem in networks
possess an additional difficulty coming from the topological properties of the networks. In the context of
control problems in multi-domains, the trajectories are free to move from one sub-domain to another, while
in the network context, the admissible trajectories are constrained to remain in the network. Nevertheless,
the method of proof used in these references inspires many of the arguments used in the present work. In
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particular, the study of properties belonging to the “essential dynamics” and the “essential Hamiltonian” at
the boundary between sub-domains is a common theme.

1.1 Notation and mathematical definitions

Throughout this paper, N and R denote the sets of Natural and Real numbers, respectively. N ∈ N is a
given Natural number which remains fixed all along the exposition. We use | · | for the Euclidean norm and
〈·, ·〉 for the Euclidean inner product on RN . The unit open ball {x ∈ RN : |x| < 1} is indicated by B and
with a slight abuse of notation we write B(x, r) = x + rB. The zero vector (0, . . . , 0) in RN is denoted by
0 and the empty set by ∅. For a set S ⊆ RN , int (S), S, bdry (S) and co(S) denote its interior, closure,
boundary and convex hull, respectively. Also for S convex we denote by r-int (S) and r-bdry (S) its relative
interior and boundary, respectively. The distance function to S is distS(x) = inf{|x − y| | y ∈ S} and in
the case the infimum is attained we call the set of solution the projections of x over S and we denote it by
projS(x). The epigraph and effective domain of a given function ϕ : RN → R ∪ {+∞} are the sets

epi ϕ = {(x, r) ∈ RN × R | r ≥ ϕ(x)} and dom ϕ = {x ∈ RN | ϕ(x) ∈ R}.

Similarly, the graph and effective domain of a set-valued map Γ : RN ⇒ Rn are the sets

gr Γ = {(x, z) ∈ RN × Rn | z ∈ Γ(x)} and dom Γ = {x ∈ RN | Γ(x) 6= ∅}.

A set-valued map Γ : RN ⇒ RN is continuous at x ∈ dom Γ if it is lower semicontinuous (l.s.c.) and
upper semicontinuous (u.s.c.) at x. Furthermore, it is also called locally Lipschitz continuous if for any
x ∈ RN and δ > 0 there exist L > 0 such that

∀x̃, x̂ ∈ B(x, δ), Γ(x̃) ⊆ Γ(x̂) + L|x̃− x̂|B.

A set M ⊆ RN is a d-dimensional embedded manifold of RN with boundary if for every x ∈ M there is
an open set O so that

M ∩ O = {x̃ ∈ O | h1(x̃) = . . . = hN−d(x̃) = 0, hN−d+1(x̃) ≤ 0},

where h : RN → RN−d+1 is a smooth function whose derivative Dh(x̃) is surjective at any x̃ ∈ O. The
function h is called a local defining map for M around x. In the case that the condition hN−d+1(x̃) ≤ 0 can
be replaced with hN−d+1(x̃) < 0 we simply say that M is a d-dimensional embedded manifold of RN .

For an embedded manifold of RN , if h stands for a local defining map of M around x, the tangent space
to M at x, which we denote by TM (x), can be identified with the set

{v ∈ RN | 〈∇h1(x), v〉 = . . . = 〈∇hN−d(x), v〉 = 0}.

For a given locally closed set S ⊆ RN we write T BS (x) and T CS (x) for the Bouligand and generalized
tangent cones to S at x ∈ S, which are defined via

T BS (x) =

{
v ∈ RN

∣∣∣∣ lim inf
t→0+

distS(x+ tv)

t
≤ 0

}
and T CS (x) =

{
v ∈ RN

∣∣∣∣∣ lim sup
x̃→x, t→0+

distS(x̃+ tv)

t
≤ 0

}
.

For a l.s.c. function ω : [0, T ]× RN → R ∪ {+∞}, ∂V ω(t, x) denotes its viscosity subdifferential, that is,
the collection of (θ, ζ) ∈ R×RN so that there is ϕ ∈ C1((0, T )×RN ) such that ∂tϕ(t, x) = θ, ∇xϕ(t, x) = ζ
and ω−ϕ attains a local minimum at (t, x). If ϕ can be taken to be a quadratic function, we say that (θ, ζ)
is a proximal subgradient of ω at (t, x). The set of all the proximal subgradients ω at (t, x) is the proximal
subdifferential, which is denoted as ∂Pω(t, x).
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2 Preliminaries

In this paper we consider optimal control problems on network-like structures. The basic model we treat
is the 1-dimensional case, which is concerned with an optimization problem whose domain is a collection
of piecewise smooth curves; see Figure 2. However, the approach we have adopted allows us to present
the results in a general settings, where the structures are the outcome of intersecting surfaces of arbitrary
dimension (see Figure 3) instead of curves.

M1
M2

M3M4

o

Figure 2: A 1-dimensional network in R2

having four branches M1, . . . ,M4 and a
single junction Υ = {o}.

M1

M3

M2

Υ

Figure 3: A 2-dimensional network in R3

having three branches M1, . . . ,M3 and a
single junction Υ.

2.1 Notions of networks

A network-like structure is a collection of smooth manifolds of two types, branches and junctions. Roughly
speaking, the branches are the skeleton and the junctions are the parts that glue together the branches. In
order to give a precise definition of a network-like structure, we begin by setting up the notion of junction.

Definition 2.1. Let d ∈ {1, . . . , N}, we say that Υ ⊆ RN is a d-dimensional junction if

1. Υ is a (d− 1)-dimensional smooth manifold;

2. there exist r > 0, p ∈ N and a family {M1, . . . ,Mp} of pairwise disjoint smooth manifolds such that

Υ = (Mi \Mi) ∩ B(x, r), ∀x ∈ Υ and dim(Mi) = d, ∀i ∈ {1, . . . , p}.

The collection {M1, . . . ,Mp} is called the set of branches related to Υ.

Remark 2.1. In the 1-dimensional case (d = 1), a junction Υ contains exactly a single point (see for
example Figure 2), that is, there exists o ∈ RN so that Υ = {o}, for which

{o} = (Mi \Mi) ∩ B(o, r).

With these concepts at hand, we now formally define a d-dimensional network as a collection of d-
dimensional junctions and branches, which in addition is locally finite in space.

Definition 2.2. Let d ∈ {1, . . . , N}, we say that K is a d-dimensional network provided there exists a locally
finite pairwise disjoint collection of d-dimensional junctions {Υj}j∈J together with a pairwise disjoint family
{Mi}i∈I of smooth manifolds satisfying the following conditions:

1. For any x ∈ K either x ∈Mi for some i ∈ I or x ∈ Υj for some j ∈ J .
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2. For any i ∈ I there is j ∈ J so that Mi is a branch related to Υj.

3. For any i ∈ I we have that Mi is a smooth manifold with boundary.

4. For any j ∈ J there are pj ∈ N and i1, . . . , ipj ∈ I so that {Mi1 , . . . ,Mipj
} is the set of branches

related to Υj.

Before continuing, let us make a few comments about Definition 2.2. First of all, we point out that the
case where each Mi is an open or half-open line segment is covered by Definition 2.2. This situation has
been commonly studied in the literature in order to illustrate the main difficulties found when dealing with
Hamilton-Jacobi equations on networks; see for instance [1, 2, 21, 19].

On the other hand, it is worth noticing that from Definition 2.2 we can infer that:

• the network K is the pairwise disjoint union of the branches {Mi}i∈I and the junctions {Υj}j∈J .

• {Mi}i∈I is a locally finite collection of d-dimensional embedded manifolds of RN .

• The boundary of each Mi has finitely many connected components.

• the network K is a closed set that has a countable number of connected components.

• The set I ∪ J is either finite or countably infinite.

We remark that the study of optimal control problems on d-dimensional networks is mainly motivated
by traffic flow problems where it is desired to minimize a given cost-to-go functional. Nonetheless, this work
has a somewhat “dual” motivation, namely the analysis of system of Hamilton-Jacobi equation.

2.2 Systems of HJB equations

Let I be a countable set that indexes a collection of connected d-dimensional embedded manifolds {Mi}i∈I
of RN . Let us consider the system of Hamilton-Jacobi equations{

−∂tu(t, x) +Hi(x,∇xu(t, x)) = 0, ∀(t, x) ∈ (0, T )×Mi,

u(T, x) = ψi(x), ∀x ∈Mi,
∀i ∈ I, (HJ)

where each Hi :Mi × RN → R is a given Hamiltonian and each ψi :Mi → R is a given function. To avoid
pathological cases, let us restrain our attention to the situation where {Mi}i∈I is in addition locally finite
on RN and pairwise disjoint.

It is an accepted fact that classical (differentiable) solutions to the preceding system of equations rarely
exist, and that the attention need to be addressed to weak notions of solutions. In our framework we are
interested in l.s.c. solutions, for this reason we consider the concept of bilateral viscosity solutions.

Definition 2.3. An l.s.c. function ω : [0, T ] × RN → R ∪ {+∞} is called a bilateral viscosity solution to
(HJ) provided that for each i ∈ I we have

− θ +Hi(x, ζ) = 0, ∀(t, x) ∈ (0, T )×Mi, ∀(θ, ζ) ∈ ∂V ω(t, x). (2.1)

lim inf
t→T−, x̃→x

ω|Mi
(t, x̃) = ω(T, x) = ψi(x), ∀x ∈Mi. (2.2)

lim inf
t→0+, x̃→x

ω|Mi
(t, x̃) = ω(0, x), ∀x ∈Mi. (2.3)

It is well known that if each Mi is an open set (d = N), it is possible to construct a solution to (HJ) in
the sense described above. This solution can be obtained through a suitable optimal control problem with
state constraints

K :=
⋃
i∈I
Mi. (2.4)
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As we will see shortly, this fact can be extended to the case in which d can be less than N . More precisely,
let us restrict our attention to the Bellman case, which means that each Hamiltonian is determined by a set
Ai, a function Li :Mi ×Ai → R and a vector field fi :Mi ×Ai → RN in the following way:

Hi(x, ζ) = sup
a∈Ai

{−〈fi(x, a), ζ〉 − Li(x, a)}, ∀i ∈ I, ∀x ∈Mi, ∀ζ ∈ RN . (2.5)

In the nomenclature of optimal control theory Ai is usually called the control space, Li is the running cost
and fi is the dynamics. We may also refer to each ψi as the final cost.

In order to construct a bilateral viscosity solution to (HJ) in the way we have mentioned earlier, let us
consider a function ψ : RN → R ∪ {+∞} and a set-valued map F : RN ⇒ RN that verify

ψ(x) = ψi(x) and F (x) = fi(x,Ai), ∀i ∈ I, ∀x ∈Mi. (2.6)

We also take into account a true Lagrangian L : RN × RN → R ∪ {+∞} that satisfies

L(x, v) = inf
a∈Ai

{Li(x, a) | fi(x, a) = v} , ∀i ∈ I, ∀x ∈Mi, ∀v ∈ fi(x,Ai). (2.7)

Since we have taken the family {Mi}i∈I pairwise disjoint, the existence of such ψ, L and F is guaranteed
without ambiguity for any collection of final costs {ψi}i∈I , running-costs {Li}i∈I and dynamics {fi}i∈I .

Remark 2.2. For the scope of this subsection, we do not need to prescribe F and ψ outside {Mi}i∈I , or
the values of L away from {gr fi(·,Ai)}i∈I . In other words, ψ, F and L can have arbitrary values outside
the aforementioned sets. However, in the sequel of the paper, we do pick a particular F , ψ and L, making
emphasis on the values at Mi \Mi; for more details see (2.11), (2.12) and (2.13). This has to be done in
order to establish a link between a unique bilateral viscosity solution to (HJ) and a well-posed optimal control
problems on a network-like structure.

Recall that K is the set determined by (2.4). Given a fixed final horizon T > 0 and an initial data
(t, x) ∈ [0, T ) × K, we denote by STF (t, x) the collection of absolutely continuous curves y : [t, T ] → RN
solution of the following state constrained dynamical system:

ẏ(s) ∈ F (y(s)), for a.e. s ∈ [t, T ], y(t) = x, y(s) ∈ K, ∀s ∈ [t, T ]. (2.8)

We can associate to this dynamical system an optimal control problem and its respective optimal cost
map. To be more precise, let us consider the Value Function ϑ : [0, T ]× RN → R ∪ {+∞} defined via

ϑ(t, x) :=


inf

{∫ T

t

L(y(s), ẏ(s))ds+ ψ(y(T ))

∣∣∣∣∣ y ∈ STF (t, x)

}
(t, x) ∈ [0, T )×K,

ψ(x) t = T, x ∈ K,
+∞ otherwise.

(2.9)

The relation between optimal control problems defined by means of open-loop controls and those written
in terms of differential inclusions and true Lagrangians is rather well-known, we can for sake of completeness
establish such relation now in our context.

Lemma 2.1. Let i ∈ I be fixed. Suppose Ai ⊆ Rmi is compact for some mi ∈ N and that fi as well as
Li are continuous on Mi × Ai. Then for any −∞ < t1 < t2 < +∞ and any absolutely continuous arc
y : [t1, t2]→Mi that verifies

ẏ(s) ∈ fi(y(s),Ai), for a.e. s ∈ [t1, t2],

there is a measurable control function α : [t1, t2]→ Ai for which

ẏ(s) = fi(y(s), α(s)) and L(y(s), ẏ(s)) = Li(y(s), α(s)), for a.e. s ∈ [t1, t2]. (2.10)

6



Proof. Let us define the set-valued map A : [t1, t2] ⇒ Ai given by

A(s) :=

{
{a ∈ Ai | ẏ(s) = fi(y(s), a)} if ẏ(s) ∈ fi(y(s),Ai)
Ai otherwise,

∀s ∈ [t1, t2].

This multifunction is measurable (e.g. [5, Theorem 8.2.9]) and, since Ai is compact and fi is continuous, it
has compact and nonempty images on [t1, t2]. Let us define the marginal multivalued map R : [t1, t2] ⇒ Ai

R(s) := {a ∈ A(s) | Li(y(s), a) = min{Li(y(s), ã) | ã ∈ A(s)}}, ∀s ∈ [t1, t2].

Since Li is continuous and s 7→ A(s) has nonempty compact images, R has compact and nonempty images
on [t1, t2] too, and in addition, it is a measurable set-valued map; see for example [5, Theorem 8.2.11].
Therefore, thanks to the Kuratowski Ryll-Nardzewski’s selection theorem [4, Theorem 1.14.1], there is a
measurable selection of R, denoted by α : [t1, t2]→ Ai, which satisfies (2.10).

Using routine arguments in optimization and control theory it can be proved that ϑ verifies the dynamic
programming principle:

ϑ(t, x) = inf

{∫ τ

t

L(y(s), ẏ(s))ds+ ϑ(τ, y(τ)) | y ∈ STF (t, x)

}
, ∀(t, x) ∈ [0, T ]×K, ∀τ ∈ [t, T ].

The dynamic programming principle together with an adaptation of standard arguments yield to the following
result of existence of bilateral viscosity solution to (HJ).

All along this paper we are going to assume the following standing assumptions:

∀i ∈ I, Ai is a nonempty compact subset of Rmi , with mi ∈ N. (HA)

∀i ∈ I, Li is continuous on Mi ×Ai and non negative. (HL)


i) ∀i ∈ I, fi is continuous on Mi ×Ai and fi(x,Ai) ⊆ TMi

(x), ∀x ∈Mi.

ii) ∀i ∈ I, ∀a ∈ Ai, the vector field x 7→ fi(x, a) is locally Lipschitz continuous on Mi.

iii) ∃cf > 0 such that ∀i ∈ I, max{|fi(x, a)| | a ∈ Ai} ≤ cf (1 + |x|), ∀x ∈Mi.

(Hf )

Proposition 2.2. Let {Mi}i∈I , {Ai}i∈I , {ψi}i∈I , {Li}i∈I , {fi}i∈I and K be given as above and so that
the standing hypotheses are satisfied, that is, (HA), (HL) and (Hf ) hold.

Let ψ : RN → R ∪ {+∞} and F : RN ⇒ RN verifying (2.6) as well as L : RN × RN → R ∪ {+∞}
satisfying (2.7). Suppose that STF (t, x) 6= ∅ for any (t, x) ∈ [0, T ] × K. If the Value Function ϑ defined in
(2.9) is l.s.c and the Hamiltonians Hi are given by (2.5), then ϑ is a bilateral viscosity solution of (HJ).

Proof. Note first that if (t, x) /∈ dom ϑ then ∂V ϑ(t, x) = ∅ and so (2.1) holds by vacuity. Consequently, let
us focus exclusively on the case (t, x) ∈ dom ϑ. We split the rest of proof is several steps:

Step 1 Let (t, x) ∈ (0, T )×Mi and ε, h > 0, then, the dynamic programming principle combined with standard
arguments in viscosity theory yield to the existence of y ∈ STF (t, x) such that

0 ≥ θh+

∫ t+h

t

[〈ẏ(s), ζ〉+ L(y(s), ẏ(s))] ds− εh+ o(h), ∀(θ, ζ) ∈ ∂V ϑ(t, x).

Since x ∈Mi, we can find δ > 0 so that y(s) ∈Mi for any s ∈ [t, t+ δ] and so, by Lemma 2.1, there is
a measurable control α : [t, t+δ]→ Ai so that (2.10) holds. Furthermore, by (Hf ) and (Hψ) combined
with (HA), for any ζ ∈ RN fixed, the map x̃ 7→ Hi(x̃, ζ) is uniformly continuous on any compact set
that contains x. This fact implies in particular that

0 ≥ (θ −Hi(x, ζ)− ε)h+ o(h)|ζ|, ∀(θ, ζ) ∈ ∂V ϑ(t, x).

Thus, dividing by h in the last inequality and letting first h → 0+ and then ε → 0+ we get that the
lefthand side in (2.1) is non negative, that is ϑ(·) is a viscosity supersolution of (HJ) on (0, T )×Mi.
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Step 2 Let (t, x, a) ∈ (0, T ) ×Mi × Ai. In the light of (Hf ), Nagumo’s Theorem yields to the existence of
h > 0 and a continuously differentiable curve y : [t− h, t]→ RN satisfying:

ẏ(s) = f(y(s), a), y(s) ∈Mi, ∀s ∈ [t− h, t] and y(t) = x.

It is worth noticing that we can extend the curve y(·) to an arc of STF (t−h, y(t−h)) by just concatenating
it to an element of STF (t, x). Hence, by the dynamic programming principle we get

ϑ(t− h, y(t− h))− ϑ(t, x)−
∫ t

t−h
L(y(s), ẏ(s))ds ≤ 0.

Combining the foregoing inequality with Lemma 2.1 and standard arguments in viscosity theory, we
have that the lefthand side in (HJ) is non positive, that is, the Value Function ϑ(·) is a subsolution of
(2.1) on (0, T )×Mi. Consequently, ϑ(·) verifies (2.1)

Step 3 By definition, the Value Function verifies ϑ(T, x) = ψi(x) for any x ∈ Mi and any i ∈ I. Therefore,
we only need to prove that for any x ∈ Mi, there is a sequence (tn, xn) ∈ (0, T ) ×Mi such that
(tn, xn)→ (T, x) and ϑ(tn, xn)→ ϑ(T, x).

Let {εn} ⊆ (0, T ) with εn → 0+. Using the same arguments as in step 2, we can show that for any
n ∈ N large enough, there is xn ∈ Mi and yn ∈ STF (tn, xn) with yn(T ) = x and tn = T − εn. Hence,
by the definition of the Value Function, we have:

ϑ(tn, xn) ≤
∫ T

tn

L(yn(s), ẏn(s))ds+ ψi(x), ∀n ∈ N large enough.

Finally, taking liminf in the last inequality and using the lower semicontinuity of ϑ we get (2.2).

Step 4 To conclude we need to prove that for any x ∈ Mi, there is a sequence (tn, xn) ∈ (0, T ) ×Mi such
that (tn, xn)→ (0, x) and ϑ(tn, xn)→ ϑ(0, x).

Let y ∈ STF (0, x), and by definition of the Value Function we have that

ϑ(t, y(t)) ≤
∫ T

t

L(y(s), ẏ(s))ds+ ψ(y(T )), ∀t ∈ (0, T ).

Hence, taking {tn} ⊆ (0, T ) with tn → 0+ and setting xn = y(tn) we get

lim inf
n→+∞

ϑ(tn, xn) ≤
∫ T

0

L(y(s), ẏ(s))ds+ ψ(y(T )).

Since y ∈ STF (0, x) is arbitrary, taking infimum over them we get the Value Function on the right hand
side, which completes the proof.

Remark 2.3. It is well-known that if F has convex images around K and ψ is l.s.c., the Value Function is
l.s.c. as well. Nonetheless, in the setting of this paper we do not impose the convexity assumption everywhere
because, as we will see later, it is not a topological invariant of a network-like system. This issue can be
overcome by means of the structure of the problem.

Let us stress that solutions to (HJ) do not have to be unique because no information has been prescribed
outside of {Mi}i∈I . We have just seen that under appropriate hypotheses there exists at least one solution,
which, in addition, is the Value Function of an optimal control problem. Therefore, it is of interest to study
this solution in more detail and establish suitable conditions under which it is the unique bilateral viscosity
solution to (HJ). To do so, we fix our attention on the case that K is a d-dimensional network. In particular,
we investigate junction conditions that are typical of the Value Function.
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2.3 Further structural assumptions

From this point onward K stands for a d-dimensional network whose junctions and branches are denoted by
{Υj}j∈J and {Mi}i∈I , respectively. It is not difficult to see that K also is determined by (2.4). Indeed, by
Definition 2.2 we have

K =
⋃
i∈I
Mi ∪

⋃
j∈J

Υj =
⋃
i∈I
Mi.

In this part we also make a particular choice for F , ψ and L so that (2.6) and (2.7) are satisfied, and
we disclose a set of assumptions that will ensure in particular that the hypotheses of Proposition 2.2 are
satisfied. To do so, from now on we assume that for each i ∈ I,

fi and Li can be continuously extended up to Mi ×Ai.

For sake of notation, we write such extensions in the same manner as the original maps, that is, in what
follows we suppose that fi and Li are defined on Mi ×Ai. This means in particular that Hi given by (2.5)
is also considered to be defined up to Mi × RN (keeping the same notation as well).

In our framework we allow networks to have several junctions, for this reason we introduce some special
notation to indicate the branches associated with a certain junction. We then set

Ij = {i ∈ I | Υj ⊆Mi \Mi}, ∀j ∈ J .

The preference we have taken for F , ψ and L is mainly motivated by the compactness of the set of
trajectories as well as the lower semicontinuity of the Value Function. However, we wonder whether other
choices can be made, and this certainly may lead to different junctions conditions than those we are presenting
in the next section.

We begin with the choice of the dynamics F and to do so we essentially need to fix the dynamics at
the junctions. We point out that dynamical systems on d-dimensional networks are allowed to have several
trajectories moving in different directions along the junctions; in the 1-dimensional this does not happen
because there is a unique trajectory, the constant one, that remains at the junction point. In our network
models the velocities of the curves starting from a junction Υj are determined by the dynamics of its
surrounding branches. For this reason we consider F : RN ⇒ RN defined via

F (x) :=


fi(x,Ai) x ∈Mi for some i ∈ I,⋃ {fi(x,Ai) | i ∈ Ij} x ∈ Υj for some j ∈ J ,
∅ otherwise,

∀x ∈ RN . (2.11)

In the sequel, F denotes the set-valued map defined above, and so we just write ST (t, x) for the set of
admissible curves of the dynamical system (2.8).

In order to ensure the semicontinuity of the Value Function it is required that the final costs {ψi}i∈I are,
in the same manner, semicontinuous and defined up to the corresponding Mi. Nevertheless, to ensure that
the effective domain of the Value Function is the entire network we can assume as well that:

for any i ∈ I, ψi is continuous Mi. (Hψ)

Remark 2.4. The result we present in this paper can also be written for final cost that are merely l.s.c.
on the corresponding Mi. However, in such case, the characterization of the Value Function have to be
understood in a subclass of functions having the same effective domain. In the framework treated in this
paper we always have dom ϑ = [0, T ]×K.

In accordance with the definitions we have given so far, we define the global final cost via

ψ(x) :=


ψi(x) x ∈Mi for some i ∈ I,
min {ψi(x) | i ∈ Ij} x ∈ Υj for some j ∈ J ,
+∞ otherwise,

∀x ∈ RN . (2.12)
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Notice that we have used min instead of inf to define ψ. To clarify this, we point out that each Ij is finite.
Furthermore, this also implies that ψ is continuous on K, and so lower semicontinuous on RN , provided that
(Hψ) holds. Moreover, by construction, (2.6) holds for the particular choice of F and ψ we have made.

On the other hand, similarly as done for the final cost ψ, we define the global running cost on the branches
in such a way that (2.7) is trivially verified and, on the junctions, we take it as the minimal possible value
determined by the surrounding branches. In other words, for any (x, v) ∈ RN × RN

L(x, v) :=


inf {Li(x, a) | a ∈ Ai, v = fi(x, a)} x ∈Mi for some i ∈ I,

inf {Li(x, a) | i ∈ Ij , a ∈ Ai, v = fi(x, a)} x ∈ Υj for some j ∈ J ,
+∞ otherwise.

(2.13)

Remark 2.5. Note that if (HA) and (Hψ) hold, then by compactness arguments, the infimums in the
definition of L are actually attained whenever (x, v) ∈ gr F .

We stress that under the present framework the dynamics are likely to differ from one branch to another.
Therefore, it is possible that at some junction Υj we have that

∃x ∈ Υj so that
⋃
{fi(x,Ai) | i ∈ Ij} is not a convex subset of RN .

Properties as the preceding are important to provide the existence of solutions and to ensure the lower semi-
continuity of the Value Function in absence of controllability assumptions around the junctions. Therefore,
this issue yields to work with (optionally) nonconvex-valued dynamics, because by imposing the convexity
of F (x) at every x ∈ K we risk to exclude several situations of interest. For example, by doing so the case
exhibited in Figure 4 can not be treated; notice that in this example the convex hull of F (o) contains the
zero vector even though F (o) does not.

o
co(F (o))M1

M2

M3

Figure 4: A case excluded if the convexity assumption is imposed.

In our setting, we are essentially facing a dynamical systems that is not well-posed in the standard
theory of differential inclusions; cf. [4] or [14]. Nonetheless since the main difficulties are basically at the
junctions, it is not difficult to provide some criterion for the viability of the network (existence of feasible
trajectories starting from any point on the network). To do so, we mainly used the results for stratified
ordinary differential equations reported in [16]. For this purpose, we can assume:

∀j ∈ J , ∃i ∈ Ij so that fi(x,Ai) ∩ T CMi
(x) 6= ∅, ∀x ∈ Υj . (H0)

Remark 2.6. First of all, notice that 0 ∈ T CMi
(x) for any i ∈ I and x ∈ Mi. This implies in particular

that the following is a sufficient condition for (H0) to hold:

∀j ∈ J , ∀x ∈ Υj ,∃i ∈ Ij so that 0 ∈ fi(x,Ai). (2.14)

The latter, in the 1-dimensional case, is a consequence of the usual controllability assumption at the
junctions found in the literature; see for instance to [1, 2, 21, 19]. Therefore, (H0) can be seen as a relaxation
of the usual controllability hypotheses at the junctions, which allows to treat more general situations.

Furthermore, it is in some sense the minimal requirement we can ask of a network in order to well define
solutions of the dynamical system. Indeed, given that each Mi is a manifold with boundary, it is not difficult
to see that T CMi

(x) agrees with T BMi
(x) all along Mi, and thus (H0) is exactly the viability condition (cf. [4,

Chapter 4]) which is a well known necessary condition for ST (t, x) to be non empty at each (t, x) ∈ [0, T )×K.

10



To prove that the Value Function is a Real-valued l.s.c. map we still need few more structural assumptions.
The statement we provide below (Proposition 2.3) is rather classical if the images of F are convex everywhere.
However, as previously stated in Remark 2.3, this assumption is not made but the result still holds true.
This is thanks to the structure of the problem and a convexity assumption only on the branches

{(fi(x, a), `) | a ∈ Ai, Li(x, a) ≤ ` ≤ L∞i (x)} is convex ∀x ∈Mi, (H1)

where L∞i (x) stands for sup{Li(x, a) | a ∈ Ai} for each x ∈Mi.
We stress that, in contrast with the 1-dimensional case, trajectories remaining at d-dimensional junctions

(with d ≥ 2) are not trivial and can move all along the junctions in different directions. For this reason
extra compatibility assumptions need to be considered at the junctions. We point out that these additional
conditions are generalizations of the assumptions formerly done in the literature for 1-dimensional network
systems; see Remark 2.8 for more details. For this purpose, let us introduce the tangent dynamics to the
junctions via:

Fj(x) = F (x) ∩ TΥj
(x), ∀j ∈ J , ∀x ∈ Υj .

Remark 2.7. In 1-dimensional networks the tangent dynamics Fj are either the empty set or {0}. The
latter is because for each j ∈ J , we have Υj = {oj} for some oj ∈ RN , which means that TΥj

(oj) = {0}.
Similarly as done in [17, 18], we suppose that each Fj is regular. Furthermore, we also require that when-

ever dom (Fj) 6= ∅ an additional convexity condition is met. Hence, we introduce the following hypothesis:
i) Each Fj is a continuous multifunction on Υj .

ii) If dom (Fj) 6= ∅ then for any x ∈ Υj , λ ∈ [0, 1] and v, ṽ ∈ F (x) we have

vλ := λv + (1− λ)ṽ ∈ TΥj
(x) =⇒ vλ ∈ F (x) and λL(x, v) + (1− λ)L(x, ṽ) ≥ L(x, vλ).

(H2)

The foregoing hypothesis implies that either trajectories can remain for arbitrary long periods of times
at the junction Υj or they can only pass through it. Hence, we wish to distinguish between the junctions
where trajectories can slide for and where they can not. To do so, we introduce the following notation

J0 := {j ∈ J | dom (Fj) 6= ∅}.
Remark 2.8. The second point in (H2) is a condition that ensures the existence of optimal trajectories as
well as the lower semicontinuity of the Value Function. We point out that Remark 2.7 implies that in the
1-dimensional case vλ can only be 0, and so (H2) can be fulfilled by requiring for instance

∀j ∈ J0, if Υj = {oj} =⇒ L(oj , v) ≥ L(oj ,0), ∀v ∈ F (oj). (HL
2 )

The preceding condition has already been considered in the literature; see for instance [1, Assumption 2.3].

In the following proposition we assume that T > 0 is fixed and we recall that the Value Function ϑ is
given by (2.9) and determined by F , ψ and L defined in (2.11), (2.12) and (2.13), respectively.

Proposition 2.3. Let K be a d-dimensional network and consider a family of control spaces {Ai}i∈I so
that (HA) holds. Let {ψi}i∈I , {Li}i∈I and {fi}i∈I be collections of final costs, running costs and dynamics
satisfying (Hψ), (HL) and (Hf ), respectively. Assume that (H0), (H1) and (H2) are also verified. Then,
for every (t, x) ∈ [0, T )×K there exists an optimal trajectory y ∈ ST (t, x). Furthermore, the Value Function
ϑ given by (2.9) is Real-valued and l.s.c. on [0, T ]×K.

A detailed proof of Proposition 2.3 has been postponed to Section 4.1.

3 Main results

We recall that the principal goal of this paper is to characterize the Value Function ϑ by means of Hamilton-
Jacobi equations. The main difficulty is to analyze the behavior of the function at the junctions {Υj}j∈J .
We first study the general case of d-dimensional networks and afterwards, we present the results in the
1-dimensional networks with a single junction and branches being half-open lines. For sake of exposition all
the proofs have been postponed to the last sections of paper.
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3.1 d-dimensional networks

We now present the general results from which the other theorems for the 1-dimensional case can be deduced.
In particular, Theorem 3.1 provides a characterization of the Value Function as the smallest bilateral viscosity
solution that verifies a supersolution-type junction condition. This result is strongly related with the work
of Cardaliaguet et al [12] for state constrained problem with (everywhere) convex-valued dynamics. On the
other hand, Theorem 3.2 characterizes the Value Function as unique bilateral viscosity solution that satisfies
some appropriate junction conditions. This result is the outcome of combining Theorem 3.1 with the work
carried out in [17, 18].

3.1.1 Junction condition of supersolution-type

The junction conditions are written in terms of a smaller Hamiltonian than the usual one. This new Hamilto-
nian takes into account only the essential velocities, that is, the directions that are relevant for the trajectories
of the control system. Formally, for any i ∈ I we define the essential Hamiltonian via

H+
i (x, ζ) = sup

a∈Ai

{
−〈fi(x, a), ζ〉 − Li(x, a) | fi(x, a) ∈ T BMi

(x)
}
, ∀x ∈Mi, ∀ζ ∈ RN . (3.1)

Note that, since T BMi
(x) agrees with TMi

(x) at each x ∈Mi and, by assumption, fi(x, a) ∈ TMi
(x):

H+
i (x, ζ) = Hi(x, ζ), ∀x ∈Mi, ∀ζ ∈ RN

Hence, with this definition at hand, the first result reads as follows.

Theorem 3.1. Let K be a d-dimensional network and consider a family of control spaces {Ai}i∈I so that
(HA) holds. Let {ψi}i∈I , {Li}i∈I and {fi}i∈I be collections of final costs, running costs and dynamics
satisfying (Hψ), (HL) and (Hf ), respectively. Assume that (H1), (H0) and (H2) are also verified. Then
the Value Function of the Bolza problem on the d-dimensional network K is the smallest bilateral viscosity
solution to (HJ) which is +∞ outside [0, T ]×K and that verifies the following junction conditions:

∀j ∈ J , ∀x ∈ Υj : lim inf
t→T−, x̃→x

ω(t, x̃) = ω(T, x) = ψ(x). (C0)

∀j ∈ J , ∀x ∈ Υj : lim inf
t→0+, x̃→x

ω(t, x̃) = ω(0, x). (C1)

∀(t, x) ∈ (0, T )×Υj , ∃i ∈ I : − θ +H+
i (x, ζ) ≥ 0, ∀(θ, ζ) ∈ ∂V ω(t, x). (C2)

3.1.2 Junction condition of subsolution-type

The main goal of this section is to show additional junctions condition that are satisfied by the Value
Function. These conditions will be useful to provide a complete characterization of the Value Function as
unique bilateral viscosity solution to the HJB equation with appropriate junction condition.

The assumptions we consider to treat the general case are inspired by the structural conditions we en-
counter when dealing with one-dimensional network, and as such are trivially verified in the one-dimensional
case. Recall that at any junction Υj , its tangent space agrees with the relative boundary of the tangent
cone of any Mi, with i ∈ Ij . Thus, the set Ai can be split into three disjoint sets depending on where the
velocities of the dynamics are pointing:

A+
i (x) =

{
a ∈ Ai | fi(x, a) ∈ r-int

(
T CMi

(x)
)}

A0
i (x) =

{
a ∈ Ai | fi(x, a) ∈ TΥj (x)

}
A−i (x) =

{
a ∈ Ai | −fi(x, a) ∈ r-int

(
T CMi

(x)
)}
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Clearly we have that
Ai = A−i (x) ∪ A0

i (x) ∪ A+
i (x), ∀x ∈ Υj .

In the one-dimensional case, given that the junctions consist of a single point, the mappings defined above
can be thought of as depending exclusively on the junction Υj . In higher dimensions and in full generality
this may not be the case. For this reason, we extrapolate this remark to the case of networks of arbitrary
dimensions by requiring the sets A0

i (x) and A−i (x) to be independent of x, i.e. constant set-valued maps all
along the junctions; note that no assumptions are required over A+

i (x). In other words, we shall assume the
assumption:{

i) ∀j ∈ J , ∀i ∈ Ij , ∃ A0
ij , A−ij ⊆ Ai s.t. A0

i (x) = A0
ij and A−i (x) = A−ij , ∀x ∈ Υj .

ii) ∀x ∈ Υj , ∀a ∈ A0
ij ∪ A+

ij , ∃rx > 0 so that 〈∇hN−d+1(x̃), fi(x̃, a)〉 ≤ 0, ∀x̃ ∈ B(x, rx) ∩Mi.
(H3)

Here h : RN−d+1 → R stands for a local defining map for Mi around x. We might also assume more
regularity on the running cost, that is,

∀i ∈ I, ∀a ∈ Ai, the map x 7→ Li(x, a) is locally Lipschitz continuous on Mi. (H+
L )

Consequently, let us consider the following Hamiltonians

H0
i (x, ζ) := sup

a∈A0
ij

{−〈fi(x, a), ζ〉 − Li(x, a)} and H−i (x, ζ) := sup
a∈A−ij

{−〈fi(x, a), ζ〉 − Li(x, a)}, ∀x ∈ Υj

These Hamiltonians will allow us to provide suitable junctions condition so that the Value function can
be singled out as the unique bilateral viscosity solution as stated below. Note that these Hamiltonians are
locally Lipschitz on the corresponding Mi domain

Moreover, for technical reasons in the case d > 1, we also require a controllability condition on certain
junctions. We recall that the reachable set of the control system, written as R(t, x; s), is the set of points
that can be attained at time s with an admissible trajectory solution of ST (t, x).

We consider in addition Rj(t, x; ·) as the reachable set through the junction Mj , that is, the set of all
possible positions that can be reached with an admissible arc lying entirely on Υj :

Rj(t, x; s) :=
⋃

y∈ST (t,x)

{y(s) | y(τ) ∈ Υj , ∀τ ∈ [t, s)}, ∀x ∈ Υj , ∀t, s ∈ [0, T ], t < s.

Therefore, the controllability hypothesis that will be required in this paper is stated as follows:
∀ρ > 0,∀ j ∈ J0, ∃εj ,∆j > 0 so that ∀x ∈ Υj ,with |x| < ρ

R(t, x; s) ∩Υj ⊆
⋃

r∈[t,t+∆js]

Rj(t, x; r), ∀t ∈ [0, T ],∀s ∈ [t, t+ εj ]. (H4)

This assumption is made in order to approximate curves that may switch between a junction and its
branches infinitely many times on a short interval.

Remark 3.1. Note that (H4) is trivial if Υj is a single point (since in this case, if Fj 6= ∅ then Fj ≡ {0}
and R(t, x; s) ∩Υj = Υ = Rj(t, x; s)). This implies that (H4) is a natural extension of intrinsic properties
of dynamical problems on 1-dimensional networks.

Let us also point out the fact that (H4) can be satisfied under a simpler criterion of full controllability
condition on manifolds. The most classical assumption of this kind of controllability is the following:

∀j ∈ J0 ∃ri > 0 such that TΥj
(x) ∩ B(0, ri) ⊆ Fj(x), ∀x ∈ Υj .

13



This criterion is a sufficient condition for (H4) to be fulfilled. Indeed, this corresponds to the Petrov condition
on manifolds. Hence, by adapting the classical arguments to this setting, we can see that the above-stated
criterion implies the Lipschitz regularity of the minimum time function of the controlled dynamics restricted
to the manifold Mi, and so (H4) follows; see for instance [6, Chapter 4.1]. However, let us emphasize that
preceding criterion is only a sufficient condition to satisfy assumption (H4).

We are now in position to state the main theorem regarding the sub-solution characterization of the
Value Function.

Theorem 3.2. Let K be a d-dimensional network and consider a family of control spaces {Ai}i∈I so that
(HA) holds. Let {ψi}i∈I , {Li}i∈I and {fi}i∈I be collections of final costs, running costs and dynamics

satisfying (Hψ), (HL), (H+
L ) and (Hf ), respectively. Assume that (H1), (H0), (H2) (H3) are also verified.

Then the Value Function of the Bolza problem on the d-dimensional network K is the unique bilateral viscosity
solution to (HJ) which is +∞ outside [0, T ] × K and that verifies (C0), (C1) and (C2), together with the
following additional junction condition

∀(t, x) ∈ (0, T ]×Υj , ∀i ∈ Ij : − θ + max{H0
i (x, ζ), H−i (x, ζ)} ≤ 0, ∀(θ, ζ) ∈ ∂V ω(t, x). (C3)

The proof of Theorem 3.2 is given in Section 6 and is divided into two parts. First, we prove that the
Value Function satisfies the assumption (Lemma 6.3), and then we prove that any bilateral viscosity solution
that satisfies the junctions conditions is less than or equal to the Value Function (Lemma 6.4). Hence, in
the light of Theorem 3.1 the conclusion follows.

3.2 1-dimensional case

Let us now fix our attention on 1-dimensional networks (d = 1). Under these circumstances, and as we have
already disclosed in preceding remarks, many assumptions can be substantially simplified. To the best of
our knowledge, this situation is the only one that has been investigated in the current literature. We recall
that Theorem 3.3 is a direct corollary of Theorem 3.1.

To illustrate our results we focus on the simplest case of branches that are half-open lines with a single
junction Υ. For sake of simplicity the junction point is going to be taken as 0, the origin of the ambient
space RN . Let us fix the number of branches as p ∈ N, and then

each Mi = (0,+∞)ei, for some e1, . . . , ep ∈ RN \ {0}. (3.2)

In this setting, the set of indices for the branches is I = {1, . . . , p}. Furthermore, we see that

∀i ∈ I : TMi
(x) = Rei, ∀x ∈Mi and T BMi

(0) = T CMi
(0) =Mi = [0,+∞)ei,

and so, by (Hf ) we can assume that for each index there exists a function Fi : [0,+∞)×Ai → R so that

fi(λei, a) = Fi(λ, a)ei, ∀i ∈ {1, . . . , p}, ∀λ ∈ [0,+∞), ∀a ∈ Ai.

Hence, the hypothesis (H0) can be rephrased as

∃i ∈ {1, . . . , p} so that A+
i := {a ∈ Ai | Fi(0, a) ≥ 0} 6= ∅. (HL

0 )

Moreover, we have that the essential Hamiltonian at the junction can be written as

H+
i (0, ζ) = sup

a∈A+
i

{−Fi(0, a)〈ei, ζ〉 − Li(0, a)} , ∀ζ ∈ RN .

In this framework (H0) and (H2) can be replaced with (HL
0 ) and (HL

2 ), respectively. In particular, the
adaptation of Theorem 3.1 to this setting reads as follows.
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Theorem 3.3. Let K be a 1-dimensional network with a single junction Υ = {0} and p branches {M1, . . . ,Mp}
determined by (3.2). Let {ψi}i∈I , {Li}i∈I and {fi}i∈I be collections of final costs, running costs and dy-

namics satisfying (Hψ), (HL), (H+
L ) and (Hf ), respectively. Assume that (HL

0 ), (H1) and (HL
2 ) are also

verified. Then the Value Function of the Bolza problem on the 1-dimensional network K is the smallest
bilateral viscosity solution to (HJ) which is +∞ outside [0, T ]×K verifying

lim inf
t→T−, x→0

ω(t, x) = ω(T,0) = ψ(0). (CL
0 )

lim inf
t→0+, x→0

ω(t, x) = ω(0,0). (CL
1 )

∀t ∈ (0, T ), ∃i ∈ {1, . . . , p} : − θ +H+
i (0, ζ) ≥ 0, ∀(θ, ζ) ∈ ∂V ω(t,0). (CL

2 )

As we have aforementioned, the controllability assumption (H4) is an intrinsic property of 1-dimensional
networks and so it is no longer a requirement. Moreover, assumption (H3) is trivially satisfies if the following
is required:

Fi(0, a) ≥ 0 =⇒ ∃r > 0, Fi(λei, a) ≥ 0, ∀λ ∈ (0, r) (3.3)

Therefore, the result that characterize the Value Function in this context can be stated as follows.

Theorem 3.4. Let K be a 1-dimensional network with a single junction Υ = {0} and p branches {M1, . . . ,Mp}
determined by (3.2). Let {ψi}i∈I , {Li}i∈I and {fi}i∈I be collections of final costs, running costs and dy-

namics satisfying (Hψ), (HL), (H+
L ) and (Hf ), respectively. Assume that (HL

0 ), (H1),(HL
2 ) (3.3) are also

verified. Then the Value Function of the Bolza problem on the d-dimensional network K is the unique bi-
lateral viscosity solution to (HJ) which is +∞ outside [0, T ] × K and that verifies (CL

0 ), (CL
1 ) and (CL

2 ),
together with the following additional junction condition

∀(t, x) ∈ (0, T ]×Υj , ∀i ∈ {1, . . . , p} : − θ + max{−L(0, 0), H−i (0, ζ)} ≤ 0, ∀(θ, ζ) ∈ ∂V ω(t,0) (CL
3 )

3.2.1 Comparison with the current literature

Theorem 3.4 may be compared to other existence and uniqueness results for Hamilton-Jacobi equations
on one dimensional networks or junctions [29, 1, 2, 21, 19]. These results also have generalizations to
multidimensional structures [10, 20, 25], to which Theorem 3.2 may be compared. Previous works seem to
be split between those which make use of strictly PDE methods in order to prove existence and uniqueness of
viscosity solutions [29, 19, 20, 25] and those which make critical use of the optimal control characterization
[1, 2, 21]. The present work falls into the latter category. Rather than proving a comparison principle
using the “doubling of variables” argument and existence by Perron’s method, we instead use the tools of
nonsmooth analysis and viability theory to compare solutions directly to the Value Function. In this work,
we use the latter approach and analyze the characterization of solutions under fewer restrictions on the
transmission conditions.

A major contribution of the present work is that we do not assume any uniform controllability assumption
at the junctions. To date, the majority of works on Hamilton-Jacobi equations on networks contain some
version of this hypothesis. In the one-dimensional case it can be expressed here in the form

[−δ, δ] ⊂ Fi(λ,Ai) ∀λ ∈ [0,∞), ∀i ∈ {1, . . . , p}

with δ > 0 independent of λ. Such a hypothesis allows trajectories to pass through junctions without
getting “stuck in traffic”–namely, it is always possible to transfer from one branch to another in a fixed
finite amount of time from any point in a neighborhood of the junction. The controllability assumption,
along with an assumption on continuity of the final cost, implies the continuity of the Value Function (see,
e.g. [1, Proposition 2.1]). In the present work we dispense with this condition. In particular, our structural
assumptions represent as closely as possible the “gluing together” of otherwise independent optimal control
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problems on separate branches (and with possibly discontinuous final cost function). As a result, Theorems
3.1 and 3.3 represent a generalization of previous existence and uniqueness results for HJB equations on
networks and junctions. The price to be paid for less restrictive transmission conditions is the continuity of
the solution.

Note that in [1, 2, 21], the continuous solution is characterized as viscosity solution to (6.2) with a junction
condition involving only the Hamiltonians H+

i . Theorem 3.2 establishes a characterization of (discontinuous)
bilateral solution with junction conditions (C2)-(C3) involving both Hamiltonians H+

i and H−i . If the value
function happens to be continuous, then the same arguments that will be developed in this paper can lead
to a characterization involving a junction condition defined only with the Hamiltonian H+. This subject
will be clarified in a separate work, as we prefer here to focus on the case of discontinuous solutions.

Our results may also be compared to recent work on transmission conditions for Hamilton-Jacobi-Bellman
equations on multi-domains [7, 8, 9, 27, 26]. The main difference is that the setting in these references is a
partition of Euclidean space into open sets with interfaces between them, while our setting is a collection of
manifolds which generally have lower dimension than the ambient space. Moreover, in the above-mentioned
literature on multi-domains problems the Value Function is also continuous, in spite of the discontinuity of
the Hamiltonian at the boundary interface between sub-domains.

4 Lower semicontinuity of the Value Function

In this part we provide a proof for Proposition 2.3, which in particular encloses semicontinuity properties of
the Value Function. Before going further we need to settle some structural issues related to d-dimensional
networks verifying Definition 2.2. These are summarised in the following results. We recall at this point
that T CS (x) is a convex cone for any x ∈ S and it agrees with T BS (x) whenever S is a embedded manifold of
RN with or without boundary.

Lemma 4.1. Let K be a d-dimensional network whose junctions and branches are given by {Υj}j∈J and
{Mi}i∈I . Then for any j ∈ J and any i ∈ Ij we have

TΥj (x) = r-bdry
(
T CMi

(x)
)
, ∀x ∈ Υj . (4.1)

Furthermore, for any x ∈ Υj and v ∈ r-int
(
T CMi

(x)
)

, there is r > 0 for which

x+ (0, r]B(v, r) ∩Mi ⊆Mi. (4.2)

Proof. Let j ∈ J and i ∈ Ij , and let us take x ∈ Υj arbitrary but fixed. Since Mi is a d-dimensional
manifold with boundary, we can find a C1 local defining map h : RN → RN−d+1 for Mi around x, that is,
there is r > 0 so that Dh(·) has full rank on B(x, r) and

Mi ∩ B(x, r) = {x̃ ∈ B(x, r) | h1(x̃) = . . . = hN−d(x̃) = 0, hN−d+1(x̃) ≤ 0}.

Therefore, following [13, Corollary 10.44] we can check that

T CMi
(x) = {v ∈ RN | 〈∇h1(x), v〉 = . . . = 〈∇hN−d(x), v〉 = 0, 〈∇hN−d+1(x), v〉 ≤ 0}.

Moreover, we can also see that h is a local defining map for (the manifold without boundary) Υj around x,
that is,

Υj ∩ B(x, r) = {x̃ ∈ B(x, r) | hl(x̃) = 0, l = 1, . . . , N − d+ 1}.
Finally, (4.1) comes from [13, Corollary 10.44], because the latter yields to

TΥj
(x) = {v ∈ RN | 〈∇hl(x), v〉 = 0, ∀l = 1, . . . , N − d+ 1}.
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On the other hand, if there is no r > 0 so that (4.2) holds, we can construct two sequences {rn} ⊆ (0, 1) and
{vn} ⊆ RN with rn → 0 and vn → v, so that

hN−d+1(x+ rnvn) = 0, ∀n ∈ N.

Since, hN−d+1(x) = 0 and hN−d+1(·) is continuously differentiable around x, we can easily check that

〈∇hN−d+1(x), v〉 = lim
n→+∞

hN−d+1(x+ rnvn)− hN−d+1(x)

rn
= 0,

which contradicts the fact that v ∈ r-int
(
T CMi

(x)
)

, so the conclusion follows.

Before continuing, we recall that J0 describes the set of junctions for which dom Fj 6= ∅.

Lemma 4.2. Let K be a d-dimensional network whose junctions and branches are given by {Υj}j∈J and
{Mi}i∈I . Suppose that {fi}i∈I satisfies (Hf ) with fi(x,Ai) being convex for any i ∈ I and x ∈Mi. Then,
for any j ∈ J \ J0 and any i ∈ Ij and any x ∈ Υj we have either

fi(x,Ai) ⊆ r-int
(
T CMi

(x)
)
, or fi(x,Ai) ⊆ RN \ T CMi

(x).

Proof. Let i ∈ Ij for which the affirmation on the statement does not hold at some x ∈ Υj . We note first of

all that fi(x,Ai)∩TΥj
(x) = ∅, this is because j /∈ J0. Hence, by Lemma 4.1, fi(x,Ai)∩r-bdry

(
T CMi

(x)
)

= ∅.
In the light of the preceding remark and the contradiction assumption, there are a, ã ∈ Ai so that

fi(x, a) ∈ r-int
(
T CMi

(x)
)

and fi(x, ã) /∈ T CMi
(x).

Consequently, using the same notation as in the proof of Lemma 4.1,

〈∇hN−d+1(x), fi(x, a)〉 < 0 and 〈∇hN−d+1(x), fi(x, ã)〉 > 0.

Furthermore, by continuity of h, it is not difficult to see that 〈∇hl(x), fi(x, ã)〉 = 0, for any l = 1, . . . , N − d.
Notice as well that we can find λ ∈ (0, 1) so that

〈∇hl(x), λfi(x, a) + (1− λ)fi(x, ã)〉 = 0, ∀l = 1, . . . , N − d+ 1.

Given that fi(x,Ai) is convex, there is â ∈ Ai so that fi(x, â) = λfi(x, a) + (1 − λ)fi(x, ã). Hence, we
get that fi(x, â) ∈ TΥj (x), but this contradicts the fact that j /∈ J0, so the proof is complete.

4.1 Proof of Proposition 2.3

We split the proof into four steps.
Step 1 (viability): The idea of the proof consists in selecting a stratified vector field ([16, Definition 2.4])
from the dynamical system that governs the optimal control problem at hand, and afterwards, use [16,
Theorem 3.3] in order to state the existence of solutions for any (t, x) ∈ [0, T )×K.

For any i ∈ I, let us select a control ai ∈ Ai and write gi(·) for the vector field fi(·, ai). Thanks to (Hf ),
gi is a continuous selection of x 7→ fi(x,Ai).

On the other hand, for any j ∈ J0 by (H2) we have that x 7→ Fj(x) has nonempty compact convex
images on Υj and it is in particular l.s.c. on Υj . Hence, by virtue of the Michael’s Selection Theorem ([4,
Theorem 1.11.1]) we can pick a continuous selection of Fj(·), that is, a continuous map gj : Υj → RN that
verifies gj(x) ∈ Fj(x) = F (x) ∩ TΥj

(x) for any x ∈ Υj .
Note G = {gj}j∈J0

∪{gi}i∈I is a stratified vector field on the network K for the stratification {Υj}j∈J ∪
{Mi}i∈I . Thanks to (Hf ), this stratified vector field has linear growth. Furthermore, combining Lemma
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4.1 and Lemma 4.2 with (H0), we check that the assumptions of [16, Theorem 3.3] are verified, and so for
each (t, x) ∈ [0, T )×K there exists an absolutely continuous curve y : [t, T ]→ K satisfying y(t) = x and

ẏ(s) =

{
gi(y(s)) ∈ fi(y(s),Ai) whenever y(s) ∈Mi,

gj(y(s)) ∈ Fj(y(s)) whenever y(s) ∈ Υj , j ∈ J0,
for a.e. s ∈ [t, T ].

So the network is a viable domain, because the sets {s ∈ [t, T ] | y(s) ∈ Υj} are negligible whenever j /∈ J0

(see Lemma 4.3).
Step 2 (effective domain of the Value Function): We claim that ϑ(t, x) ∈ R for any (t, x) ∈ [0, T )×K.
Indeed, from the previous step (viability) the Value Function is bounded from above because ST (t, x) 6= ∅,
dom L = gr (F ) and dom ψ = K. Moreover, by (Hf ) and the Gronwall’s Lemma ([14, Proposition 4.1.4])
we have

y(s) ∈ B(x, r(t, x)), ∀s ∈ [t, T ] where r(t, x) = (1 + |x|)(ecf (T−t) − 1), ∀y ∈ ST (t, x).

Besides, since we have taken each Li to be non negative in (HL), then L is non negative as well and thus

ϑ(t, x) ≥ inf
i∈I
{ψi(x̃) | x̃ ∈Mi ∩ B(x, r(t, x))}.

The number of branches is locally finite and each ψi is locally bounded from below onMi, thus the righthand
side is finite and so, as claimed earlier, ϑ(t, x) ∈ R.
Step 3 (existence of optimal trajectories): The preceding step implies in particular that for each
(t, x) ∈ [0, T ) × K we can take a minimizing sequence {yn} ⊆ ST (t, x) for the problem at issue. In what
follows, we assume that (t, x) ∈ [0, T )×K as well as the minimizing sequence are given.

Gronwall’s Lemma and a compactness argument ([4, Theorem 0.3.4] for instance) allow us to assert that
(passing into a subsequence if necessary) we can assume that {yn} converges uniformly to an absolutely
continuous map y : [t, T ] → K. In addition, it can be proved that there is ω ∈ L1([t, T ];R) so that
(ẏn,L(yn, ẏn)) converges weakly in L1([t, T ];RN+1) to (ẏ, ω). Moreover, since {yn} is a minimizing sequence
and ψ is l.s.c., it is not difficult to see that

ϑ(t, x) ≥
∫ T

t

ω(s)ds+ ψ(y(T )).

Consequently, we only need to show that y ∈ ST (t, x) and ω ≥ L(y, ẏ) a.e. on [t, T ] to conclude that y(·) is
an optimal trajectory. To do so, let us introduce the augmented dynamics

Γ(x̃) = {(v, `) ∈ RN × R | v ∈ F (x̃), L(x̃, v) ≤ ` ≤ L∞(x̃)}, ∀x̃ ∈ K,

where L∞(x̃) = max{Li(x̃, a) | i ∈ I, x̃ ∈ Mi, a ∈ Ai}, for any x̃ ∈ K. The interest in this augmented
dynamics lies in the fact that

(ẏn(s),L(yn(s), ẏn(s))) ∈ Γ(yn(s)), for a.e. s ∈ [t, T ].

The set-valued map Γ has compact images and it is u.s.c. on K, this is because F has closed graph, L is l.s.c.
and L∞ is u.s.c. on K. Furthermore, thanks to (Hf ) and (HL), for any j ∈ J and i ∈ I we also have that
the restricted maps Γ|Υj

and Γ|Mi
are locally Lipchitz continuous on Υj and Mi, respectively. Combining

these properties, we can show that x̃ 7→ co (Γ(x̃)) is u.s.c. on K having compact nonempty images.
Therefore, in the light of the Convergence Theorem ([4, Theorem 1.4.1]) we have that

(ẏ(s), ω(s)) ∈ co(Γ(y(s))), a.e. on [t, T ].

By the convexity assumption (H1) and by construction of F and L (see (2.11) and (2.13), respectively)
we have that co(Γ(x̃)) = Γ|Mi

(x̃) for any i ∈ I and x̃ ∈Mi. Thus in particular

ẏ(s) ∈ fi(y(s),Ai) and ω(s) ≥ L(y(s), ẏ(s)) a.e. on [t, T ] whenever y(s) ∈Mi.

18



On the other hand, with the help of the Lebesgue Differentiation Theorem it is not difficult to see that

ẏ(s) ∈ TΥj
(y(s)), a.e. on [t, T ] whenever y(s) ∈ Υj for some j ∈ J .

Using routine arguments we can show that (H2) implies that co(Γ(x̃)) ∩ TΥj
(x̃) × R ⊆ Γ(x̃) for any j ∈ J0

and x̃ ∈ Υj . So, to conclude it only remains to show that, if j /∈ J0, then y(·) can not stay at the junction
Υj for a set of times of positive measure. Actually, as the following lemma states, this set is finite, so the
proof of existence of optimal trajectories for any (t, x) ∈ [0, T )×K finishes with the next result.

Lemma 4.3. Let K be a d-dimensional network whose junctions and branches are given by {Υj}j∈J and
{Mi}i∈I . Assume that {fi}i∈I satisfies (Hf ) with fi(x,Ai) being convex for any i ∈ I and x ∈Mi. Suppose
that {yn} ⊆ ST (t, x) is a sequence of trajectories that converges uniformly on [t, T ] to a continuous function
y : [t, T ]→ K. Then the set Tj := {s ∈ [t, T ] | y(s) = Υj} is finite provided that j /∈ J0.

Proof. We argue by contradiction. Suppose first that Tj is infinite with empty interior, that is, it contains
no open intervals. Then [t, T ] \ Tj is a countably infinite union of disjoint open intervals. Hence, for any
ε > 0 we can find s̃, ŝ ∈ Tj such that

0 < ŝ− s̃ < ε and y(s) /∈ Υj , ∀s ∈ (s̃, ŝ)

Let us take ε > 0 fixed but arbitrary, and s̃, ŝ ∈ Tj as above. By the network structure, there is i ∈ Ij
so that y(s) ∈Mi for each s ∈ (s̃, ŝ). Since yn converges uniformly to y, for any n ∈ N large enough we can
find s̃n, ŝn ∈ [t, T ] so that

yn(s) ∈Mi, ∀s ∈ (s̃n, ŝn) and (s̃n, ŝn)→ (s̃, ŝ)

In particular, ẏn(s) ∈ fi(yn(s),Ai) for a.e. s ∈ (s̃n, ŝn). Let us pick up the notation used to prove Lemma
4.1, and so let h : RN → RN−d+1 be a local defining map for Mi on B(y(s̃), r)). Suppose that ε > 0 is
small enough so that y(s) ∈ B(y(s̃), r4 ) for any s ∈ [s̃, ŝ]. Hence, for n ∈ N large enough, we can assume that
yn(s) ∈ B(y(s̃), r2 ) for any s ∈ [s̃n, ŝn], which means in particular that

hN−d+1(yn(ŝn))− hN−d+1(yn(ŝn)) =

∫ ŝn

s̃n

〈∇hN−d+1(yn(s)), ẏn(s)〉ds. (4.3)

Since, yn(s̃n) → y(s̃), yn(ŝn) → y(ŝ) and y(s̃), y(ŝ) ∈ Υj the lefthand side in (4.3) converges to zero.
However, recall that Lemma 4.2 implies that we must either have

fi(x̃,Ai) ⊆ r-int (T CMi
(x̃)), ∀x̃ ∈ Υj or else − fi(x̃,Ai) ⊆ r-int (T CMi

(x̃)), ∀x̃ ∈ Υj .

Then reducing r > 0 if necessary, the latter yields to, either

max
x̃∈B(y(s̃), r2 )

max
a∈Ai

〈∇hN−d+1(x̃), fi(x̃, a)〉 < 0 or else min
x̃∈B(y(s̃), r2 )

min
a∈Ai

〈∇hN−d+1(x̃), fi(x̃, a)〉 > 0. (4.4)

However, (4.4) implies that the righthand side in (4.3) can not be zero nor approximate to this value. Hence,
this contradiction means that Tj can not be infinite and have empty interior.

Before going further, we claim that, applying the same procedure to any yn instead of y, it is possible
to prove that Tnj := {s ∈ [t, T ] | yn(s) = Υj} is finite. Indeed, by the arguments exposed above, we have
that if Tnj is infinite, it must have nonempty interior. However, in the light of the Lebesgue Differentiation
Theorem, there is s ∈ Tnj for which

lim
δ→0

yn(s+ δ)− yn(s)

δ
= ẏn(s) ∈ F (yn(s)).

Standard arguments allow us to show that ẏn(s) ∈ TΥj
(yn(s)), which means that yn(s) ∈ Fj(yn(s)), getting

then to a contradiction with the fact that j ∈ J \ J0. So, Tnj is finite. In fact, we can state further that
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there exists some ε > 0, which does not depend on n, such that if s1, s2 ∈ Tnj then |s1 − s2| > ε. This can
be deduced by slightly modifying the argument used in the previous paragraph; we omit the details.

Finally, let us assume that Tj has nonempty interior. Hence, using the same notation as before, there
are s̃, ŝ ∈ Tj with s̃ < ŝ so that (s̃, ŝ) ⊆ Tj . Let h : RN → RN−d+1 and r > 0 be as above. By reducing to
a subinterval, we suppose that y(s) ∈ B(y(s̃), r4 ) for any s ∈ [s̃, ŝ]. By the uniform convergence hypothesis,
there is n0 ∈ N so that yn(s) ∈ B(y(s̃), r2 ) for any s ∈ [s̃, ŝ] and any n ≥ n0. Since Tnj is finite for any n ∈ N
and its elements are uniformly spread apart, we can assume that [s̃, ŝ] ∩ Tnj = ∅ for any n ≥ n0, and so, for
any n ≥ n0 there is i ∈ Ij for which yn(s) ∈Mi for all s ∈ [s̃, ŝ]. Consequently,

hN−d+1(yn(ŝ))− hN−d+1(yn(ŝ)) =

∫ ŝ

s̃

〈∇hN−d+1(yn(s)), ẏn(s)〉ds. (4.5)

Therefore, setting

βmin := min
x̃∈B(y(s̃), r2 )

min
a∈Ai

〈∇hN−d+1(x̃), fi(x̃, a)〉 and βmax := max
x̃∈B(y(s̃), r2 )

max
a∈Ai

〈∇hN−d+1(x̃), fi(x̃, a)

we obtain
(ŝ− s̃)βmin ≤ hN−d+1(yn(ŝ))− hN−d+1(yn(ŝ)) ≤ (ŝ− s̃)βmax, ∀n ≥ n0.

Since, s̃, ŝ ∈ Tj , yn(s̃) → y(s̃) and yn(ŝ) → y(ŝ) we have that hN−d+1(yn(ŝ)) − hN−d+1(yn(ŝ)) → 0 as
n → +∞. Nevertheless, by (4.4) we have that either βmin > 0 or βmax < 0. So a contradiction follows and
the proof of the lemma is complete.

Step 4 (lower semicontinuity): Let (t, x) ∈ [0, T ] × K and take a sequence {(tn, xn)} ⊆ [0, T ] × K
converging to (t, x). By the preceding step, we can pick for each n ∈ N a trajectory yn ∈ ST (tn, xn) which
realizes the optimal value at (tn, xn), that is,

ϑ(tn, xn) =

∫ T

tn

L(yn(s), ẏn(s))ds+ ψ(yn(T )), ∀n ∈ N. (4.6)

We first state some useful bounds. By Gronwall’s Lemma and (Hf ) we have that

|yn(s)− xn| ≤ (1 + |xn|)(ecf (T−tn) − 1), ∀n ∈ N,∀s ∈ [tn, T ] (4.7)

Therefore, since (tn, xn)→ (t, x), we can find R > 0 large enough so that yn(s) ∈ B(x,R) for any n ∈ N and
s ∈ [tn, T ]. Which means that there is L > 0 so that

0 ≤ |ẏn(s)|+ L(yn(s), ẏn(s)) ≤ L, ∀n ∈ N, for a.e. s ∈ [tn, T ].

Let us study the simpler case t = T . Indeed, in these circumstances (4.7) implies that yn(T )→ x, and since
L is uniformly bounded along the trajectories s 7→ yn(s), taking the limit inferior on the righthand side of
(4.6) and using the lower semicontinuity of ψ we get

lim inf
n→+∞

ϑ(tn, xn) ≥ ψ(x).

The conclusion follows by recalling that ϑ(T, x̃) = ψ(x̃) for any x̃ ∈ K.
We now focus on the case t < T . For any n ∈ N we write βn = T−tn

T−t and γn = T ( tn−tT−t ), and we define

ỹn(s) := yn(βns+ γn), ∀s ∈ [t, T ] and ωn(s) :=
1

βn
L
(
ỹn(s),

1

βn
˙̃yn(s)

)
, for a.e. s ∈ [t, T ].

Notice that the utility of these definitions lies on the fact that

˙̃yn ∈ βnF (ỹn), a.e. on [t, T ] ỹn(t) := xn, ỹn(T ) = yn(T ) and

∫ T

t

ωn(s)ds =

∫ T

tn

L(yn(s), ẏn(s))ds.
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On the other hand, we can readily check that

| ˙̃yn(s)− ẏn(βns+ γn)| ≤ βnL and |ωn(s)− L (yn(βns+ γn), ẏn(βns+ γn))| ≤ 1

βn
L. (4.8)

Therefore similarly as done in the step 3, by standard compactness arguments ([4, Theorem 0.3.4] for
instance) and passing into a subsequence if necessary, we have that {ỹn} converges uniformly to an absolutely
continuous map y : [t, T ] → K. In addition, it can be proved that there is ω ∈ L1([t, T ];R) so that ( ˙̃yn, ωn)
converges weakly in L1([t, T ];RN+1) to (ẏ, ω). The rest of the proof consists in showing that (ẏ, ω) ∈ Γ(y)
a.e. on [t, T ]. To do this we use again the Convergence Theorem ([4, Theorem 1.4.1]) and (4.8) to prove first
the (ẏ, ω) ∈ co (Γ(y)) a.e. on [t, T ] and we later use the same arguments as above in step 3 to conclude. It
is worth noticing that we need to use the next modified version of Lemma 4.3.

Lemma 4.4. Let K be a d-dimensional network whose junctions and branches are given by {Υj}j∈J and
{Mi}i∈I . Suppose that {ỹn} is a sequence of absolutely continuous function defined on [t, T ] with values
on K and so that it converges uniformly on [t, T ] to a continuous function y : [t, T ] → K. Assume that
{fi}i∈I satisfies (Hf ) with fi(x,Ai) being convex for any i ∈ I and x ∈ Mi and that for some sequence
{βn} ⊆ (0,+∞) converging to 1 we have

˙̃yn(s) ∈ βnF (ỹn(s)) , for a.e. s ∈ [t, T ].

Then the set Tj := {s ∈ [t, T ] | y(s) = Υj} is finite provided that j /∈ J0.

The details of the preceding result are left to the reader (its proof is a routine modification of the one of
Lemma 4.3) and so the proof of Proposition 2.3 is assumed to be complete.

5 Minimality of the Value Function as supersolution

Now we focus on the proof of Theorem 3.1. In order to facilitate the reading, we divide the proof into two
lemmas. We first show that the Value Function verifies the junction conditions (C0) and (C2) (see Lemma
5.1), and afterwards we show that these conditions are enough to identify the Value Function as the minimal
supersolution of the Hamilton-Jacobi equation (see Lemma 5.2).

Before going further, let us introduce some extra notation for understanding the proof of the next lemmas.
We consider for each i ∈ I the extended dynamics Γi :Mi ⇒ RN defined via

Γi(x) := {(fi(x, a), `) | a ∈ Ai, Li(x, a) ≤ ` ≤ L∞i (x)}, ∀x ∈Mi.

Remark 5.1. It is not difficult to see that (HA), (Hf ) and (HL) imply that Γi is u.s.c. with non empty
compact images on Mi. Furthermore, by (H1), it also has convex images all along Mi.

Similarly as for the dynamics F , we might also consider an extended dynamics Γ : RN ⇒ RN defined on
the junction in the following way

Γ(x) :=


Γi(x) x ∈Mi for some i ∈ I,⋃ {Γi(x) | i ∈ Ij} x ∈ Υj for some j ∈ J ,
∅ otherwise,

∀x ∈ RN .

We can also see that Γ as multifunction is u.s.c. with compact (not necessarily convex) images.

Lemma 5.1. Under the assumptions of Theorem 3.1, the Value Function of the Bolza problem on the
d-dimensional network K verifies (C0) and (C2).

Proof. To show that the Value Function satisfies (C0) in the case when j ∈ J0, we can follow the same
argument used to show that the Value Function verifies (2.2) (Step 3 in the proof of Proposition 2.2), so we
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skip this part of proof and focus only on the case j /∈ J0. Under these circumstances, it may be possible
that no backward trajectories start from x ∈ Υj at any time t ∈ (0, T ]. However, in this case (C0) is a
consequence of (Hψ). Indeed, let us fix j /∈ J0 and x ∈ Υj . Since there are only finitely many branches
reaching Υj , and since, by (Hψ), each ψi is continuous up to Mi, we conclude that there exists i ∈ Ij
so that ψi(x) = ψ(x). Take any sequence (tn, xn) ∈ (0, T ) ×Mi such that (tn, xn) → (T, x) and consider
yn ∈ STF (tn, xn). Then, by the definition of the Value Function, we have:

ϑ(tn, xn) ≤
∫ T

tn

L(yn(s), ẏn(s))ds+ ψi(yn(T )), ∀n ∈ N.

In the light of the Gronwall’s Lemma and (Hf ) we have that the graph of {yn} are uniformly bounded and
yn(T ) → x as n → +∞. Moreover, the integral term in the inequality stated above vanishes as n → +∞;
this is because the integrand L(yn, ẏn(s)) can be uniformly bounded for a.e. s ∈ [tn, T ]. Finally, taking
liminf in the inequality and using the lower semicontinuity of ϑ and the continuity of ψi we get (C0).

We now turn our attention into showing that the Value Function verifies (C2). Let j ∈ J and take
(t, x) ∈ (0, T )×Υj fixed but arbitrary. Thanks to Proposition 2.3 and the Dynamic Programming Principle
there is y ∈ ST (t, x) so that

ϑ(t+ h, y(t+ h)) +

∫ t+h

t

L(y(s), ẏ(s))ds = ϑ(t, x), ∀h ∈ [0, T − t]. (5.1)

Let us consider the absolutely continuous function z : [t, T ]→ R defined via

z(t+ h) :=

∫ t+h

t

L(y(s), ẏ(s))ds, ∀h ∈ [0, T − t].

Now choose any non increasing sequence {hn} ⊆ (0, T − t) converging to 0 so that

vn :=
y(t+ hn)− x

hn
→ v and `n :=

z(t+ hn)

hn
→ `, as n→ +∞.

The latter is always possible because F and L are locally bounded thanks to (Hf ) and (HL).
Let us assume for a moment that (v, `) ∈ Γi(x) with v ∈ T BMi

(x), for some i ∈ Ij . In the light of [14,

Proposition 3.4.10 and Proposition 3.4.12], for any (θ, ζ) ∈ ∂V ϑ(t, x) and any sequence {(tn, xn)} converging
to (t, x) the following holds true:

lim inf
n→+∞

ϑ(tn, xn)− ϑ(t, x)− θ(tn − t)− 〈ζ, xn − x〉
|xn − x|+ |tn − t|

≥ 0. (5.2)

Now, setting tn = t+ hn and xn = y(t+ hn), and using (5.1) we get

ϑ(tn, xn)− ϑ(t, x)− θ(tn − t)− 〈ζ, xn − x〉
|xn − x|+ |tn − t|

=
−z(tn)− θhn − 〈ζ, xn − x〉

|xn − x|+ hn
, ∀n ∈ N. (5.3)

Furthermore, it is not difficult to see that the righthand side of the preceding equality converges to −`−θ−〈ζ,v〉|v|+1 .

Therefore, since (θ, ζ) is arbitrary, by virtue of (5.2), letting n→∞ in (5.3), we find out that

−θ − 〈v, ζ〉 − ` ≥ 0, ∀(θ, ζ) ∈ ∂V ϑ(t, x). (5.4)

Notice that because (v, `) ∈ Γi(x) for some i ∈ Ij (which depends exclusively on (t, x)), we have v =
fi(x, a) and Li(x, a) ≤ ` for some a ∈ Ai. Therefore, replacing this in (5.4) and taking supremum over
a ∈ Ai such that fi(x, a) ∈ T BMi

(x) we get (C2)

To complete the proof we need to prove our assumption that (v, `) ∈ Γi(x) and v ∈ T BMi
(x), for some

i ∈ Ij . To see this we consider the two cases:
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1. Suppose that for n̄ ∈ N large enough, y(s) ∈ Mi for any s ∈ (t, t + hn̄]; in the light of Lemma 4.3
this is the case if j /∈ J0 . Under these circumstances, we get that (v, `) ∈ Γi(x). Indeed, take ε > 0
arbitrary, by the upper semicontinuity of Γi at x there is nε ∈ N with nε ≥ n̄ so that

Γi(y(shn + t)) ⊆ Γi(x) + B(0, ε), ∀n ≥ nε, ∀s ∈ [0, 1]. (5.5)

The choice of nε is independent of s ∈ [0, 1], as a consequence of the Gronwall’s Lemma; see for instance
(4.7). Furthermore, by Remark 5.1, we have that Γi(x) + B(0, ε) is a compact convex set.

On the other hand, for any n ∈ N let us consider the measurable function γn : [0, 1]→ RN ×R defined
via

γn(s) := (ẏ(shn + t), ż(shn + t)), a.e. s ∈ [0, 1].

By Lemma 2.1 we have that γn(s) ∈ Γi(y(shn + t)) a.e. on [0, 1]. Furthermore, by the definition of γn,
[30, Lemma 4.2] and (5.5) we have that

(vn, `n) =

∫ 1

0

γn(s)ds ∈ Γi(x) + B(0, ε), ∀n ≥ nε.

Letting n → +∞ we find out that (v, `) ∈ Γi(x) + B(0, ε). Moreover, since ε > 0 is arbitrary, we get
that (v, `) ∈ Γi(x) because the images of Γi are compact thanks to (H1). We finally notice that, since
y(t+ hn)→ x as n→ +∞ and y(t+ hn) ∈Mi for all n ∈ N, we have as well that v ∈ T BMi

(x). Hence

the conclusions follows.

2. Suppose that there is no δ > 0 and i ∈ Ij for which y(s) ∈Mi for any s ∈ (t, t+ δ). We claim that in
this case (v, `) ∈ Γ(x) and v ∈ TΥj (x). By Lemma 4.3 this situation can only happen if i ∈ J0, and so
by (H2), we have Γ(x) ∩ TΥj (x)× R = co (Γ(x)) ∩ TΥj (x)× R.

By the network-like structure, we can take the sequence {hn} so that y(t + hn) ∈ Υj for any n ∈ N,
and this implies that v ∈ T BΥj

(x) = TΥj
(x). Moreover, using the same argument as in the preceding

part, we can show by the upper semicontinuity of Γ at x together with [30, Lemma 4.2] that for any
ε > 0 there is nε ∈ N so that

(vn, `n) =

∫ 1

0

γn(s)ds ∈ co (Γ(x) + B(0, ε)) , ∀n ≥ nε.

Recall that Γ(x) is not necessarily convex, so the righthand side cannot be replaced with the smaller set
Γ(x)+B(0, ε). Repeating the reasoning of the case studied before, we can check that (v, `) ∈ co (Γ(x)).
However, by (H2) the claim holds true because

(v, `) ∈ co (Γ(x)) ∩ TΥj (x)× R = Γ(x) ∩ TΥj (x)× R.

Furthermore, by the definition of Γ(x) and given that TΥj
(x) ⊆ T BMi

(x) for any i ∈ I, there exists

indeed a particular i ∈ Ij so that (v, `) ∈ Γi(x) with v ∈ T BMi
(x). Therefore, the proof is complete.

Lemma 5.2. Under the assumptions of Theorem 3.1, any ω : [0, T ] × RN → R ∪ {+∞} bilateral viscosity
solution to (HJ) that verifies the junction conditions (C0) and (C2), must satisfy in addition

ϑ(t, x) ≤ ω(t, x), ∀(t, x) ∈ [0, T ]×K.
Proof. We argue by contradiction, that is, assume there is (t0, x0) ∈ [0, T ]×K so that ω(t0, x0) < ϑ(t0, x0).
By (C0) we can immediately rule out the case t0 = T .

For sake of clarity, we divide the rest of the proof into three steps, each one of them aiming to prove a
distinct claim.

Step 1: We first study the case in which x0 belong to one of the branches of the network.
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Claim A: If x0 ∈Mi for some i ∈ I, then there exist τ > t0 and y ∈ Sτ (t0, x0) so that

y(t) ∈Mi, ∀t ∈ [t0, τ) and ω(t, y(t)) < ϑ(t, y(t)), ∀t ∈ [t0,min{τ, T}].

Furthermore, if τ ≤ T then y(τ) ∈Mi \Mi.

To prove this, we only need to show that there exist τ ∈ (t0, T ) and y ∈ ST (t0, x0) that remains on Mi on
(t0, τ) and that verifies

ω(t, y(t)) +

∫ t

t0

L(y(s), ẏ(s))ds ≤ ω(t0, x0), ∀t ∈ [t0, τ ]. (5.6)

Indeed, by the contradiction hypothesis and the Dynamic Programming Principle the conclusion follows
easily. Now to prove (5.6), we use a weak invariance argument on the branch Mi similar to the one used
in [17, 18]. Before going further we recall the notion of proximal normal cone. Given a locally closed set
S ⊆ Rn, vector η ∈ Rn is called proximal normal to S at x ∈ S if there exists σ = σ(x, η) > 0 so that

|η||x− x̃|2 ≥ 2σ〈η, x̃− x〉, ∀x̃ ∈ S.

The set of all such vectors η is the Proximal normal cone to S at x and which we denote by NP
S (x).

Let us begin by noticing that that the dynamics Γi can be extended to a multifunction defined on RN .
Indeed, this is a consequence of the Extension Theorem (cf. [30, Theorem 2.6]) and its construction is as
follows. Let r > 0 so that for each y ∈ ST (t0, x0) we have y(t) ∈ B(x0, r) for any t ∈ [t0, T ]; the existence
of such r > 0 is given by Gronwall’s Lemma. Let Oi ⊆ RN be the largest open subset contained in B(x0, r)
so that K ∩ Oi ⊆ Mi; the existence of Oi is justified by the fact that the set of branches is locally finite in
space. Hence, by [30, Theorem 2.6] there is a u.s.c. map with nonempty convex compact images defined on
RN which agrees with Γi on Mi ∩ Oi. We denote by Γ̂i such an extension.

Let us introduce the l.s.c. function W : [0, T ]× RN × R→ R ∪ {+∞} defined via

W (t, x, z) := ω (t, x) + z, ∀ (t, x, z) ∈ [0, T ]× RN × R.

Note that ∂Pω(t, x)× {1} ⊆ ∂PW (t, x, z) for any (t, x, z) ∈ [0, T ]× RN × R. Hence, by [13, Theorem 11.31]
we get that

(θ, ζ) ∈ ∂Pω(t, x), (t, x) ∈ [0, T ]×K =⇒ (θ, ζ, 1,−1) ∈ NP
epi (W )(t, x, z,W (t, x, z)), ∀z ∈ R.

Therefore, with the help of standard arguments in nonsmooth analysis, which we deliberately skip but
refer to [14, Theorem 4.5.7] or [18, Proposition 5.1] for more details, we can prove that (2.1) implies that

min
(v,`)∈Γi(x)

〈(1, v, `, 0), η〉 ≤ 0 ∀ η ∈ NP
epi (W )(t, x, z,W (t, x, z)), (t, x, z) ∈ (0, T )×Mi ∩ Oi × R. (5.7)

Let Ui := (0, T ) × Oi × R × R, then the map x 7→ {1} × Γ̂i(x) × {0} is u.s.c. with locally bounded
images and it has nonempty compact convex images on epi (W ) ∩ Ui. Consequently, all the conditions
are met to apply the weak invariance criterion of [33]. Thus, [33, Theorem 3.1 (a)] combined with (5.7)
implies that the set epi (W ) is weakly invariant in Ui for the dynamics {1} × Γ̂i(·)× {0} (see [33, Definition
3.1]), which means in particular that, since (t0, x0, 0, ω(t0, x0)) ∈ epi (W ), we can find τ > t0 and a curve
γ : [t0, τ)→ R×RN ×R×R that solves γ̇ ∈ {1}× Γ̂i(γ)×{0} a.e. on [t0, τ), that lives in epi (W ) on [t0, τ)
and verify γ(t0) = (t0, x0, 0, ω(t0, x0)). It is rather clear that

γ(t) = (t, y(t), z(t), ω(t0, x0)), ∀t ∈ [t0, τ)

where y ∈ Sτ (t0, x0) and ż(t) ≥ L(y(t), ẏ(t)) for a.e. t ∈ [t0, τ). Furthermore, since γ(t) ∈ epi (W ) ∩ Ui for
any t ∈ [t0, τ), we have that y(t) ∈Mi and ω(t, y(t)) + z(t) ≤ ω(t0, x0) for each t ∈ [t0, τ). Hence, if τ > T ,
the conclusion follows easily, so let us assume that it is not the case. By Gronwall’s inequality (4.7), we see
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that y(τ) is well defined and y(t) → y(τ) as t → τ−. Therefore, by the lower semicontinuity of ω we get
that the (5.6) holds true and so does the first part of Claim A. The fact that if τ < T then y(τ) ∈Mi \Mi

comes from the value of τ given by [33, Theorem 3.1 (a)]. As a matter of fact, τ = inf{t > t0 | γ(t) /∈ Oi}.
Since y(τ) ∈ B(x0, r), the only option is that y(τ) /∈Mi. So the proof of Claim A is complete.

On the other hand, let τ ∈ (t, T ] and y ∈ Sτ (t0, x0) be as in Claim A. Note that if τ ≥ T we can evaluate
(5.6) at τ = T and use (C0) to get

ψ(y(T )) +

∫ T

t0

L(y(s), ẏ(s))ds = ω(T, y(T )) +

∫ T

t0

L(y(s), ẏ(s))ds ≤ ω(t0, x0) < ϑ(t0, x0),

which contradicts the definition of the Value Function. So, the only interesting case that remains is when
τ < T . In this case we have y(τ) ∈ Mi \Mi, and thus, by the network structure of K, we have that there
is j ∈ J so that y(τ) ∈ Υj with ω(τ, y(τ)) < ϑ(τ, y(τ)). Therefore, setting t1 = τ and x1 = y(τ) we see that
contradiction hypothesis yields to a new contradiction hypothesis, namely, ω(t1, x1) < ϑ(t1, x1) for some
t1 < T and x1 ∈ Υj for some j ∈ J . We study this case in the next steps.

Step 2: As disclosed in the preceding step, we only need to focus on the case that the inequality ϑ ≤ ω fails
at some point on a junction. To do so, we investigate separately the case j ∈ J0 and j /∈ J0.

Suppose there are j ∈ J0, t1 < T and x1 ∈ Υj so that ω(t1, x1) < ϑ(t1, x1). Under these circumstances
a similar result as Claim A can be stated. Its proof is rather similar and it is a consequence of the fact that
the dynamics of the convexified and original problem coincide around the junctions indexed by J0.

Claim B: If x1 ∈ Υj for some i ∈ J0, then there exist τ > t1 and y ∈ Sτ (t1, x1) so that

ω(t, y(t)) < ϑ(t, y(t)), ∀t ∈ [t1, τ ].

Furthermore, if τ ≤ T then y(τ) ∈ Υl for some l ∈ J \ {j}.

In a similar way as for Step 1, choose r > 0 so that for each y ∈ ST (t1, x1) we have y(t) ∈ B(x1, r) for
any t ∈ [t1, T ] and consider Oj ⊆ RN the largest open subset of B(x1, r) such that Υj is the unique junction
of K intersecting Oj . The idea is to prove that (C2) and (2.1) imply that epi (W ) is weakly invariant in
Uj := (0, T )×Oj×R×R for a suitable dynamics, which is an extension of the map x 7→ {1}×co(Γ(x))×{0}.
By showing this and proceeding as for Claim A, the conclusion will be easily reached.

Recall that x 7→ co(Γ(x)) is u.s.c. on K. Hence, in the light of the Extension Theorem (cf. [30, Theorem
2.6]) and similarly as done earlier, we can construct a u.s.c. set valued-map with nonempty compact convex
images, defined all along RN and such that it agrees with the map x 7→ {1} × co(Γ(x)) × {0} on Oj . We
write z for such extension.

Note that z agrees with {1} × Γi × {0} on Mi ∩Oj for each i ∈ Ij . Thus, the same arguments used for
Claim A yield

min
ν∈z(x)

〈ν, η〉 ≤ 0, ∀η ∈ NP
epi (W )(t, x, z,W (t, x, z)), ∀i ∈ Ij , ∀(t, x, z) ∈ (0, T )×Mi ∩ Oj × R.

Consequently, to provide the weak invariance of the system, it only remains to show that (C2) implies that

min
ν∈z(x)

〈ν, η〉 ≤ 0, ∀ η ∈ NP
epi (W )(t, x, z,W (t, x, z)), ∀(t, x, z) ∈ (0, T )×Υj ∩ Oj × R. (5.8)

To see this, it is enough to note that given that co(Γ) has compact images, we obtain that

min
ν∈z(x)

〈ν, η〉 = min
(v,`)∈co(Γ(x))

〈(1, v, `, 0), η〉 = min
(v,`)∈Γ(x)

〈(1, v, `, 0), η〉 ∀ (x, η) ∈ Υj × RN+3.

Let η = (θ, ζ, 1,−1) for some θ ∈ R and ζ ∈ RN , then from the last identities we get

min
ν∈z(x)

〈ν, (θ, ζ, 1,−1)〉 = θ −max
i∈Ij

Hi(x, ζ) ≤ θ −H+
i (x, ζ), ∀i ∈ Ij , ∀ (x, θ, ζ) ∈ Υj × R× RN .

25



Thus, the standard arguments in nonsmooth analysis mentioned in step 1 we can prove that (5.8) holds.
So, by [33, Theorem 3.1 (a)] we have that epi (W ) is weakly invariant in U for the dynamics z.

In particular, by the same reasoning of the preceding claim, there exist τ > t1, an absolutely continuous
curve y : [t1, τ) → K with y(t1) = x1 and an absolutely continuous function z : [t1, τ) → R with z(t1) = 0,
for which

ω(t, y(t)) + z(t) ≤ ω(t1, x1), ∀t ∈ [t1, τ), and (ẏ(t), ż(t)) ∈ co(Γ(y(t))), for a.e. t ∈ [t1, τ).

Moreover, we can easily see that

ẏ(t) ∈
{
Fi(y(t)) whenever y(t) ∈Mi,

TΥj
(y(t)) whenever y(t) ∈ Υj ,

for a.e. t ∈ [t1, τ).

But, by (H2), since j ∈ J0 we have that ẏ(t) ∈ Fj(y(t)) for a.e. t ∈ [t1τ) so that y(t) ∈ Υj . This remark
implies that y(·) is a trajectory of the original control system, and so the first part of Claim B holds true.
For the last part of Claim B we need to slightly modify the arguments used for Claim A. Indeed, by [33,
Theorem 3.1 (a)] the value of τ is given by inf{t > t0 | γ(t) /∈ Oj}, which means that if τ ≤ T , then for some
i ∈ Ij we must have y(τ) ∈Mi \Υj . Therefore, the proof of Claim B is complete.

On the other hand, the same reasons used for the conclusion of Claim A show that, if x1 is as in Claim
B and τ > T we get a contradiction. Consequently, we may restrict our attention to the case τ ≤ T . By
Claim B, we have that y(τ) ∈ Υl for some l ∈ J . If l ∈ J0, we can use Claim B with j = l, t1 = τ and
x1 = y(τ) to find another τ̃ > τ and ỹ ∈ Sτ̃ (τ, y(τ)) and so that y(τ̃) ∈ Υn for some n 6= j. It is clear that
we can repeat the argument to find τ̄ > t1 and ȳ ∈ Sτ̄ (t1, x1) so that, either

τ̄ > T and ω(t, ȳ(t)) < ω(t1, x1), ∀t ∈ [t1, τ̄ ],

or ȳ(τ̄) ∈ Υ for some  /∈ J0. Since in the first case we find right away a contradiction with (C0), it is evident
that the only case that remains to dismiss is when t2 = τ̄ and x2 = ȳ(τ̄) so that t2 < T and x2 ∈ Υj for j /∈ J0.

Step 3: We now finally study the case described above, that is, we assume that for some j ∈ J \J0, there is
t2 < T and x2 ∈ Υj so that ω(t2, x2) < ϑ(t2, x2). This situation is the last one we need to rule out in order
to get a contradiction with the initial assumption that ω is not smaller or equal that the Value Function. In
this step we prove the analogous of Claim B but for the case j /∈ J0.

Claim C: If x2 ∈ Υj for some i /∈ J0, then there exist τ > t2 and y ∈ Sτ (t2, x2) so that

ω(t, y(t)) < ϑ(t, y(t)), ∀t ∈ [t2, τ ].

Furthermore, if τ ≤ T then y(τ) ∈ Υl for some l ∈ J \ {j}.

Let i ∈ Ij be given by (C2) for (t2, x2) ∈ (0, T ) × Υj . Note that, since dom Fj = ∅ we must have that

fi(x2,Ai) ∩ T CMi
(x2) 6= ∅, which means in the light of Lemma 4.2, that fi(x,Ai) ⊆ r-int

(
T CMi

(x)
)

for any

x ∈ Υj . Let Oj be an open subset of RN defined in the same way as in Step 2. We show first that

−θ + max
(v,`)∈Γi(x)

〈−v, ζ〉 − ` ≥ 0, ∀(t, x) ∈ (0, T )×Mi ∩ Oj , ∀(θ, ζ) ∈ ∂Pωi(t, x), (5.9)

where ωi = ω on [0, T ]×Mi and is +∞ elsewhere. To do this we only need to focus on (t, x) ∈ (0, T )×Υj

because (5.9) on [0, T ] ×Mi is a direct consequence of (2.1). Hence, let us fix (t, x) ∈ (0, T ) × Υj and
(θ, ζ) ∈ ∂Pωi(t, x). By the Sum Rule for the proximal subdifferential (see for instance [14, Theorem 1.8.3]),
we can construct the following sequence:

• {(tn, xn)} ∈ (0, T )×K with (tn, xn)→ (t, x) and ω(tn, xn)→ ω(t, x).

• {(θn, ζn)} ∈ R× RN with (θn, ζn) ∈ ∂Pω(tn, xn) for any n ∈ N.
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• {(x̃n, ηn)} ∈ Mi × RN with ηn ∈ NP
Mi

(x̃n) for any n ∈ N.

Furthermore, these sequences also verify that θn → θ and ζn + ηn → ζ as n → +∞. Suppose that there
exists a subsequence of {xn} that lies in Mi, then, avoiding relabelling the subsequence, (2.1) implies that

−θn + max
(v,`)∈Γi(xn)

〈−v, ζn〉 − ` ≥ 0, ∀n ∈ N.

Since Γi has compact images, for each n ∈ N there exists (`n, vn) ∈ Γi(xn) so that θn + 〈vn, ζn〉 + `n ≤ 0.
Moreover, since Γi is u.s.c. and uniformly bounded around x, we can assume that {(vn, `n)} converges to some

(v, `) ∈ Γi(x). Additionally, since fi is continuous and fi(x,Ai) ⊆ r-int
(
T CMi

(x)
)

, there exists {εn} ⊆ (0, 1)

so that εn → 0 and 〈vn, ηn〉 ≤ εn. So, gathering the information we find out that

θn + 〈vn, ζn + ηn〉+ `n ≤ εn, ∀n ∈ N.

Letting n→ +∞, we get (5.9) after a few algebraic steps.
On the other hand, if there is no subsequence of {xn} lying inMi, we may assume that xn ∈ Υj for any

n ∈ N. However, in this case (C2) yields

−θn + max
(v,`)∈Γi(x̃)

〈−v, ζn〉 − ` ≥ 0, ∀n ∈ N.

Hence, using the same arguments as above we can easily prove that (5.9) holds as well.
Now, let us introduce the l.s.c. function Wi : [0, T ]× RN × R→ R ∪ {+∞} defined via

Wi (t, x, z) := ωi (t, x) + z, ∀ (t, x, z) ∈ [0, T ]× RN × R,

and consider a multifunction zi, which is a u.s.c. extension of the set-valued map x 7→ {1} × Γi(x) × {0}
from Mi ∩ Oj up to RN . Then, it is not difficult to see that (5.9) implies that

min
ν∈zi(x)

〈w, η〉 ≤ 0 ∀ η ∈ NP
epi (Wi)

(t, x, z), ∀(t, x, z) ∈ (0, T )×Mi × R.

Therefore, by [33, Theorem 3.1 (a)], the conclusion follows by the same arguments used in the previous
claims. Consequently, Claim C has been proved.
Step 4: Finally, recall that the set of junctions is locally finite and pairwise disjoint. Therefore, for any
(t, x) ∈ (0, T ) × K such that ω(t, x) < ϑ(t, x), by concatenating the trajectories obtained by the preceding
claims we can find τ ≥ T and y ∈ Sτ (t, x) so that

ω(s, y(s)) < ϑ(s, y(s)), ∀s ∈ [t, τ ].

Evaluating the preceding inequality at s = T we get a contradiction with (C0). If t = 0, the result come from
the lower semicontinuity of ω and the dynamic programming principle. Considering all these arguments, the
proof of Lemma 5.2 is complete.

6 Maximality of the Value Function as subsolution

6.1 Technical lemmas on strong invariance

One of the key result required to prove Theorem 3.2 is based on strong invariance arguments, which is
summarized below (Lemma 6.2). However, before going further it may be helpful to recall some notion of
Variational Analysis, in particular of Proximal Analysis.
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6.1.1 Normal Cones and Proximal subgradients.

For sake of the exposition, we recall the definition of the Proximal normal cone and its relation with the
proximal subgradient. For a further discussion about this topic we refer the reader to [14].

Let S ⊆ Rk be a locally closed set and x ∈ S. Recall that NP
S (x) stands for the Proximal normal cone

to S at x. If S = epi (ω) where ω : Rk → R ∪ {+∞} is a lower semicontinuous function, then for every
x ∈ dom (ω), the following relation is valid:

∂Pω(x)× {−1} ⊆ NP
epi (ω)(x, ω(x)), ∀x ∈ dom (ω).

By definition of the proximal subdifferential, ζ ∈ ∂Pϕ(x) if and only if there exist σ, δ > 0 such that

ϕ(y) ≥ ϕ(x) + 〈ζ, y − x〉 − σ|y − x|2 ∀y ∈ B(x, δ) ∩ dom ϕ.

This inequality is called the proximal subgradient inequality.

6.1.2 HJB equations and invariance

Lemma 6.1. Let M be a manifold, let F : M → RN be set-valued map with nonempty images such that
F (x) ⊆ TM (x) for any x ∈ M and let L : M × RN → R be a continuous function, such that the following
multifunction is locally Lipschitz on M :

x 7→ {(v, `) | v ∈ F(x), ` = L(x, v)}. (6.1)

Let ω : [0, T ]×M → R be a lower semicontinuous function and suppose that:

−θ + sup
v∈F(x)

{−〈v, ζ〉 − L(x, v)} ≤ 0, ∀(t, x) ∈ (0, T )×M, ∀(θ, ζ) ∈ ∂Pω(t, x). (6.2)

Then, for any 0 < a < b < T and y : [a, b]→M absolutely continuous arc that satisfies

ẏ(s) ∈ F(y(s)), a.e. s ∈ [a, b], (6.3)

one has

ω(a, y(a)) ≤
∫ b

a

L(y(s), ẏ(s))ds+ ω(b, y(b)). (6.4)

Proof. Since M is a manifold (at least C2), there is a tubular neighborhood around M , that is, there exists
an open set U ⊆ RN such that the projection over M is well defined on U and is (at least) a C1 submersion
on U ; see for instance [23, Theorem 6.24]. Hence, it is easy to see that F and L can be extended up to U in
such a way that the multifunction given in (6.1) is locally Lipschitz on U as well. A similar remark is valid
for the function ω and the HJB inequality (6.2), which we assume from now on that are defined and valid
on (0, T )× U , respectively.

On the other hand, to show that (6.4) holds it is enough to prove that W : [0, T ]× U ×R→ R given by

W (t, x, z) := ω(t, x) + z

is strongly increasing on (0, T ) × U for the dynamics given by (6.1). Thus, the conclusion follows directly
from [14, Proposition 4.6.5] and the fact that

∂PW (t, x, z) ⊆ ∂Pω(t, x)× {1}

In the case that M is not a necessarily a manifold, a similar result can be stated. In particular, this is
relevant for the case when M is a manifold with boundary.
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Lemma 6.2. Let M be a closed set, let F : M → RN be set-valued map with nonempty images and let
L : M × RN → R be a continuous function, such that the following multifunction is locally Lipschitz on M :

x 7→ {(v, `) | v ∈ F(x), ` = L(x, v)}

Let ω : [0, T ]×M → R be a lower semicontinuous function and suppose that it satisfies (6.2). Then, the
same conclusion as in Lemma 6.1 holds.

Proof. Let a, b ∈ R and y : [a, b]→M be an absolutely continuous curve that satisfies (6.3). Let us consider
the curve ỹ : [a, b]→M given by ỹ(s) = y(a+ b− s) for any s ∈ [a, b]. Let W : [0, T ]×M ×R→ R be given
by

W (t, x, z) := ω(t, x) + z

Hence, defining

γ(t) =

(
a+ b− t, ỹ(t),−

∫ t

a

L(ỹ(s),− ˙̃y(s))ds, ω(b, y(b))

)
, ∀t ∈ [a, b],

we see that if γ(t) ∈ epi (W ) for every t ∈ [a, b], the conclusion of the lemma follows immediately. Further-
more,

γ̇(t) ∈ Γ(γ(t)), a.e. t ∈ [a, b], (6.5)

where
Γ(t, x, z) = {−1} × {(−v,−`)| v ∈ F(x), ` = L(x, v)} × {0}.

It’s clear that the condition on the epigraph of W holds at t = a, that is, γ(a) ∈ epi (W ). Hence, such
condition amounts to say that epi (W ) is strongly invariant for trajectories that satisfies (6.5) on the interval
[a, b]. Therefore, to conclude we need to apply some ad hoc criterion for strong invariance, as for example
[18, Proposition 4.2].

To do so, we proceed as follows. We set S = epi (W ) and M = R ×M × R × R, and take R > 0 fixed.
Note that S ⊆M is also closed, and Γ is locally Lipschitz on M, which means that there is LΓ > 0 such that

distΓ(p)(q) ≤ LΓ|p− p̃|, ∀p, p̃ ∈ B(0, R̃) ∩M, q ∈ Γ(p̃),

where R̃ > R so that projS(p) ⊆ B(0, R̃) for any p ∈ B(0, R).
Let p ∈ B(0, R) ∩M and s ∈ projS(p), then for any q ∈ Γ(p) and ε > 0, there is qεs ∈ Γ(s) such that

〈p− s, q〉 = 〈p− s, q − qεs〉+ 〈p− s, qεs〉 ≤ |p− s|
(
distΓ(s)(q) + ε

)
+ 〈p− s, qεs〉.

Thus, in the light of the Lipschitz estimate for Γ we have that

〈p− s, q〉 ≤ LΓ|p− s|2 + ε|p− s|+ 〈p− s, qεs〉. (6.6)

The next step consists in showing that

〈p− s, qεs〉 ≤ 0.

Indeed, note that p− s ∈ NP
S (s) and s = (ts, xs, zs,W (ts, xs, zs)), and since S is the epigraph of a function

we have that p − s = (ξ,−λ), where λ ≥ 0. We study first the case λ > 0. Under these circumstances we
have that

1

λ
ξ ∈ ∂PW (ts, xs, zs) ⊆ ∂Pω(ts, xs)× {1}.

In other words, 1
λξ = (θ, ζ, 1) for some (θ, ζ) ∈ ∂Pω(ts, xs). Therefore, since qεs = (−1,−vs,−L(s, vs), 0) for

some vs ∈ F(xs) we have

〈p− s, qεs〉 = λ(−θ − 〈vs, ζ〉 − L(xs, vs)) ≤ λ(−θ + sup
v∈F(xs)

{−〈v, ζ〉 − L(xs, v)}) ≤ 0
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If on the other hand, λ = 0, then (ξ, 0) ∈ NP
S (ts, xs, zs,W (ts, xs, zs)) and by Rockafellar’s horizontality

theorem (see for instance [28]), there exist some sequences {(τn, xn, zn)} ⊆ dom (W ), {ξn} ⊆ RN+2 and
{λn} ⊆ (0,∞) such that

(tn, xn, zn)→ (ts, xs, zs), W (tn, xn, zn)→W (ts, xs, zs),

(ξn, λn)→ (ξ, 0) = p− s, 1

λn
ξn ∈ ∂PW (tn, xn, zn).

Thus, using the same argument as above we can show

〈(ξn, λn), qns 〉 ≤ 0, ∀n ∈ N, ∀qns ∈ Γ(tn, xn, zn,W (tn, xn, zn)).

Hence, due to the fact that Γ is locally Lipschitz continuous, there exists qns ∈ Γ(tn, xn, zn,W (tn, xn, zn)) so
that qns → qεs . Therefore, we can pass into the limit in the preceding inequality, and taking into consideration
(6.6), we obtain

〈p− s, q〉 ≤ LΓ|p− s|2 + ε|p− s|.
Finally, since ε > 0 is arbitrary, the conclusion follows from [18, Proposition 4.2].

6.2 Junctions condition of subsolution-type

Let us now check that the Value Function satisfies the junction condition (C3).

Lemma 6.3. Let K be a d-dimensional network and consider a family of control spaces {Ai}i∈I so that (HA)
holds. Let {ψi}i∈I , {Li}i∈I and {fi}i∈I be collections of final costs, running costs and dynamics satisfying
(Hψ), (HL) and (Hf ), respectively. Assume that (H1), (H0), (H2) (H3) are also verified. Then the Value
Function of the Bolza problem on the d-dimensional network K verifies the junction condition (C3).

Proof. First of all, note that if j /∈ Jo then A0
ij = ∅ and so (C3) is equivalent to

∀(t, x) ∈ (0, T ]×Υj , ∀i ∈ Ij : −θ +H−i (x, ζ) ≤ 0, ∀(θ, ζ) ∈ ∂V ω(t, x). (6.7)

Therefore, this condition may be trivial if A−ij = ∅ as well; this is the case if trajectories starting at the
junction Υj can only move away from Υj throughout Mi.

Similarly, if j ∈ J0 and A−ij = ∅, then (C3) is equivalent to

∀(t, x) ∈ (0, T ]×Υj , , ∀i ∈ Ij : −θ +H0
i (x, ζ) ≤ 0, ∀(θ, ζ) ∈ ∂V ω(t, x). (6.8)

The latter Hamiltonian is always finite because under these circumstances A0
ij 6= ∅.

To sum up, we only need to prove that (6.7) and (6.8) hold whenever appropriate, that is, when A0
ij 6= ∅

and A−ij 6= ∅, respectively.

Let a ∈ Ai and suppose that either a ∈ A−ij or a ∈ A0
ij . In the first instance we have, by (Hf ) and (H3)

that
−fi(x̃, a) ∈ r-int

(
T CMi

(x̃)
)
, ∀x̃ ∈Mi.

In the second case, by (H3) we have that

fi(x̃, a) ∈ TΥj
(x̃), ∀x̃ ∈ Υj .

Hence, the Nagumo’s Theorem implies that there is δ > 0 and a continuously differentiable arc y :
[t− δ, t]→ RN such that

ẏ(s) = fi(y(s), a), y(s) ∈Mi, ∀s ∈ [t− δ, t] and y(t) = x.

Note that if a ∈ A−ij we get that y(s) ∈Mi, ∀s ∈ (t− δ, t] and if a ∈ A−ij , then y(s) ∈ Υj , ∀s ∈ [t− δ, t].
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Finally, picking up the arguments used in Proposition 2.2 (Step 2) and using the fact that fi and Li are
assumed to be continuous up to Mi ×Ai we get

0 ≥ −θ − 〈ζ, fi(x, a)〉 − Li(x, a), ∀(θ, ζ) ∈ ∂V ϑ(t, x).

Since a is an arbitrary element of A−ij or A0
ij , taking supremum over this variable we get either (6.7) or (6.7),

when appropriate.

6.3 Sufficiency of the junction conditions

We now prove that the junction conditions are indeed sufficient to single out the Value Function as unique
bilateral viscosity solution to the HJB equation. To see this it is enough to prove the following result

Lemma 6.4. Under the assumptions of Theorem 3.2, any ω : [0, T ] × RN → R ∪ {+∞} bilateral viscosity
solution to (HJ) that verifies the junction condition (C3), satisfies in addition

ϑ(t, x) ≥ ω(t, x), ∀(t, x) ∈ [0, T ]×K.

Proof. We can immediately discard the case t = T because ω(T, x) = ψ(x) = ϑ(T, x) for any x ∈ K.
Let us assume by contradiction that there is (t0, x0) ∈ [0, T )×K so that ϑ(t0, x0) < ω(t0, x0). The proof

consists in showing that for an optimal trajectory y ∈ ST (t0, x0) that realizes the Value Function we have

ϑ(t, y(t)) < ω(t, y(t)), ∀t ∈ [0, T ],

which, in the light of (C0), will yield to a contradiction with ϑ(T, y(T )) = ω(T, y(T )).
By the Dynamic Programming Principle, we have that any optimal trajectory verifies

ϑ(t0, x0) = ϑ(t, y(t)) +

∫ t

t0

L(y(s), ẏ(s))ds, ∀t ∈ [t0, T ]. (6.9)

For sake of exposition, we divide the proof in several steps. We fix y ∈ ST (t0, x0) to be an optimal trajectory.
Step 1: Let us start by considering the case that x0 ∈ Mi for some i ∈ I. We claim under these

circumstances there exists t1 ∈ (t0, T ] such that y(t1) ∈Mi \Mi and

ϑ(t, y(t)) +

∫ t

t0

L(y(s), ẏ(s))ds < ω(t0, x0) ≤ ω(t, y(t)) +

∫ t

t0

L(y(s), ẏ(s))ds, ∀t ∈ [t0, t1) (6.10)

Indeed, this is a consequence of Lemma 6.1 applied with F = fi(·,Ai) and L = L. We only need to check
that under our assumptions, the set-valued map

x 7→ {(v, `) | v ∈ fi(x,Ai), ` = L(x, v)}

is locally Lipschitz. However, this is a direct consequence of the fact that fi(·, a) and Li(·, a) are locally
Lipschitz, uniformly for any a ∈ Ai.

Step 2: Let us point out that if the function ω were continuous on [0, T ]×K (or continuous along optimal
trajectories), then (6.10) would immediately imply

ϑ(t1, y(t1)) < ω(t1, y(t1)). (6.11)

Nevertheless, in our bilateral approach, the function ω may only be lsc along an optimal trajectory and so,
further developments are needed in order to prove (6.11).

Let us set F(x) = fi(x,A−ij ∪ A0
ij). Note that this set-valued map is locally Lipschitz continuous, and

similarly as in the preceding Step, it is easy to check that the following multifunction is locally Lipschitz
continuous as well

x 7→ {(v, `) | v ∈ fi(x,A−ij ∪ A0
ij), ` = L(x, v)}.
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If there were some δ > 0 so that

ẏ(s) ∈ F(y(s)), a.e. s ∈ (max{t0, t1 − δ}, t1] (6.12)

then the conclusion would be a direct consequence of Lemma 6.2, applied with M = Mi. However, this is
not necessarily true for any trajectory of the control systems, let alone optimal trajectories.

For this reason further arguments are required. In particular, we focus now on showing that any trajectory
of the control systems can be approximated by a sequence of curves satisfying (6.12).

Let α : [t0, t1]→ Ai be a measurable control given by Lemma 2.1, that is,

ẏ(t) = fi(y(t), α(t)), and L(y(t), ẏ(t)) = Li(y(t), α(t)) a.e. t ∈ [t0, t1].

First of all, by (H3), this situation can only occur if A−ij 6= ∅, otherwise one would have Ai = A0
ij ∪ A+

ij

and

hN−d+1(y(t1))− hN−d+1(y(t)) =

∫ t1

t

〈∇hN−d+1(y(s)), fi(y(s), α(s))〉ds, ∀t ∈ [t0, t1],

with the left handside being positive and the right handside being non positive if t is close enough to t1,
where h : RN−d+1 → R is a local defining map for Mi around y(t1).

On the one hand, by Gronwall and the linear growth property of the dynamics fi we have that

|y(t)− y(t1)| ≤ (ecf (t1−t) − 1)(|y(t1)|+ 1), ∀t ∈ [t0, t1].

This means that the graph of trajectory y on [t0, t1] is contained in an open bounded set Ω. Let Li be a
common Lipschitz constant for fi(·,Ai) and Li(·,Ai) on Ω + B.

On the other hand, since A−ij 6= ∅, for any a ∈ A−ij , we also get

|ya(t)− y(t1)| ≤ (ecf (t1−t) − 1)(|y(t1)|+ 1), ∀t ∈ [τa, t1] (6.13)

where ya : [τa, t1]→ RN is the maximal solution of

ẏa(t) = fi(ya(t), a), a.e. t ∈ [τa, t1], ya(t1) = y(t1),

that lies on Mi on [τa, t1). Since a ∈ A−ij , the existence of such trajectory is justified.
Let δ > 0 such that t1 − δ > max{t0, τa}. Combining the preceding two inequalities we obtain that

|ya(t1 − δ)− y(t1 − δ)| ≤ 2(ecfδ − 1)(|y(t1)|+ 1). (6.14)

Furthermore, by the Gronwall Lemma and the locally Lipschitz character of the dynamics fi, we have
that for some Li > 0 (which depends only on y(t1) and T > 0)

|y(t)− yδ(t)| ≤ eLi(t1−δ−t)|y(t1 − δ)− ya(t1 − δ)|, ∀t ∈ [max{t0, τa}, t1 − δ] (6.15)

where yδ : [τa, t1 − δ]→ RN is the maximal solution lying on Mi of

ẏδ(t) = fi(yδ(t), α(t)), a.e. t ∈ (τa, t1 − δ], yδ(t1 − δ) = ya(t1 − δ).

Thus, we have

|y(t)− yδ(t)| ≤ 2(ecf δ − 1)(|y(t1)|+ 1)eLi(t1−t0), ∀t ∈ [max{t0, τa}, t1 − δ]

Hence, given ε ∈ (0, 1) and taking δ > 0 so that

2(ecf δ − 1)(|y(t1)|+ 1)eLi(t1−t0) ≤ ε,
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if we set tε = max{t0, τa} and xε = yδ(tε), we have that the curve

yε(t) =


yδ(t) t ∈ [tε, t1 − δ],
ya(t) t ∈ [t1 − δ, t1],

y(t) t ∈ [t1, T ],

belongs to ST (tε, xε), with tε → t0 and xε → x0 as ε→ 0. So, by the initial remark we have that

w(tε, xε) ≤
∫ t1−ε

tε

Li(yε(s), α(s))ds+

∫ t1

t1−ε
Li(ya(s), a)ds+ w(t1, y(t1)). (6.16)

Since x 7→ Li(x, a) is locally Lipschitz, uniformly with respect to a ∈ Ai, we have, thanks to (6.15),

|Li(y(t), α(t))− Li(yε(t), α(t))| ≤ Li|y(t)− yε(t)| ≤ Liε, a.e. t ∈ [tε, t1 − ε].

Moreover, the continuity of Li and (6.13) imply that there is a constant C > 0 so that

0 ≤ Li(ya(t), a) ≤ C, ∀t ∈ [τa, t1].

Thus, we get ∫ t1−ε

tε

Li(yε(s), α(s))ds+

∫ t1

t1−ε
Li(ya(s), a)ds→

∫ t1

t0

Li(y(s), α(s))ds as ε→ 0.

So, finally, using the lower semicontinuity of w we obtain from (6.16)

w(t0, x0) ≤
∫ t1

t0

Li(y(s), α(s))ds+ w(t1, y(t1)),

which completes the proof of this step.
Step 3: The analysis we have done so far implies that, without loss of generality, we could have assumed

from the very beginning that x0 ∈ Υj for some j ∈ J . Furthermore, the case j /∈ J0 can be ruled out almost
immediately. Indeed, if j /∈ J0 , then any trajectory of the control system can only pass through, without
chattering, around Υj (see Lemma 4.3). Consequently, there is i ∈ Ij and δ > 0 so that y(s) ∈ Mi for any
s ∈ (t0, t0 + δ), which means that we fall in the framework studied in Step 1 and so by (6.10) we get

ω(τ, y(τ)) ≤ ω(t, y(t)) +

∫ t

τ

L(y(s), ẏ(s))ds, ∀τ, t ∈ (t0, t0 + δ) with τ < t.

Then, the lower semicontinuity of ω implies that

ω(t0, x0) ≤ ω(t, y(t)) +

∫ t

t0

L(y(s), ẏ(s))ds, ∀t ∈ [t0, t0 + δ).

Thus, under these circumstances there would be t1 > t0 so that (using the arguments of Step 2 as well)

y(t1) ∈Mi \Mi, and ϑ(t, y(t)) < ω(t, y(t)), ∀t ∈ [t0, t1].

Note that since the set of velocities of the control systems is bounded and the trajectory doesn’t chatter
around Υj , then it is possible to bounded from below, in an uniform way, the difference t1 − t0. Thus, if
the trajectory t 7→ y(t) never reaches a junction whose index belongs to J0, we can repeat the process ad
infinitum to eventually get

ϑ(t, y(t)) < ω(t, y(t)), ∀t ∈ [t0, T ],

from where a contradiction can be reached by evaluating the inequality at t = T .
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Step 4: In the light of the preceding comments, it only remains to study the case x0 ∈ Υj with
j ∈ J0. This situation is the most delicate to be analyzed, and for this reason we consider two different cases
depending on the structure of trajectory y. This analysis uses techniques introduced in [18, 17].

Without loss of generality we assume that

y(T ) ∈ Υj and y(s) ∈ Υj ∪
⋃
i∈Ij

Mi, ∀t ∈ [t0, T ],

Otherwise, if the trajectory leaves the set Υj ∪
⋃
i∈IjMi before the horizon time T , the trajectory will reach

another (different) junction, from which the same the analysis can be done. Moreover, since the time to pass
from one junction to another can always be bounded from below because the set of velocities is bounded,
the process must finish in a finite number of iterations.

Non-chattering case: we might assume first that the set {s ∈ [t0, T ] | y(s) ∈ Υj} is made of a finite
number of intervals closed intervals, that is, there are t0 = a0 ≤ b0 < a1 ≤ b1 < . . . < an ≤ bn = T so that

{s ∈ [t0, T ] | y(s) ∈ Υj} =

n⋃
k=0

[ak, bk].

This also implies that {s ∈ [t0, T ] | y(s) /∈ Υj} is made of a finite number of open intervals, namely

{s ∈ [t0, T ] | y(s) /∈ Υj} =

n−1⋃
k=0

(bk, ak+1).

In particular, by the analysis done in Step 1-3 we have that

ω(bk, y(bk)) ≤ ω(ak+1, y(ak+1)) +

∫ ak+1

bk

L(y(s), ẏ(s))ds, ∀k ∈ {0, . . . , n− 1}. (6.17)

We claim that a similar inequality holds true when the trajectory remains on Υj , that is

ω(ak, y(ak)) ≤ ω(bk, y(bk)) +

∫ bk

ak

L(y(s), ẏ(s))ds, ∀k ∈ {0, . . . , n}. (6.18)

If (6.18) holds true, then combining it with (6.17) we get that

ω(t0, x0) ≤ ω(T, y(T )) +

∫ T

t0

L(y(s), ẏ(s))ds = ψ(y(T )) +

∫ T

t0

L(y(s), ẏ(s))ds = ϑ(t0, x0)

Where the last equality comes from the fact that y is an optimal trajectory starting from x0 at t0. Note that
this contradicts the assumption ϑ(t0, x0) < ω(t0, x0). Therefore, to complete the proof in the Non-chattering
case we only need to show that (6.18) holds.

In this case, the proof runs similarly as the one given in Step 1. We only need to apply Lemma 6.1 with
F(x) = ∪i∈Ijfi(x,A0

ij) and L = L. Since each fi and Li are locally Lipschitz, uniformly with respecto to
the second variable, we readily check that the following defined a locally Lipschitz set-valued map:

x 7→
⋃
i∈Ij

{(v, `) | v ∈ fi(x,Ai), ` = L(x, v)},

and so, the conclusion follows directly from Lemma 6.1.
Chattering case: this situation refers to the circumstance in which the set

{s ∈ [t0, T ] | y(s) /∈ Υj}

is made of a countably infinite collection of open intervals. To treat this case we use a technique very close
to [17, Lemma 3.3].

Let us take ε > 0, we claim that there are:
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• (tε, xε) ∈ (0, T )×K with tε ∈ (t0 − ε, t0 + ε) and xε ∈ B(x0, ε),

• yε ∈ ST (tε, xε) that verifies yε(T ) = y(T )

such that there exists a partition of [tε, T ], say {tε = τ0 < τ1 < . . . < τm < τm+1 = T}, so that for any
k ∈ {0, . . . ,m} we either can find i ∈ Ij such that yε(s) ∈ Mi all along (τk, τk+1) or yε(s) ∈ Υj all along
(τk, τk+1), and ∫ T

tε

L(yε(s), ẏε(s))ds ≤
∫ T

t0

L(y(s), ẏ(s))ds+ ε.

Indeed, for given ε > 0 we can construct a partition of [t0, T ]

b0 := t0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ T =: an+1

that verifies

meas

(
{s ∈ [t0, T ] | y(s) /∈ Υj} \

n⋃
k=1

(ak, bk)

)
≤ ε.

with y(ak), y(bk) ∈ Υj and (ak, bk) ⊆ {s ∈ [t0, T ] | y(s) /∈ Υj} for any k = 1, . . . , n. In addition,

n⋃
k=0

[bk, ak+1] \ {s ∈ [t0, T ] | y(s) ∈ Υj} = {s ∈ [t0, T ] | y(s) /∈ Υj} \
n⋃
k=1

(ak, bk).

Hence, if we set Tkj := [bk, ak+1] \ {s ∈ [t0, T ] | y(s) ∈ Υj} and ε̃k = meas(Tkj ), we have
∑n
k=0 ε̃k ≤ ε.

On the other hand, there must be some k ∈ {0, . . . , n} for which there is a countable family of intervals
(αp, βp) ⊆ (bk, ak+1), pairwise disjoint that verifies

ε̃k =
∑
p∈N

(βp − αp), y(t) ∈Mi, ∀t ∈ (αp, βp) for some i ∈ Ij and y(αp), y(βp) ∈ Υj .

Let K ⊆ {0, . . . , n} be the collection of all indexes for which the latter property holds.
Let r > 0 so that y(s) ∈ B(0, r) for any s ∈ [t0, T ]. Consider as well εi > 0 and ∆i > 0 the constant

given by (H4), and suppose ε ≤ εi. So, for any p ∈ N, if we set τp = αp + ∆i(βp − αp), we can pick
yp ∈ Sτp(αp, y(αp)) and tp ∈ (αp, τp] such that

yp(s) ∈ Υj , ∀s ∈ [αp, tp], yp(αp) = y(αp), and yp(tp) = y(βp).

Let k ∈ K and consider the measurable function µk : [bk, ak+1]→ R given by

µk(s) = 1[bk,ak+1]\Tk
j
(s) +

∑
p∈N

tp − αp
βp − αp

1(αp,βp)(s) > 0, ∀s ∈ [bk, ak+1].

Accordingly, the map s 7→ νk(s) := bk+
∫ s
bl
µk(τ)dτ defined on [bk, ak+1] is a homeomorphism from [bk, ak+1]

into some interval [bk, ck+1], where we have the estimate

ck+1 − ak+1 = meas([bk, ak+1] \ Tkj )− (ak+1 − bk) +
∑
p∈N

(tp − αp) ≤ ∆iε̃k (6.19)

using the fact that (tp − αp) ≤ ∆i(βp − αp).
Consider the measurable function vk : [bk, ck+1]→ RN given by

vk(s) = ẏ(ν−1
k (s))1[bk,ak+1]\Tk

j
(ν−1
k (s)) +

∑
p∈N

ẏp(s)1(αp,βp)(ν
−1
k (s)), for a.e. s ∈ [bk, ck+1].
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Let yk : [bk, ck+1]→ RN be defined via

yk(s) = y(bk) +

∫ s

bk

vk(t)dt, ∀s ∈ [bl, al+1].

By construction yk(νk(t)) = y(t) for any t ∈ [bk, ak+1]\Tkj and yk(t) ∈ Υj for any t ∈ [bk, ck+1]. In particular,
yk(ck+1) = y(ak+1).

On the other hand, by the Change of Variable Theorem for absolutely continuous function (see for
instance [24, Theorem 3.54]) we get∫ ck+1

bk

L(yk(s), ẏk(s))ds =

∫ ak+1

bk

L(yk(ν(s)), ẏk(ν(s)))ν̇(s)ds.

Furthermore, L(yk(ν), ẏk(ν))ν̇ = L(y, u) a.e. on [bk, ak+1] \ Tkj . Note as well that, by the Gronwall Lemma,
there is a constant L > 0, which depends only on x0 and T such that

L(yk(s), ẏk(s)) ≤ L for a.e. s ∈ [bk, ak+1].

On the other hand, since L ≥ 0 we get∫ ck+1

bk

L(yk(s), ẏk(s))ds ≤
∫ ak+1

bk

L(y(s), ẏ(s))ds+ Lε̃k. (6.20)

Note that this construction is valid for any k ∈ K. Else if k /∈ K, we just set ck+1 = ak+1 and yk(s) = y(s) for
any s ∈ [bk, cl+1]. Therefore, doing the same procedure for each k ∈ {0, . . . , n}, we can construct inductively
an absolutely continuous curve ỹε in the following way:

• Set first

ỹε(s) = y0(s), s ∈ [t0, t1], t1 = c1.

• Then for any k ∈ {1, . . . , n}

ỹε(s) = y(ak − t2k−1 + s), s ∈ [t2k−1, t2k], t2k = t2k−1 + bk − ak
ỹε(s) = yk(bk − t2k + s), s ∈ [t2k, t2k+1], t2k+1 = t2k + ck+1 − bk.

• Finally, ỹε(s) = y(an+1 − t2n+1 + s) for s ∈ [t2n+1, Tε] with Tε = t2n+1 + T − an+1.

Notice that ck+1 − bk ≥ meas([bk, ak+1] ∩ Tkj ) = ak+1 − bk − ε̃k. Hence, after a few algebraic steps we
obtain, by virtue of (6.19),

Tε = T +

n∑
l=0

(cl+1 − al+1) ∈ [T − ε, T + ∆iε].

Moreover ∫ Tε

t0

L(ỹε(s), ˙̃yε(s))ds ≤
∫ T

t0

L(y, ẏ)ds+ L

n∑
k=0

ε̃k ≤
∫ T

t0

L(y, ẏ)ds+ Lε

To summarize, we have constructed a trajectory of the control systems and a new horizon time Tε > 0
for which the sets {s ∈ [t, Tε] | yε(s) ∈ Υj} and {s ∈ [t, Tε] | yε(s) /∈ Υj} can be decomposed into a finite
number of intervals. Furthermore, this trajectory verifies ỹε(t) = x and ỹε(Tε) = y(T ).

Since ε > 0 is arbitrary and ∆i > 0 does not depends upon ε, we may assume that Tε ∈ (T − ε, T + ε);

using min
{
ε, 1

∆i
ε, εL

}
instead of ε for instance. Finally, re-scaling ε if necessary, we can assume that

|ỹε(t0 + Tε − T )− x0| ≤ ε.

Therefore, the proof of the claim follows by taking
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• tε = t0 − Tε + T and xε = x0 if Tε ≤ T ,

• otherwise we set tε = t0 and xε = ỹε(t0 + Tε − T ).

In any case, we set yε(s) = ỹε(s− T + Tε) for any s ∈ [tε, T ], and then we have that∫ T

tε

L(yε(s), ẏε(s))ds ≤
∫ T

t0

L(y, ẏ)ds+ ε.

We now apply the arguments of the Non-Chattering case to the trajectory yε and we obtain

ω(tε, xε) ≤ ω(T, yε(T )) +

∫ T

tε

L(yε(s), ẏε(s))ds = ψ(yε(T )) +

∫ T

t0

L(yε(s), ẏε(s))ds = ϑ(t0, x0) + ε.

Finally, ε > 0 being arbitrary and ω being lower semicontinuous yield, in the light of the preceding inequality,
to ω(t0, x0) ≤ ϑ(t0, x0), which contradicts the initial assumption, and thus, the proof of Theorem 3.2 is now
complete.
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