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Abstract

A novel algorithm for the control synthesis for nonlinear switched sys-
tems is presented in this paper. Based on an existing procedure of state-
space bisection and made available for nonlinear systems with the help of
guaranteed integration, the algorithm has been improved to be able to con-
sider longer patterns of modes with a better pruning approach. Moreover,
the use of guaranteed integration also permits to take bounded perturba-
tions and varying parameters into account. It is particularly interesting
for safety critical applications, such as in aeronautical, military or med-
ical fields. The whole approach is entirely guaranteed and the induced
controllers are correct-by-design. Some experimentations are performed
to show the important gain of the new algorithm.

keywords:Nonlinear control systems, reachability, formal methods, numer-
ical simulation, control system synthesis.

1 Introduction

In this paper, we present a control synthesis method for a special form of hybrid
systems [1] named switched systems. Such systems have been recently used in
various domains such as automotive industry and, with noteworthy success,
power electronics (e.g., power converters). They are continuous-time systems
with discrete switching events. More precisely, these systems are described by
piecewise continuous dynamics called modes; the change of modes takes place
instantaneously at so-called switching instants. In this paper, we suppose that
switching instants occur periodically at constant sampling period τ (sampled
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switched systems). The control synthesis problem consists in finding a switching
rule σ in order to satisfy a given specification. At each sampling time τ , 2τ , . . . ,
according to the state of the system, the rule σ selects an appropriate mode to
fulfill the specification [2, 3]. A schematic view of switched systems is given in
Figure 1.

Figure 1: Sampled switched systems (with u the input and y the state of the
system)

Modes are characterized by nonlinear Ordinary Differential Equations (ODEs).
In general, the exact solution of differential equations cannot be obtained, and
a numerical integration scheme is used to approximate the state of the system.
With the objective of computing a sound control, our approach uses guaran-
teed numerical integration methods, also called “sound reachability” methods.
A guaranteed method is a numerical method which provides a formal proof of
its result.

Guaranteed numerical integration methods have to consider two kinds of
problems. First, the way of representating sets of states (boxes, zonotopes [4,
5], Taylor models [6], Support functions [7], etc.). Second, the scheme of the
numerical integration (Taylor series [8, 9, 10, 11], Runge-Kutta methods [12,
13, 14, 15], etc.) which propagate sets of states through the dynamics of the
system. In this paper we follow [15] in which sets are represented by zonotopes
and propagation of sets is based on the Runge-Kutta numerical scheme.

This work is along the line of the seminal paper [16] on hybrid systems,
and can be seen as an optimized application in the context of sampled switched
systems. Other guaranteed approaches for control synthesis of switched systems
include the construction of a discrete abstraction of the original system on a grid
of the state space: e.g., approximately bisimilar models [17], approximately
alternatingly similar models [18], or feedback refinement relations [19].

In [20], we proposed an algorithm based on guaranteed integration for the
synthesis of nonlinear switched system controllers. The specification to fulfill
is to reach a target zone R from an initial zone then return iteratively to R
while always staying in a safe neighbourhood S of R while avoiding bad states
B. This is done be covering R with a set of tiles for which a sequence of modes
(pattern) satisfying the specification has to be found. A similar objective has
been treated in [21], but the authors use a proof certificate in the form of a
robust control Lyapunov-like function instead.
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In this paper, we present an improved version of the branch and prune algo-
rithm of [20] which permits to consider more modes and longer patterns, using
a suitable pruning approach. This leads to a strong decrease in computation
time. The new algorithm allows us to handle harder problems.

The paper is divided as follows. In Section 2, we introduce some preliminaries
on switched systems and some notation used in the following. In Section 3,
the guaranteed integration of nonlinear ODEs is presented. In Section 4, we
present the main algorithm of state-space bisection used for control synthesis.
In Section 5, the whole approach is tested on four examples of the literature. We
give some performance tests and compare our approach with the state-of-the-art
tools in Section 6. We conclude in Section 7.

2 Switched systems

Let us consider nonlinear switched systems such that

ẋ(t) = fσ(t)(x(t), d(t)) (1)

defined for all t ≥ 0, where x(t) ∈ Rn is the state of the system, σ(·) : R+ −→ U
is the switching rule, and d(t) ∈ Rm is a bounded perturbation. The finite
set U = {1, . . . , N} is the set of switching modes of the system. We focus on
sampled switched systems: given a sampling period τ > 0, switchings will occur
at times τ , 2τ , . . . . Switchings depend only on time, and not on states: this is
the main difference with hybrid systems.

We work in the synchronous setting for discrete events. This means that all
the discrete events are supposed to occur at periodic instants: τ , 2τ , 3τ , . . .
The switching rule σ(·) is thus piecewise constant, we will consider that σ(·) is
constant on the time interval [(k− 1)τ, kτ) for k ≥ 1. We call “pattern” a finite
sequence of modes π = (i1, i2, . . . , ik) ∈ Uk. With such a control input, and
under a given perturbation d, we will denote by x(t; t0, x0, d, π) the solution at
time t of the system

ẋ(t) = fσ(t)(x(t), d(t)),

x(t0) = x0,

∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [(j − 1)τ, jτ [.

(2)

We address the problem of synthesizing a state-dependent switching rule σ(·)
for Equation (2) in order to verify some properties. This important problem is
formalized as follows:

Problem 1 (Control Synthesis Problem). Let us consider a sampled switched
system as defined in Equation (2). Given three sets R, S, and B, with R∪B ⊂ S
and R ∩B = ∅, find a rule σ(·) such that, for any x(0) ∈ R

• τ -stability1: x(t) returns in R infinitely often, at some multiples of sam-
pling time τ .

• safety: x(t) always stays in S\B.

1This definition of stability is different from the stability in the Lyapunov sense.
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Under the above-mentioned notation, we propose the main procedure of
our approach which solves this problem by constructing a law σ(·), such that
for all x0 ∈ R, and under the unknown bounded perturbation d, there exists
π = σ(·) ∈ Uk for some k such that:

x(t0 + kτ ; t0, x0, d, π) ∈ R
∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) ∈ S
∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) /∈ B.

Such a law permits to perform an infinite-time state-dependent control. The
synthesis algorithm is described in Section 4 and involves guaranteed set-based
integration presented in the next section, the main underlying tool is interval
analysis [8]. To tackle this problem, we introduce some definitions.

In the following, we will often use the notation [x] ∈ IR (the set of intervals
with real bounds) where

[x] = [x, x] = {x ∈ R | x 6 x 6 x}

denotes an interval. By an abuse of notation [x] will also denote a vector of
intervals, i.e., a Cartesian product of intervals, a.k.a. a box. In the following,
the sets R, S and B are given in the form of boxes. With interval values, it
comes with an associated interval arithmetic.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1] + [x2] = [x1 + x2, x1 + x2], encloses the image of the
sum function over its arguments. The enclosing property basically defines what
is called an interval extension or an inclusion function.

Definition 1 (Inclusion function). Consider a function f : Rn → Rm, then
[f ] :IRn → IRm is said to be an extension of f to intervals if

∀[x] ∈ IRn, [f ]([x]) ⊇ {f(x), x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as
×, ÷, sin, cos, exp, and so on. The natural inclusion function is the simplest to
obtain: all occurrences of the real variables are replaced by their interval coun-
terpart and all arithmetic operations are evaluated using interval arithmetic.
More sophisticated inclusion functions such as the centered form, or the Taylor
inclusion function may also be used (see [22] for more details).

We now introduce the Initial Value Problem, which is one of main ingredients
of our approach.

Definition 2 (Initial Value Problem (IVP)). Consider an ODE with a given
initial condition

ẋ(t) = f(t, x(t), d(t)) with x(0) ∈ X0, d(t) ∈ [d], (3)

with f : R+ ×Rn ×Rm → Rn assumed to be continuous in t and d and globally
Lipschitz in x. We assume that parameters d are bounded (used to represent a
perturbation, a modeling error, an uncertainty on measurement, . . . ). An IVP
consists in finding a function x(t) described by Equation (3) for all d(t) lying in
[d] and for all the initial conditions in X0.
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Definition 3. Let X ⊂ Rn be a box of the state space. Let π = (i1, i2, . . . , ik) ∈
Uk. The successor set of X via π, denoted by Postπ(X), is the (over-approximation
of the) image of X induced by application of the pattern π, i.e., the solution at
time t = kτ of

ẋ(t) = fσ(t)(x(t), d(t)),

x(0) = x0 ∈ X,
∀t ≥ 0, d(t) ∈ [d],

∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [(j − 1)τ, jτ).

(4)

Definition 4. Let X ⊂ Rn be a box of the state space. Let π = (i1, i2, . . . , ik) ∈
Uk. We denote by Tubeπ(X) the union of boxes covering the trajectories of
IVP (4), whose construction is detailed in Section 3.

Remark 1. Postπ(X) is an over-approximation at time t = kτ of the set of
states originated from the set X at time t = 0, while Tubeπ(X) is an over-
approximation of the whole set of states between t = 0 and t = kτ originated
from the set X at time t = 0.

3 Guaranteed integration

In this section, we describe our approach for guaranteed integration based on
Runge-Kutta methods [14, 15]. The goal being obviously to obtain a solution
of the differential equations describing the modes of the nonlinear switched
systems.

A numerical integration method computes a sequence of values (tn, xn)
approximating the solution x(t; t0, x0, d) of the IVP defined in Equation (3)
such that xn ≈ x(tn;xn−1). The simplest method is Euler’s method in which
tn+1 = tn + h for some step size h and xn+1 = xn + h × f(tn, xn, d); so the
derivative of x at time tn, f(tn, xn, d), is used as an approximation of the deriva-
tive on the whole time interval to perform a linear interpolation. This method
is very simple and fast, but requires small step sizes. More advanced methods,
coming from the Runge-Kutta family, use a few intermediate computations to
improve the approximation of the derivative. The general form of an explicit
s-stage Runge-Kutta formula, that is using s evaluations of f , is

xn+1 = xn + h

s∑
i=1

biki ,

k1 = f
(
tn, xn, d

)
,

ki = f
(
tn + cih, xn + h

i−1∑
j=1

aijkj , d
)
, i = 2, 3, . . . , s .

(5)

The coefficients ci, aij and bi fully characterize the method. To make Runge-
Kutta validated, the challenging question is how to compute guaranteed bounds
of the distance between the true solution and the numerical solution, defined
by x(tn; tn−1, xn−1, d) − xn. This distance is associated to the local truncation
error (LTE) of the numerical method.
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To bound the LTE, we rely on order condition [23] respected by all Runge-
Kutta methods. This condition states that a method of this family is of order p
if and only if the p+ 1 first coefficients of the Taylor expansion of the solution
and the Taylor expansion of the numerical methods are equal. In consequence,
LTE is proportional to the Lagrange remainders of Taylor expansions. Formally,
LTE is defined by (see [14]):

x(tn;xn−1)− xn =

hp+1

(p+ 1)!

(
f (p) (ξ, x(ξ;xn−1), d)− dp+1φ

dtp+1
(η)

)
ξ ∈]tn, tn+1[ and η ∈]tn, tn+1[ . (6)

The function f (n) stands for the n-th derivative of function f with respect to
time t that is dnf

dtn and h = tn+1 − tn is the step size. The function φ : R→ Rn
is defined by φ(t) = xn + h

∑s
i=1 biki where ki are defined as Equation (5).

The challenge to make Runge-Kutta integration schemes safe with respect
to the true solution of IVP is then to compute a bound (or also an over-
approximation) of the result of Equation (6). In other words, we do have to

bound the value of f (p) (ξ, x(ξ; tn−1, xn−1, d)), d) and the value of d
p+1φ
dtp+1 (η) with

numerical guarantee. The latter expression is straightforward to bound because
the function φ only depends on the value of the step size h, and so does its (p+1)-
th derivative. The bound is then obtained using the affine arithmetic [24, 25].

However, the expression f (p) (ξ, x(ξ;xn−1), d) is not so easy to bound as it re-
quires to evaluate f for a particular value of the IVP solution x(ξ; tn−1, xn−1, d)
at an unknown time ξ ∈]tn−1, tn[. The solution used is the same as the one
found in [9, 12] and it requires to bound the solution of IVP on the interval
[tn−1, tn]. This bound is usually computed using the Banach’s fixpoint theo-
rem applied with the Picard-Lindelöf operator, see [9]. This operator is used to
compute an enclosure of the solution [x̃] of IVP over a time interval [tn−1, tn],
that is for all t ∈ [tn−1, tn], x(t; tn−1, xn−1, d) ∈ [x̃]. In its simple interval form,
Picard-Lindelöf operator is defined by

[pf ]([r])
def
= [xn] + [0, h]f([tn−1, tn], [r], [d]) , (7)

with h the integration step size. This is usually implemented by an iterative
process and if [r] is found such that [pf ]([r]) ⊆ [r] then [x̃] ⊆ [r] by the Ba-
nach fixed-point theorem. More sophisticated versions of the Picard-Lindelöf
operator exist, we refer to [9] for more details. We can hence bound f (p) sub-
stituting x(ξ; tn−1, xn−1, d) by [x̃]. This general approach used to solve IVPs in
a validated way is called the Lohner two step approach [26].

Remark 2. Note that to apply guaranteed numerical intergation aglorithms,
we restrict perturbation d in Definition 2 to be constant over the integration
step size h. Indeed, the computation of the truncation error implies high order
time derivatives of f which is defined as a combination of time derivatives of x
and d. As time derivatives of d are usually unkown, a simplification has been
made to be able to compute a bound of Equation (6). Note however that in
the framework of differential inclusion [27], a time varying disturbance d can be
taken into account and such adaptations could be used straightforwardly in our
proposed algorithms.
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Tubeπ(X )

Post π(X )

X

Figure 2: Illustration of functions Postπ(X) and Tubeπ(X) from the Example
5.2, for the initial box X = x1× x2 = [−0.69,−0.64]× [1, 1.06], with a pattern
π = (1, 3, 0).

With guaranteed numerical integration methods and for a given pattern of
switched modes π = (i1, . . . , ik) ∈ Uk of length k, we are able to compute, for
j ∈ {1, .., k}, the enclosures:

• [xj ] 3 x(jτ);

• [x̃j ] 3 x(t), for t ∈ [(j − 1)τ, jτ ]

with respect to the system of IVPs:

ẋ(t) = fσ(t)(t, x(t), d(t)),

x(t0 = 0) ∈ [x0], d(t) ∈ [d],

σ(t) = i1,∀t ∈ [0, t1], t1 = τ

...

ẋ(t) = fσ(t)(t, x(t), d(t)),

x(tk−1) ∈ [xk−1], d(t) ∈ [d],

σ(t) = ik,∀t ∈ [tk−1, tk], tk = kτ.

(8)

Thereby, the enclosure Postπ([x0]) is included in [xk] and Tubeπ([x0]) is included
in
⋃
j=1,..,k[x̃j ]. This applies for all initial states in [x0] and all disturbances

d(t) ∈ [d]. A view of enclosures computed by guaranteed integration for one
solution obtained for Example 5.2 is shown in Figure 2.

4 The state space bisection algorithm

4.1 Principle of the algorithm

We describe the algorithm solving the control synthesis problem for nonlinear
switched systems (see Problem 1, Section 2).
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Given the input boxes R, S, B, and given two positive integers K and D,
the algorithm provides, when it succeeds, a decomposition ∆ of R of the form
{Vi, πi}i∈I , with the properties:

•
⋃
i∈I Vi = R,

• ∀i ∈ I, Postπi
(Vi) ⊆ R,

• ∀i ∈ I, Tubeπi
(Vi) ⊆ S,

• ∀i ∈ I, Tubeπi
(Vi)

⋂
B = ∅.

The sub-boxes {Vi}i∈I are obtained by repeated bisection. At first, function
Decomposition calls sub-function Find Pattern which looks for a pattern π of
length at most K such that Postπ(R) ⊆ R, Tubeπ(R) ⊆ S and Tubeπ(R)

⋂
B =

∅. If such a pattern π is found, then a uniform control over R is found (see
Figure 3(a)). Otherwise, R is divided into two sub-boxes V1, V2, by bisecting R
with respect to its longest dimension. Patterns are then searched to control these
sub-boxes (see Figure 3(b)). If for each Vi, function Find Pattern manages to
get a pattern πi of length at most K verifying Postπi(Vi) ⊆ R, Tubeπi(Vi) ⊆ S
and Tubeπi(Vi)

⋂
B = ∅, then it is a success and algorithm stops. If, for some Vj ,

no such pattern is found, the procedure is recursively applied to Vj . It ends with
success when every sub-box of R has a pattern verifying the latter conditions, or
fails when the maximal degree of decomposition D is reached. The algorithmic
form of functions Decomposition and Find Pattern are given in Algorithm 1
and Algorithm 2 respectively. Note that a special form of Algorithm 2 for linear
ODEs can be found in [2].

  

(a) (b)

R

π

R

π1

Post π(R)

Post π
1

(V
1
)

V
2

V
1

Figure 3: Principle of the bisection method.

Our control synthesis method being well defined, we introduce the main
result of this paper, stated as follows:

Proposition 1. Algorithm 1 with input (R,R, S,B,D,K) returns, when it suc-
cessfully terminates, a decomposition {Vi, πi}i∈I of R which solves Problem 1.

Proof. Let x0 = x(t0 = 0) be an initial condition belonging to R. If the decom-
position has terminated successfully, we have

⋃
i∈I Vi = R, and x0 thus belongs

to Vi0 for some i0 ∈ I. We can thus apply the pattern πi0 associated to Vi0 . Let
us denote by k0 the length of πi0 . We have:

• x(k0τ ; 0, x0, d, πi0) ∈ R

• ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) ∈ S

• ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) /∈ B.
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Algorithm 1 Decomposition.

Function: Decomposition(W,R, S,B,D,K)

3: Input: A box W , a box R, a box S, a box B, a degree D of bisection, a
length K of input pattern

Output:〈{(Vi, πi)}i, T rue〉 or 〈 , False〉

6: (π, b) := Find Pattern(W,R, S,B,K)
if b = True then

return 〈{(W,Pat)}, T rue〉
9: else

if D = 0 then
return 〈 , False〉

12: else
Divide equally W into (W1,W2)
for i = 1, 2 do

15: (∆i, bi) := Decomposition(Wi, R, S,B,D − 1,K)

end for
return (

⋃
i=1,2 ∆i,

∧
i=1,2 bi)

18: end if
end if

Let x1 = x(k0τ ; 0, x0, d, πi0) ∈ R be the state reached after application of πi0
and let t1 = k0τ . State x1 belongs to R, it thus belongs to Vi1 for some i1 ∈ I,
and we can apply the associated pattern πi1 of length k1, leading to:

• x(t1 + k1τ ; t1, x1, d, πi1) ∈ R

• ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) ∈ S

• ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) /∈ B.

We can then iterate this procedure from the new state

x2 = x(t1 + k1τ ; t1, x1, d, πi1) ∈ R.

This can be repeated infinitely, yielding a sequence of points belonging to R
x0, x1, x2, . . . attained at times t0, t1, t2, . . . , when the patterns πi0 , πi1 , πi2 , . . .
are applied.

We furthermore have that all the trajectories stay in S and never cross B:

∀t ∈ R+,∃k ≥ 0, t ∈ [tk, tk+1]

and
∀t ∈ [tk, tk+1], x(t; tk, xk, d, πik) ∈ S, x(t; tk, xk, d, πik) /∈ B.

The trajectories thus return infinitely often in R, while always staying in S and
never crossing B.

Remark 3. Note that it is possible to perform reachability from a set R1 to
another set R2 by computing Decomposition(R1, R2, S,B,D,K). The set R1

is thus decomposed with the objective to send its sub-boxes into R2, i.e., for a
sub-box V of R1, patterns π are searched with the objective Postπ(V ) ⊆ R2 (see
Example 5.2).
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Algorithm 2 Find Pattern.

Function: Find Pattern(W,R, S,B,K)

3: Input:A box W , a box R, a box S, a box B, a length K of input pattern
Output:〈π, True〉 or 〈 , False〉

6: for i = 1 . . .K do
Π := set of input patterns of length i
while Π is non empty do

9: Select π in Π
Π := Π \ {π}
if Postπ(W ) ⊆ R and Tubeπ(W ) ⊆ S and Tubeπ(W )

⋂
B = ∅ then

12: return 〈π, True〉
end if

end while
15: end for

return 〈 , False〉

4.2 The search of patterns

We propose in this paper an improvement of the function Find Pattern given
in [20, 2], which is a naive testing of all the patterns of growing length (up to
K).

The improved function, denoted here by Find Pattern2, exploits heuristics
to prune the search tree of patterns. The algorithmic form of Find Pattern2 is
given in Algorithm 3.
It relies on a new data structure consisting of a list of triplets containing:

• An initial box V ⊂ Rn,

• A current box Postπ(V ), image of V by the pattern π,

• The associated pattern π.
For any element e of a list of this type, we denote by e.Yinit the initial box,

e.Ycurrent the current box, and by e.Π the associated pattern. We denote by
ecurrent = takeHead(L) the element on top of a list L (this element is removed
from list L). The function putTail(·,L) adds an element at the end of the list
L.

Let us suppose one wants to control a box X ⊆ R. The list L of Algorithm 3
is used to store the intermediate computations leading to possible solutions
(patterns sending X in R while never crossing B or Rn \ S). It is initialized
as L = {(X,X, ∅)}. First, a testing of all the control modes is performed (a
set simulation starting from X during time τ is computed for all the modes in
U). The first level of branches is thus tested exhaustively. If a branch leads to
crossing B or Rn \ S, the branch is cut. Indeed, no following branch can be
accepted if a previous one crosses B. It is one of the improvements presented
in this paper. Otherwise, either a solution is found or an intermediate state is
added to L. The next level of branches (patterns of length 2) is then explored
from branches that are not cut. This process continues iteratively. At the
end, either the tree is explored up to level K (avoiding the cut branches), or
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Algorithm 3 Find Pattern2.

Function: Find Pattern2(W,R, S,B,K)

3: Input:A box W , a box R, a box S, a box B, a length K of input pattern
Output:〈π, True〉 or 〈 , False〉

6: S = {∅}
L = {(W,W, ∅)}
while L 6= ∅ do

9: ecurrent = takeHead(L)
for i ∈ U do

if Posti(ecurrent.Ycurrent) ⊆ R and Tubei(ecurrent.Ycurrent)
⋂
B = ∅ and

Tubei(ecurrent.Ycurrent) ⊆ S then
12: putTail(S, ecurrent.Π + i) /* or also “return 〈ecurrent.Π + i, T rue〉”

*/
else

if Tubei(ecurrent.Ycurrent)
⋂
B 6= ∅ or Tubei(ecurrent.Ycurrent) * S

then
15: discard ecurrent

end if
else

18: if Tubei(ecurrent.Ycurrent)
⋂
B = ∅ and Tubei(ecurrent.Ycurrent) ⊆ S

then

if Length(Π) + 1 < K then
21: putTail(L, (ecurrent.Yinit, Posti(ecurrent.Ycurrent), ecurrent.Π + i))

end if
end if

24: end if
end for

end while
27: return 〈 , False〉 if no solution is found, or 〈π, True〉, π being any pattern

validated in Solution.

all the branches have been cut at lower levels. List L is thus of the form
{(X,Postπi

(X), πi)i∈IX}, where for each i ∈ IX we have Postπi
(X) ⊆ S and

Tubeπi
(X)

⋂
B = ∅. Here, IX is the set of indexes associated to the stored

intermediate solutions, |IX | is thus the number of stored intermediate solutions
for the initial box X. The number of stored intermediate solutions grows as the
search tree of patterns is explored, then decreases as solutions are validated,
branches are cut, or the maximal level K is reached.

The storage of the intermediate solutions Postπi
(X) allows us to reuse the

computations already performed. Even if the search tree of patterns is visited
exhaustively, it already allows us to obtain much better computation times than
with Function Find Pattern.

A second list, denoted by S in Algorithm 3, is used to store the validated
patterns associated to X, i.e., a list of patterns of the form {πj}j∈I′X , where for
each j ∈ I ′X we have Postπj

(X) ⊆ R, Tubeπj
(X)

⋂
B = ∅ and Tubeπj

(X) ⊆ S.
Here, I ′X is the set of indexes associated the the stored validated solutions, |I ′X | is
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thus the number of stored validated solutions for the initial box X. The number
of stored validated solutions can only increase, and we hope that at least one
solution is found, otherwise, the initial box X is split in two sub-boxes.

Remark 4. Several solutions can be returned by Find Pattern2, so further
optimizations could be performed, such as returning the pattern minimizing a
given cost function. In practice, and in the examples given below, we return the
first validated pattern and stop the computation as soon as it is obtained (see
commented line 12 in Algorithm 3).

Compared to [2], this new function highly improves the computation times,
even though the complexity of the two functions is theoretically the same, at
most inO(NK). A comparison between functions Find Pattern and Find Pattern2
is given in Section 6.

5 Experimentations

In this section, we apply our approach to different case studies taken from the
literature. Our solver prototype is written in C++ and based on DynIBEX [28].
The computations times given in the following have been performed on a 2.80
GHz Intel Core i7-4810MQ CPU with 8 GB of memory. Note that our algorithm
is mono-threaded so all the experimentation only uses one core to perform the
computations. The results given in this section have been obtained with Func-
tion Find Pattern2 with regards to our previous algorithm Find Pattern [20].
We compare our approach with two tools in the state of the art of control
synthesis: PESSOA [29] and SCOTS [30]. Note that such a comparison is nec-
essarily somehow unfair: in our approach, we allow the trajectories starting at
R to temporarily exit R (as far as they stay within S) before reentering R; in
contrast, in PESSOA and SCOTS, the trajectories are strictly forbidden to exit
R, even temporarily. This explains why, in the examples below, our approach
may be able to control the whole region R while PESSOA and SCOTS can only
control subregions of R.

5.1 A linear example: boost DC-DC converter

This linear example (without disturbance) is taken from [31] and has already
been treated with the state space bisection method in a linear framework in
[2]. This running example is used to verify that our approach is still valid for a
simple linear case without disturbance, and also to show the strong improvement
in term of computation time.

The system is a boost DC-DC converter with one switching cell. There
are two switching modes depending on the position of the switching cell. The
dynamics is given by the equation ẋ(t) = Aσ(t)x(t) + Bσ(t) with σ(t) ∈ U =
{1, 2}. The two modes are given by the matrices:

A1 =

(
− rl
xl

0

0 − 1
xc

1
r0+rc

)
, B1 =

( vs
xl

0

)
,

A2 =

(
− 1
xl

(rl + r0.rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

r0
r0+rc

)
, B2 =

( vs
xl

0

)
.
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Figure 4: Example 5.1: Simulation from the initial condition (1.55, 1.4). The
box R is in plain black. The trajectory is plotted within time for the two state
variables on the left, and in the state space plane on the right.

with xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The sampling period
is τ = 0.5. The parameters are exact and there is no perturbation. We want the
state to return infinitely often to the region R, set here to [1.55, 2.15]× [1.0, 1.4],
while never going out of the safety set S = [1.54, 2.16] × [0.99, 1.41]. The goal
of this example is then to synthesize a controller with intrinsic stability.

The decomposition was obtained in less than one second with a maximum
length of pattern set to K = 6 and a maximum bisection depth of D = 3. A
simulation is given in Figure 4.

5.2 A polynomial example

We consider the polynomial system taken from [32], presented as a difficult
example: [

ẋ1

ẋ2

]
=

[
−x2 − 1.5x1 − 0.5x3

1 + u1 + d1

x1 + u2 + d2

]
. (9)

The control inputs are given by u = (u1, u2) = Kσ(t)(x1, x2), σ(t) ∈ U =
{1, 2, 3, 4}, which correspond to four different state feedback controllers K1(x) =
(0,−x2

2 + 2), K2(x) = (0,−x2), K3(x) = (2, 10), K4(x) = (−1.5, 10). We thus
have four switching modes. The disturbance d = (d1, d2) lies in [−0.005, 0.005]×
[−0.005, 0.005]. The objective is to visit infinitely often two zones R1 and R2,
without going out of a safety zone S, and while never crossing a forbidden zone
B. Two decompositions are performed:

• a decomposition of R1 which returns {(Vi, πi)}i∈I1 with:

–
⋃
i∈I1 Vi = R1,

– ∀i ∈ I1, Postπi
(Vi) ⊆ R2,

– ∀i ∈ I1, Tubeπi(Vi) ⊆ S,
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Figure 5: Example 5.2: Simulation from the initial condition (0.5,−0.75). The
trajectory is plotted within time on the left, and in the state space plane on the
right. In the sate space plane, the set R1 is in plain green, R2 in plain blue, and
B in plain black.

– ∀i ∈ I1, Tubeπi
(Vi)

⋂
B = ∅.

• a decomposition of R2 which returns {(Vi, πi)}i∈I2 with:

–
⋃
i∈I2 Vi = R2,

– ∀i ∈ I2, Postπi(Vi) ⊆ R1,

– ∀i ∈ I2, Tubeπi
(Vi) ⊆ S,

– ∀i ∈ I2, Tubeπi
(Vi)

⋂
B = ∅.

The input boxes are the following:

R1 = [−0.5, 0.5]× [−0.75, 0.0],

R2 = [−1.0, 0.65]× [0.75, 1.75],

S = [−2.0, 2.0]× [−1.5, 3.0],

B = [0.1, 1.0]× [0.15, 0.5].

The sampling period is set to τ = 0.15. The decompositions were obtained
in 2 minutes and 30 seconds with a maximum length of pattern set to K = 12
and a maximum bisection depth of D = 5. A simulation is given in Figure 5 in
which the disturbance d is chosen randomly in [−0.005, 0.005]× [−0.005, 0.005]
at every time step.

5.3 Building ventilation

We consider a building ventilation application adapted from [33]. The system
is a four room apartment subject to heat transfer between the rooms, with
the external environment, with the underfloor, and with human beings. The
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Figure 6: Example 5.3: Perturbation (presence of humans) imposed within time
in the different rooms.

dynamics of the system is given by the following equation:

dTi
dt

=
∑

j∈N *\{i}

aij(Tj − Ti) + δsibi(T
4
si − T

4
i ) + ci max

(
0,
Vi − V *

i

V̄i − V *
i

)
(Tu − Ti).

The state of the system is given by the temperatures in the rooms Ti, for
i ∈ N = {1, . . . , 4}. Room i is subject to heat exchange with different entities
stated by the indexes N * = {1, 2, 3, 4, u, o, c}.

The heat transfer between the rooms is given by the coefficients aij for
i, j ∈ N 2, and the different perturbations are the following:

• The external environment: it has an effect on room i with the coefficient
aio and the outside temperature To, varying between 27◦C and 30◦C.

• The heat transfer through the ceiling: it has an effect on room i with the
coefficient aic and the ceiling temperature Tc, varying between 27◦C and
30◦C.

• The heat transfer with the underfloor: it is given by the coefficient aiu
and the underfloor temperature Tu, set to 17◦C (Tu is constant, regulated
by a PID controller).

• The perturbation induced by the presence of humans: it is given in room i
by the term δsibi(T

4
si −T

4
i ), the parameter δsi is equal to 1 when someone

is present in room i, 0 otherwise, and Tsi is a given identified parameter.

The control Vi, i ∈ N , is applied through the term ci max(0,
Vi−V *

i

V̄i−V *
i

)(Tu−Ti).
A voltage Vi is applied to force ventilation from the underfloor to room i, and
the command of an underfloor fan is subject to a dry friction. Because we
work in a switched control framework, Vi can take only discrete values, which
removes the problem of dealing with a “max” function in interval analysis. In
the experiment, V1 and V4 can take the values 0V or 3.5V, and V2 and V3 can
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Figure 7: Example 5.3: Simulation from the initial condition (22, 22, 22, 22).
The objective set R is in plain black and the safety set S is in dotted black.

take the values 0V or 3V. This leads to a system of the form of Equation (1) with
σ(t) ∈ U = {1, . . . , 16}, the 16 switching modes corresponding to the different
possible combinations of voltages Vi. The sampling period is τ = 10s.

The parameters Tsi , V
*
i , V̄i, aij , bi, ci are given in [33] and have been

identified with a proper identification procedure detailed in [34]. Note that
here we have neglected the term

∑
j∈N δdijci,j ∗ h(Tj − Ti) of [33], representing

the perturbation induced by the open or closed state of the doors between the
rooms. Taking a “max” function into account with interval analysis is actually
still a difficult task. However, this term could have been taken into account
with a proper regularization (smoothing).

The main difficulty of this example is the large number of modes in the
switched system, which induces a combinatorial issue.

The decomposition was obtained in 4 minutes with a maximum length of
pattern set to K = 2 and a maximum bisection depth of D = 4. The perturba-
tion due to human beings has been taken into account by setting the parameters
δsi equal to the whole interval [0, 1] for the decomposition, and the imposed per-
turbation for the simulation is given Figure 6. The temperatures To and Tc have
been set to the interval [27, 30] for the decomposition, and are set to 30◦C for
the simulation. A simulation of the controller obtained with the state-space bi-
section procedure is given in Figure 7, where the control objective is to stabilize
the temperature in [20, 22]4 while never going out of [19, 23]4.

5.4 A path planning problem

This last case study is based on a model of a vehicle initially introduced in [35]
and successfully controlled in [18, 19] with the tools PESSOA and SCOTS. In
this model, the motion of the front and rear pairs of wheels are approximated
by a single front wheel and a single rear wheel. The dynamics if the vehicle is
given by:
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Figure 8: Example 5.4: Set simulation of the path planning example. The green
box is the initial region R1, the blue box is the target region R2. The union
of the red boxes is the reachability tube. In this case, the target region is not
attained without bisection.

ẋ = v0
cos(α+ θ)

cos(α)
, ẏ = v0

sin(α+ θ)

cos(α)
, θ̇ =

v0

b
tan(δ), (10)

where α = arctan(a tan(δ)/b). The system is thus of dimension 3, (x, y) is the
position of the vehicle, while θ is the orientation of the vehicle. The control
inputs are v0, an input velocity, and δ, the steering angle of the rear wheel. The
parameters are: a = 0.5, b = 1. Just as in [18, 19], we suppose that the control
inputs are piecewise constant, which leads to a switched system of the form of
Equation (1) with no perturbation. The objective is to send the vehicle into an
objective region R2 = [9, 9.5]× [0, 0.5]×]−∞,+∞[ from an initial region R1 =
[0, 0.5]×[0, 0.5]×[0, 0]. The safety set is S = [0, 10]×[0, 10]×]−∞,+∞[. There is
in fact no particular constraint on the orientation of the vehicle, but multiple ob-
stacles are imposed for the two first dimensions, they are represented in Figure 8.
The input velocity v0 can take the values in {−0.5, 0.5, 1.0}. The rear wheel ori-
entation δ can take the values in {0.9, 0.6, 0.5, 0.3, 0.0,−0.3,−0.5,−0.6,−0.9}.
The sampling period is τ = 0.3.

Note that for this case study we used an automated pre-tiling of the state
space permitting to decompose the reachability problem in a sequence of reach-
ability problems. Using patterns of length up to K = 10, we managed to
successfully control the system in 3619 seconds. In this case, the pattern is
computed until almost the end without bisection as shown in Figure 8. To ob-
tain the last steps, the box is bissected in four ones by Algorithm 1. After that,
patterns are found for the four boxes:

• [8.43, 8.69]; [2.52, 2.78] : {7000166}

• [8.43, 8.69]; [2.78, 3.03] : {7000256}

• [8.69, 8.94]; [2.52, 2.78] : {00055}
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Figure 9: Example 5.4: Set simulation of the path planning example after
bisection. The green boxes are the initial regions obtained by bisection, the
blue box is the target region R2. The union of the red boxes is the reachability
tube.

• [8.69, 8.94]; [2.78, 3.03] : {000265}

The four set simulations obtained for the last steps are given in Figure 9.

6 Performance tests

We present a comparison of functions Find Pattern, Find Pattern2 w.r.t. the
computation times obtained, and with the state-of-the-art tools PESSOA [29]
and SCOTS [30].

Table 1 shows a comparison of functions Find Pattern and Find Pattern2,
which shows that the new version highly improves computation time. We can
note that the new version is all the more efficient as the length of the patterns
increases, and as obstacles cut the research tree of patterns. This is why we
observe significant improvements on the examples of the DC-DC converter and
the polynomial example, and not on the building ventilation example, which
only requires patterns of length 2, and presents no obstacle.

Table 2 shows of comparison of function Find Pattern2 with state-of-the-
art tools SCOTS and PESSOA. On the example of the DC-DC converter, our
algorithm manages to control the whole state space R = [1.55, 2.15]× [1.0, 1.4]
in less than one second, while SCOTS and PESSOA only control a part of R,
and with greater computation times. Note that these computation times vary
with the number of discretization points used in both, but even with a very fine
discretization, we never managed to control the whole boxR. For the polynomial
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Table 1: Comparison of Find Pattern and Find Pattern2.
Example Computation time

Find Pattern Find Pattern2
DC-DC Converter 1609 s < 1 s

Polynomial example Time Out 150 s
Building ventilation 272 s 228 s

Path planning Time Out 3619 s

Table 2: Comparison with state-of-the-art tools.
Example Computation time

FP2 SCOTS PESSOA
DC-DC Converter < 1 s 43 s 760 s

Polynomial example 150 s 131 s
Path planning 3619 s 492 s 516 s

example, we manage to control the whole boxes R1 and R2, as with SCOTS
and in a comparable amount of time. However, PESSOA does not support
natively this kind of nonlinear systems. For the path planning case study, on
which PESSOA and SCOTS perform well, we have not obtained computations
times as good as they have. This comes from the fact that this example requires
a high number of switched modes, long patterns, as well as a high number of
boxes to tile the state space. This is in fact the most difficult application case
of our method. This reveals that our method is more adapted when either the
number of switched modes of the length of patterns is not high (though it can
be handled at the cost of high computation times). Another advantage is that
we do not require a homogeneous discretization of the state space. We can thus
tile large parts of the state space using only few boxes, and this often permits
to consider much fewer states than with discretization methods, especially in
higher dimensions (see [36]).

7 Conclusion

We presented a method of control synthesis for nonlinear switched systems,
based on a simple state-space bisection algorithm, and on guaranteed integra-
tion. The approach permits to deal with stability, reachability, safety and for-
bidden region constraints. Varying parameters and perturbations can be easily
taken into account with interval analysis. The approach has been numerically
validated on several examples taken from the literature, a linear one with con-
stant parameters, and two nonlinear ones with varying perturbations. Our
approach compares well with the state-of-the art tools SCOTS and PESSOA.

We would like to point out that the exponential complexity of the algorithms
presented here, which is inherent to guaranteed methods, is not prohibitive. Two
approaches have indeed been developed to overcome this exponential complex-
ity. A first approach is the use of compositionality, which permits to split the
system in two (or more) sub-systems, and to perform control synthesis on these
sub-systems of lower dimensions. This approach has been successfully applied
in [36] to a system of dimension 11, and we are currently working on applying
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this approach to the more general context of contract-based design [37]. A sec-
ond approach is the use of Model Order Reduction, which allows to approximate
the full-order system (1) with a reduced-order system, of lower dimension, on
which it is possible to perform control synthesis. The bounding of the trajectory
errors between the full-order and the reduced-order systems can be taken into
account, so that the induced controller is guaranteed. This approach, described
in [38], has been successfully applied on (space-discretized) partial differential
equations, leading to systems of ODEs of dimension up to 100000. The present
work is a potential ground for the application of such methods to control nonlin-
ear partial differential equations, with the use of proper nonlinear model order
reduction techniques.
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