%0 Journal Article %T Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform %+ Propagation des Ondes : Étude Mathématique et Simulation (POEMS) %+ Department of Mathematics of the University of Utah %A Cassier, Maxence %A Hazard, Christophe %A Joly, Patrick %< avec comité de lecture %@ 0360-5302 %J Communications in Partial Differential Equations %I Taylor & Francis %V 42 %N 11 %P 1707-1748 %8 2017-10-11 %D 2017 %Z 1610.03021 %K Negative Index Materials (NIMs) %K Drude model %K Maxwell equations %K Generalized eigenfunctions %Z Mathematics [math]/Analysis of PDEs [math.AP] %Z Physics [physics]/Mathematical Physics [math-ph] %Z Computer Science [cs]/Numerical Analysis [cs.NA]Journal articles %X We explore the spectral properties of the time-dependent Maxwell's equations for a plane interface between a metamaterial represented by the Drude model and the vacuum, which fill respectively complementary half-spaces. We construct explicitly a generalized Fourier transform which diagonalizes the Hamiltonian that describes the propagation of transverse electric waves. This transform appears as an operator of decomposition on a family of generalized eigenfunctions of the problem. It will be used in a forthcoming paper to prove both limiting absorption and limiting amplitude principles. %G English %L hal-01379118 %U https://hal-ensta-paris.archives-ouvertes.fr/hal-01379118 %~ ENSTA %~ CNRS %~ INRIA %~ INRIA-SACLAY %~ INSMI %~ INRIA_TEST %~ TESTALAIN1 %~ UMA_ENSTA %~ INRIA2 %~ TDS-MACS %~ UNIV-PARIS-SACLAY %~ INRIA-SACLAY-2015 %~ ENSTA-SACLAY %~ INRIA2017 %~ GS-COMPUTER-SCIENCE %~ INRIA-ETATSUNIS