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Junction conditions for finite horizon optimal control problems on
multi-domains with continuous and discontinuous solutions

Daria Ghilli∗ Zhiping Rao† Hasnaa Zidani‡

April 25, 2017

Abstract

This paper deals with junction conditions for Hamilton-Jacobi-Bellman (HJB) equations for finite
horizon control problems on multi-domains. We consider two different cases where the final cost is
continuous or lower semi-continuous. In the continuous case we extend the results in [26] in a more
general framework with switching running costs and weaker controllability assumptions. The comparison
principle has been established to guarantee the uniqueness and the stability results for the HJB system on
such multi-domains. In the lower semi-continuous case, we characterize the value function as the unique
lower semi-continuous viscosity solution of the HJB system, under a local controllability assumption.

Introduction

We study finite horizon optimal control problems on multi-domains of Rd with interfaces where the
dynamics and the cost functions may have discontinuities. In particular, we consider a cellular partition of
Rd, that is, a disjoint union of subdomains Ωi, i = 1, · · · ,m, where the interfaces coincide with crossing
hyperplanes separating the subdomains. The goal of our investigation is to identify the junction conditions
on the interfaces such that the optimal control problem involving the trajectories switching between the
subdomains or staying on the interfaces is well defined and the associated Hamilton-Jacobi-Bellman (HJB)
equation has a unique solution.

The discontinuous setting across the interfaces leads us to the study state-discontinuous Hamilton-Jacobi
equations. The viscosity notion of solutions to HJ equations was firstly extended in the discontinuous case
in [22], providing the first vision on this subject. Then, several attention has been given to the type of
conditions one has to add in order to establish the comparison principle. In [27], a class of stationary HJ
equations with discontinuous Lagrangian has been studied and an uniqueness result is provided using a
special structure of the discontinuities. Later, the viscosity notion was extended in [11] to the case where
the Hamiltonian is state-measurable, and a comparison principle is obtained under an adequate assumption
which avoid complex interactions between the trajectories and the interfaces.

Control problems on multi-domains has become an active field of investigation and several papers have
been particularly influential for our work. The first paper on stratified domains investigating the HJB tan-
gential equations on the interfaces has been the work [8] by Bressan and Hong, where a rather complete
analysis of discontinuous deterministic control problems in stratified domains has been carried out. Then,
in [3, 4], both the infinite horizon and finite horizon problems on two-domains are studied. In both works,
the authors consider different types of strategies for the trajectories to identify the proper HJB equations to
provide maximal and minimal solutions and the conditions for uniqueness. The controllability is assumed in
the whole space in [3], and then has been weakened to a normal controllability with respect to the interface in
[4]. Stability results are also provided. Then, following a similar approach and under similar controllability
assumptions to [3, 4], a rather general class of discontinuous deterministic control problems on stratified
domains have been studied out in [6].
The work [9] has particularly attracted our attention by providing a selection principle for the dynamics on
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the interfaces of stratified domains, called essential dynamics, to obtain invariance properties. By following
this selection principle, junctions conditions on the interfaces on multi-domains are provided in [26], where
the characterization result is carried out under a full controllability assumption. The further work [25] con-
sider an infinite horizon problem in two-domains under a weaker controllability assumption and a convexity
assumption for the set of dynamics/costs. Finally, we would like to mention some recent work on networks
[1, 24, 23, 10] which share the same kind of difficulty as this subject.
A different framework is considered in [20], where an infinite horizon state constrained control problem with
a constraint set having a stratified structure is studied. We refer also to [21], where the same approach has
been used to study the minimum time problem and the Mayer problem for stratified state constraints. In
such situations, the interior of the set may be empty and the classical pointing qualification hypothesis to
guarantee the characterization of the continuous value function are not relevant. Then, the discontinuous
value function is characterized by means of a system of HJB equations on each stratum that composes the
state constraints. This result is obtained under a local controllability assumption which is required only on
the strata where some chattering phenomena could occur.

In the present work, we consider first the case of a discontinuous control problem on a stratification of
Rd with continuous final cost. In this case, the value function is characterized as the unique continuous
solution of the set of HJB equations modeling the control problem coupled with the junction conditions
on the interfaces. Following the concept of essential dynamics introduced in [9], HJB junction equations
on the interfaces are provided, the viscosity notion for the HJB system is introduced and, under some
controllability conditions, the comparison result and the existence and uniqueness of a continuous solution
are obtained. In this continuous setting, we develop further the ideas introduced in [26, 25], but with some
significant contribution. In comparison to [26, 25], the present work considers a more general structure of
multi-domains with crossing hyperplanes involving switching running costs and under weaker controllability
and convexity assumptions. Moreover in our framework both the dynamic and the cost can be unbounded,
differently from [26, 25, 3, 4, 6]. Another technical issue is the convexity condition for the set of velocities
and costs. As in [8], we assume a weaker convexity hypothesis than the one in [3, 4]. The advantage of
this assumption is to include more general cases and to avoid working with the relaxed problems. Finally,
we remark that in [3, 4, 6] the comparison result and consequently the continuity of the value function is
proven under a normal controllability condition and the results are obtained under mainly PDE techniques
combined with some control arguments. In the present work we suppose also a tangential controllability
condition only on the interfaces, leading to a Lipschitz regularity of the value function on the interfaces.
Also, the techniques used are based mainly on control theory. We provide a stability result, which on the
other hand is based directly on the viscosity notion without control arguments.
In the second part of our work, we consider the case of a lower semi-continuous terminal cost which, as far
as we know, has not been considered previously in the framework of multi-domains control problems. In this
setting, the value function is characterized as the unique lower semi-continuous bilateral solution of the set
of HJB equations coupled with tangential junction conditions on the interfaces. Our approach is inspired
to [20, 21], by adapting to our setting the techniques used there in the different framework of a stratified
state constraint control problem. As in the continuous case, we consider an finite horizon control problem,
whereas in [20, 21] respectively the infinite horizon case and the Mayer problem are studied. We assume
a controllability assumption which includes the case in which there is no controllability anywhere on the
interfaces and in particular allows us to treat the arising of some chattering phenomena.
The paper is organized as follows. In Section 1 we set some notations and we state our main results. In
Section 2 we recall some main properties of the value function. Section 3 and Section 4 are devoted to the
characterization of super and subsolutions through super and sub-optimality principles. In Section 5 we
prove are main results, namely existence, uniqueness. Finally, Section 6 is devoted to the stability result.

1 Notations, setting of the problem and main results

1.1 Notations

For anyM subset of Rd, the closure ofM is denoted asM. For each x ∈ Rd, ‖x‖ denotes the Euclidean
norm of x and d(x,M) denotes the distance from x toM, i.e.

d(x,M) = inf{‖x− z‖ : z ∈M}.
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In the sequel, for any function w : Rp → R, Ep(w) andHp(w) denote respectively the epigraph and hypograph
of w, i.e.

Ep(w) := {(x, z) ∈ Rp × R : w(x) ≤ z}, Hp(w) := {(x, z) ∈ Rp × R : w(x) ≥ z}.
If Vk is an affine subspace of Rd of dimension k, we denote by V ⊥k the subspace of Rd such that the following
decomposition holds Rd = Vk

⊕
V ⊥k .

1.2 Assumptions

We consider a cellular decomposition of Rd into m-cells {Ωi}i=1,··· ,m, separated by hyperplanes
(Hj)j=1,··· ,q, such that for all j1, j2 ∈ {1, · · · , q}, Hj1 6= Hj2 for j1 6= j2 and either Hj1//Hj2 or Hj1 ⊥ Hj2 .
Set Γ :=

⋃
j=1,··· ,qHj . More specifically, we assume under the above notations:

(H1)


(i) Rd = Γ

⋃
(∪mi=1Ωi) ,

(ii) Γ ∩ Ωi = ∅ ∀i = 1, · · · ,m,
(iii) Ωi is open and connected.

Throughout the paper, we use the following notation:

Γ =

p⋃
k=1

Γk, (Γk)k=1,··· ,p are pairwise disjoint.

Moreover, we denote by (Γ0
k)k the subdomains of Γ such that there exist two hyperplanes Hk1

,Hk2
, k1 6= k2

such that Γ0
k = Hk1

∩Hk2
.

Moreover, we will occasionally denote byMk either Ωk either Γk, so that

Rd =

l+m⋃
k=1

Mk, where for each k : Mk = Ωk orMk = Γk.

Note that the set of interfaces separating the cells in our partition consists in the two set of parallel hyper-
planes. For the rest of the paper, we make the arbitrary choice of choosing a unique direction for the exterior
normal vector for each of these two sets. We denote the normal to each Hj with this chosen direction by ~nj .

We are given a control problem on Rd with dynamic f : Rd×A 7→ Rd and running cost ` : Rd×A 7→ R,
where A is a compact set of Rn. For simplicity, throughout the paper we will consider also the following
multifunctions notations F : Rd  Rd, L : Rd  Rd

• F (x) := {f(x, a) : a ∈ A )}), L(x) := {`(x, a) : a ∈ A });

• for any i = 1, . . . ,m, Fi = F |Ωi
, Li = L|Ωi

.

We assume the following standard hypothesis on F and L:

(HF)


(i) x F (x) has non-empty compact images and is upper semi-continuous1;

(ii) ∀i ∈ {1, . . .m} the map x Fi(x) is locally Lipschitz continuous w.r.t the Hausdorff distance;
(iii) There exists cf > 0 such that max{|p| | p ∈ F (x)} ≤ cf (1 + |x|);

(HL)


(i) x L(x) has non-empty compact images and is upper semi-continuous1;

(ii)∀i ∈ {1, . . .m} the map x Li(x) is locally Lipschitz continuous w.r.t. the Hausdorff distance.
(iii) There exists cl > 0 and λl ≥ 1 such that for any ` ∈ L(x), 0 ≤ ` ≤ cl(1 + |x|λl);

For x ∈ Rd and p ∈ Rd, we define:

H(x, p) = sup
a∈A
{−p · f(x, a)− `(x, a)}.

Let T > 0 be given final time, we consider for each i = 1, · · · ,m the following set of HJB equations:

− ∂tu(t, x) +H(x,Du(t, x)) = 0 for t ∈ (0, T ), x ∈ Ωi, (1.1)
1We recall that a multifunction x  F (x) is said to be upper-semi continuous at x0 if for any open set C ⊃ F (x0), there

exists an open set ω containing x0 such that F (ω) ⊂ C. In other terms, F (x) ⊃ lim supy→x F (y).
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combined with the final condition
u(T, x) = ϕ(x) for x ∈ Ωi.

The system above implies that on each domain Ωi a classical HJ equation is considered. However, there is
no information on the boundaries of the domains which are the junctions between Ωi We then address the
question to know what condition should be considered on the boundaries in order to get the existence and
uniqueness of solution to all the equations.
Here ϕ is called the final cost function and two different assumptions on ϕ are considered in this work:

(Hϕ1) ϕ is a Lipschitz continuous function,

(Hϕ2) ϕ is a lower semi-continuous function with λϕ-superlinear growth for some λϕ ≥ 1.

For the rest of the paper we set
λ = max{λl, λϕ}. (1.2)

We consider the HJB equation (1.1) in each subdomain Ωi and we then address the question to know
which are the junction conditions on the interface Γ to get the existence and uniqueness of solution to (1.1).

A technical efficient way to deal with the running cost is to introduce an augmented dynamics. To this
end we define

b(x, a) = cl(1 + |x|λl)− `(x, a) for any x ∈ Rd, a ∈ A .

For each x ∈ Rd, we define the augmented dynamics G : Rd  Rd

G(x) := {(f(x, a),−`(x, a)− r) : a ∈ A , 0 ≤ r ≤ b(x, a)}.

It is not difficult to see by (HF), (HL) that this map has non empty compact images. Moreover, we also
suppose the following assumption.

(HG) G(·) has convex images.

1.3 Tangential and Essential dynamics. Controllability assumptions
An important type of dynamics is the notion of tangent dynamics considered as the intersection of the

convexified dynamics F and the tangent space to each subdomain. We first recall the notion of tangent cone.
For any C ⊂ Rp with 1 ≤ p ≤ d, the tangent cone TC(x) at x ∈ C is defined by

TC(x) = {v ∈ Rp : lim inf
t→0+

dC(x+ tv)

t
= 0},

where dC(·) is the distance function to C. Note that TΓj
(x) agrees with the tangent space of Γj at x for

j = 1, · · · , l and the dimension of TΓj is strictly smaller than d.
On eachMk, the set of tangent dynamics is a multifunction FMk

:Mk  Rd defined as

FMk
(x) = F (x) ∩ TMk

(x), ∀x ∈Mk.

Here TMk
(x) agrees with the tangent space of Mk at x with the same dimension of Mk, which can be

extended up toMk by continuity.
Correspondingly the set of controls AMk

related to the tangent dynamics on eachMk is set by

AMk
(x) = {a ∈ A : f(x, a) ∈ TMk

(x)}, ∀x ∈Mk.

The next notion of dynamics is the essential dynamics FE firstly introduced in [9], and the definition is
given as follows.

Definition 1.1. For any x ∈ Rd, the multifunction FE : Rd  Rd at x is defined by

FE(x) :=
⋃
{FEMk

(x) : x ∈Mk, k ∈ {1, · · · , l +m}},

where FEMk
:Mk  Rd is defined by

FEMk
(x) = F extk (x) ∩ TMk

(x), for x ∈Mk,
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where F extk :Mk  Rd is the extension by continuity of F |Mk
toMk.

We define also the set of controls corresponding to the essential multifunction: ∀x ∈ Rd,

AEMk
(x) := {a ∈ A : f(x, a) ∈ FEMk

(x)}, AE(x) := ∪
{
AEMk

(x) : x ∈Mk, k ∈ {1, · · · , l +m}
}
.

We define also the essential dynamics for the augmented dynamics as follows.

Definition 1.2. For each x ∈ Rd, we define the augmented essential dynamics

GE(x) := {(f(x, a),−`(x, a)− r) : 0 ≤ r ≤ b(x, a), a ∈ AE(x)}.

For eachMk, , the augmented tangent dynamics is the following

GMk
(x) := {(f(x, a),−`(x, a)− r) : f(x, a) ∈ TMk

(x), 0 ≤ r ≤ b(x, a), a ∈ A }.

To state the main results, we shall need also some controllability assumptions around the interfaces.
Since two cases cases will be studied where either (Hϕ1) or (Hϕ2) is satisfied, different hypotheses of
controllability are required in each case. Combined with (Hϕ1), the following controllability condition will
be assumed.

(H2) There exists r1 > 0 such that for any x ∈ Γj

B(0, r1) ⊂ F (x).

Under the assumption (Hϕ2), we shall consider the following weaker hypothesis:

(H3) For each j = 0, . . . , l, one of the following properties is satisfied on Γj .

• Either any x ∈ Γj ,
F (x) ∩ TΓj

(x) = ∅;

• Or there exists r2 > 0 such that for any x ∈ Γj ,

B(0, r2) ⊂ F (x).

Let us point out that (H3) is a much weaker assumption than (H2). Indeed, consider the simple case
of two domains in R with Ω1 = {x : x < 0}, Ω2 = {x : x > 0} and Γ = {0}. For any x ∈ R, let

F (x) = {1}.

In this case where F is Lipschitz continuous everywhere, on the interface Γ we have

F (0) ∩ TΓ(0) = ∅.

Thus, (H3) is satisfied while (H2) is not obeyed.
Note that the controllability assumptions (H2) and (H3) imply different properties on the tangential

dynamics. Indeed, we have the following results whose proofs are postponed to the Appendix A.

Proposition 1.3. Assume (H1), (HF), (HL), (H2). Then GΓj
is locally Lipschitz continuous on Γj.

Proposition 1.4. Assume (H1), (HF), (HL), (H3). Then the following holds.

(i) GΓj is either with empty images or locally Lipschitz continuous on Γj.

(ii) For each j = 0, . . . , l and x ∈ Γj with FΓj (x) 6= ∅, there exists εj ,∆j > 0 such that

R(x; t) ∩ Γj ⊆
⋃

s∈[0,∆jt]

Rj(x; s), ∀ t ∈ [0, εj ],

where
R(x; t) := {y(t) : ẏ(s) ∈ F (y(s)) a.e. s ∈ (0, t), y(0) = x},

Rj(x; t) := {y(t) : ẏ(s) ∈ FΓj
(y(s)) a.e. s ∈ (0, t), y(0) = x}.

5



1.4 Main results

We define the following Hamiltonians: HF , H
E : Rd × Rd → R and HΓj

: Γj × Rd → R

HF (x, p) = sup
a∈A
{−p · f(x, a)− `(x, a)},

HE(x, p) = sup
a∈AE(x)

{−p · f(x, a)− `(x, a)},

and
HΓj (x, p) = sup

a∈AΓj
(x)

{−p · f(x, a)− `(x, a)}.

We consider the following two kind of junction conditions:

− ∂tu(t, x) +HE(x,Du(t, x)) = 0, for t ∈ (0, T ), x ∈ Γj , (1.3){
−∂tu(t, x) +HF (x,Du(t, x)) ≥ 0, for t ∈ (0, T ), x ∈ Γj ,
−∂tu(t, x) +HΓj

(x,Du(t, x)) ≤ 0, for t ∈ (0, T ), x ∈ Γj .
(1.4)

The viscosity sense of the solutions to the above equations/inequalities needs to be clarified. Before giving
the definition of solutions, we recall the notion of extended differentials.
Let φ : (0, T ) × Rd → R be a continuous function, and let M ⊆ Rd be an open C2 embedded manifold in
Rd. Suppose that φ ∈ C1((0, T )×M), we define the differential of φ on any (t, x) ∈ (0, T )×M by

∇Mφ(t, x) := lim
xn→x,xn∈M

(φt(t, xn), Dφ(t, xn)) .

Note that ∇φ is continuous on (0, T )×M, the differential defined above is actually the extension of ∇φ to
the wholeM.

The precise viscosity and bilateral viscosity notions are given as follows.

Definition 1.5. (Viscosity supersolution)
Let u : (0, T ] × Rd → R. We say that u is a supersolution of (1.1)-(1.3) ( (1.1)-(1.4) resp.) if u is lsc and
for any (t0, x0) ∈ (0, T )× Rd and φ ∈ C1((0, T )× Rd) such that u− φ attains a local minimum at (t0, x0),
we have

−φt(t0, x0) +HE(x0, Dφ(t0, x0)) ≥ 0

(− φt(t0, x0) +HF (x0, Dφ(t0, x0)) ≥ 0, resp.).

Definition 1.6. (Viscosity subsolution)
Let u : (0, T ]× Rd → R.

1. u is a subsolution of (1.1)-(1.3) if u is usc and for any (t0, x0) ∈ (0, T )× Rd, any k ∈ {0, . . . ,m + l}
with x0 ∈ Mk and any continuous φ : (0, T ) × Rd → R with φ|(0,T )×Mk

being C1 such that u − φ
attains a local maximum at (t0, x0) on (0, T )×Mk, we have

−pt + sup
a∈AE

Mk
(x0)

{−px · f(x0, a)− `(x0, a)} ≤ 0, with (pt, px) = ∇Mk
φ(t0, x0).

2. u is a subsolution of (1.1)-(1.4) if u is usc and for any (t0, x0) ∈ (0, T )× Rd, any k ∈ {0, . . . ,m + l}
with x0 ∈ Mk and any φ ∈ C1((0, T )×Mk) such that u|Mk

− φ attains a local maximum at (t0, x0),
we have

−φt(t0, x0) +HMk
(x0, Dφ(t0, x0)) ≤ 0.

3. u is a bilateral subsolution of (1.1)-(1.4) if u is lsc and for any (t0, x0) ∈ (0, T ) × Rd, any k ∈
{0, . . . ,m + l} with x0 ∈ Mk and any φ ∈ C1((0, T ) × Mk) such that u|Mk

− φ attains a local
minimum at (t0, x0), we have

−φt(t0, x0) +HMk
(x0, Dφ(t0, x0)) ≤ 0.

Definition 1.7. (Viscosity solution and bilateral viscosity solution)
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1. u is a viscosity solution to (1.1)-(1.3) ( (1.1)-(1.4) resp.) if u is both a supersolution in the sense of
Definition 1.5 and a subsolution of (1.1)-(1.3) ( (1.1)-(1.4) resp.) in the sense of Definition 1.6, and
u satisfies the final condition

u(T, x) = ϕ(x), ∀x ∈ Rd.

2. u is a bilateral viscosity solution to (1.1)-(1.4) if u is both a supersolution in the sense of Definition
1.5 and a bilateral subsolution of (1.1)-(1.4) in the sense of Definition 1.6, and u satisfies the final
condition

u(T, x) = ϕ(x), ∀x ∈ Rd.

The main results are the following two theorems under assumption (Hϕ1) and (Hϕ2) respectively.

Theorem 1.8. Assume (Hϕ1), (H1), (HF), (HL), (HG), (H2) . The systems (1.1)-(1.3) and (1.1)-
(1.4) have the same unique continuous viscosity solution (in the sense of Definition 1.7) with restriction on
[0, T ]× Γ locally Lipschitz continuous and with λl-superlinear growth.

Theorem 1.9. Assume (Hϕ2),(H1), (HF), (HL), (HG), (H3). The system (1.1)-(1.4) has a unique lsc
bilateral viscosity solution with λ-superlinear growth (in the sense of Definition 1.7).

The key issues in the framework of multi-domains involve the controllability assumptions on the interfaces
and the continuity of the solutions of HJB equations. Our first contribution is the existence and uniqueness
result in the class of continuous solutions under the assumption (H2) that the controllability holds every-
where on the interfaces. Similar results in this case can be found in the literature in [3, 26, 4, 25, 6] with
different settings of multi-domains and transmission conditions on the interfaces. The second contribution is
the existence and uniqueness result in the class of discontinuous solutions and the controllability condition
can be weakened on the interfaces. This is new in the literature and a similar situation is discussed in [20]
in the state constrained case.
Finally we mention that Section 6 is devoted to a stability result under the hypothesis (Hϕ1) when ap-
proaching ϕ by a sequence of Lipschitz continuous functions.

2 Main properties of the value function

Consider the value function associated to the control problem on Rd defined, for any (t, x) ∈ [0, T ]×Rd,
as

v(t, x) := inf

{
ϕ(y(T )) +

∫ T

t

`(y(s), α(s))ds : (y(·), α(·)) satisfies (2.6)

}
, (2.5)

where α ∈ A := L∞(0, T ; A ) and (y, α) satisfy{
ẏ(s) = f(y(s), α(s)) a.e. s ∈ (t, T ).
y(t) = x.

(2.6)

For any (x, t) ∈ Rd × [0, T ], we denote by STt (x) the set of trajectories y(·) satisfying (2.6). We remark
that the optimal control problem (2.5) can be written in terms of the convex augmented dynamic G as
follows. For any t ∈ [0, T ], x ∈ Rd, consider the differential inclusion:

(ẏ(s), η̇(s)) ∈ G(y(s)) s ∈ (t, T ), (2.7)

then the control problem (2.5) is equivalent to:

ϑ(t, x) := inf{ϕ(y(T ))− η(T ) : (y(·), η(·)) satisfies (2.7) with (y(t), η(t)) = (x, 0)}. (2.8)

Note that G is upper semi-continuous with compact and convex images and therefore by standard arguments
one can prove that (2.8) admits a solution.

Remark 2.1. Let (y(·), η(·)) satisfy (2.7) with y(t) = x, η(t) = 0. The Gronwall lemma implies

|y(s)| ≤ (1 + |x|)ecf (t−s) ∀s ∈ (t, T )

and
|ẏ(s)| ≤ cf (1 + |x|)ecf (t−s) ∀s ∈ (t, T ).
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Moreover, since λl ≥ 1
l(y(s), α(s)) ≤ cl(1 + |y(s)|)λleλlcf (t−s) ∀s ∈ (t, T ), (2.9)

and therefore
|η̇(s)| ≤ cl(1 + |y(s)|)λleλlcf (t−s) ∀s ∈ (t, T ).

We recall the principal properties of the value function.

Proposition 2.2. Assume (HF), (HL). Let λl ≥ 1 and λ ≥ 1 be defined respectively as in HL and (1.2).
Under the assumption (Hϕ1) (or (Hϕ2) resp.), the value function v(t, ·) has λl (or λ resp.) superlinear
growth on Rd.

Proof. By (Hϕ1) the final cost ϕ is Lipschitz continuous and then it has linear growth. Then, the proof
follows from (2.9) of Remark 2.1 and the linear growth of ϕ. Similarly, under (Hϕ2) we get the λ-superlinear
growth of v.

2.1 The Dynamic Programming Principle
A well-known and key result is that the value function v satisfies a Dynamical Programming Principle

(DPP).

Proposition 2.3. Assume (H1), (HF)(i), (HL)(i). For any (t, x) ∈ [0, T ]× Rd, the following holds.

(i) v satisfies the super-optimality, i.e. there exists (ȳ, ᾱ) satisfying (2.6) such that

v(t, x) ≥ v(t+ h, ȳ(t+ h)) +

∫ t+h

t

`(ȳ(s), ᾱ(s))ds, for h ∈ [0, T − t].

(ii) v satisfies the sub-optimality, i.e. for any (y, α) satisfying (2.6)

v(t, x) ≤ v(t+ h, y(t+ h)) +

∫ t+h

t

`(y(s), α(s))ds, for h ∈ [0, T − t].

In the following proposition, we state a backward sub-optimality for the value function. Note that the
proof follows by standard arguments as a consequence of Proposition 2.3.
In this case we look at the following system.

Proposition 2.4. Assume (H1), (HF)(i), (HL)(i). For any (t, x) ∈ [0, T ]× Rd, y(·), α satisfying{
ẏ(s) = f(y(s), α(s)) a.e. s ∈ (0, t),
y(t) = x,

(2.10)

it holds

v(t, x) ≥ v(t− h, y(t− h))−
∫ t

t−h
`(y(s), α(s))ds, ∀h ∈ [0, t].

Now we recall the properties satisfied by the value function in the two cases studied, precisely the
continuity under the assumption (Hϕ1) and the lower semi-continuity under the assumption (Hϕ2).

2.2 Lower semicontinuity under (Hϕ2)
Under (Hϕ2) v is lower semi-continuous. In this case we characterize the value function v through the

backward sub-optimality, as showed in the following proposition.

Proposition 2.5. Assume (Hϕ2), (H1), (HF)(i), (HL)(i), (HG). Then v is lower semi-continuous.
Moreover, for any (t, x) ∈ [0, T ]× Rd and y(·) satisfying (2.10),

v(t, x) = lim
h→0+

v(t− h, y(t− h)). (2.11)
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Proof. The lower semi-continuity essentially follows from the upper semi-continuity, convexity and compact-
ness of the dynamics G and from the lower semi-continuity of ϕ. Since it is a standard result we omit the
details of the proof. We prove (2.11). By the lower semi-continuity of v we have

v(t, x) ≤ lim inf
h→0+

v(t− h, y(t− h)). (2.12)

By Proposition (2.4), we get

v(t, x) ≥ v(t− h, y(t− h)) +

∫ t

t−h
`(y(s), α(s))ds, ∀h ∈ [0, t],

and then we have
v(t, x) ≥ lim sup

h→0+

v(t− h, y(t− h)). (2.13)

By (2.12) and (2.13) we conclude that v(t, x) = limh→0+ v(t− h, y(t− h)).

2.3 Continuity under (Hϕ1)
Under (Hϕ1) and the controllability assumption (H2), we have the continuity of the value function.

Proposition 2.6. Assume (Hϕ1), (H1), (HF), (HL), (HG), (H2). Then v is continuous on [0, T ]×Rd.
Moreover, v|[0,T ]×Γ is locally Lipschitz continuous on [0, T ]× Γ.

The proof is divided in three steps. First we prove the local Lipschitz continuity of the space restriction
of v on Γ, then the continuity of v on Γ is obtained and finally the continuity of v in Rd is concluded. The
proof is inspired by the arguments used in [25, 26] and is given in Appendix A. However, we remark that in
[26] a total controllability is assumed in each subdomains (and not only on the interfaces as in H2), which
leads to the Lipschitz continuity of the value function in all the space.

Remark 2.7. We remark that our results can be proved under the following weaker controllability assump-
tion, which divides (H2) into the tangential controllability assumption (P1) and the normal one (P2):

(P1) There exists r1 > 0 such that for any x ∈ Γj ,

B(0, r1) ∩ TΓj
(x) ⊂ F (x).

(P2) There exists r2 > 0 such that for any x ∈ Γj

B(0, r2) ∩ TΓj (x)⊥ ⊂ F (x).

The normal controllability of (P2) is needed to have the local Lipschitz regularity of the augmented dynamics
GΓj (see Proposition 1.3). The tangential controllability stated in (P1) is used to prove the local Lipschitz
regularity of the restriction of the value function on [0, T ] × Γ (see Proposition 2.6). However, we mention
that (P1) is not necessary in order to have the Lipschitz regularity. Indeed, consider the case of two-domains
in R2 with

Ω1 = {(x1, x2) : x1 < 0, x2 ∈ R}, Ω2 = {(x1, x2) : x1 > 0, x2 ∈ R}.

and the interface
Γ = {(0, x2) : x2 ∈ R}.

Suppose that the dynamics is defined as follows:

F (x) =

 {(−1, 0)} for x ∈ Ω1,
{(1, 0)} for x ∈ Ω2,
{(p, 0) : p ∈ [−1, 1]} for x ∈ Γ.

The cost functions are the following: for x = (x1, x2) ∈ R2

ϕ(x) = |x1|, ` ≡ 0.
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Note that for x ∈ Γ and any r1 > 0

B(0, r1) ∩ TΓ(x) = {(0, p) : p ∈ [−r1, r1]}

which is not included in F (x). Therefore, (P1) is not satisfied in this case.
Now we compute the value function, we refer to (2.5) for the definition. We have for (t, x) ∈ (0, T )×R2

yt,x(T )

 = (x1 − T + t, x2) for x ∈ Ω1,
= (x1 + T − t, x2) for x ∈ Ω2,
∈ {(t− T, x2), (T − t, x2)} for x ∈ Γ.

It is then deduced that
v(t, x) = T − t+ |x1|, ∀x = (x1, x2) ∈ R2,

which is globally Lipschitz continuous. Therefore, the tangential controllability condition (P1) is not a
necessary condition for the local Lipschitz continuity of the restriction of the value function on [0, T ]× Γ.

3 Supersolutions and super-optimality

This section is devoted to the characterization of the super-optimality via HJB inequalities. The char-
acterization through the tangential dynamic is a classical result since F is upper semi-continuous and G is
convex. We give also a more precise characterization through the essential dynamics, which is not standard
since in general FE is not usc. The proof is mainly based on the fact that the set of trajectories driven by
F and FE are the same. We refer to [26, Proposition 3.4] for a proof of this result. Finally, we remark that
in the following theorem no controllability assumption is needed.

The characterization of the super-optimality is the following.

Theorem 3.1. Assume (H1), (HF), (HL), (HG). Let u : [0, T ]×Rd → R be a lsc function. The following
are equivalent.

(i) u satisfies the super-optimality;

(ii) u is a supersolution to (1.1)-(1.3);

(iii) u is a supersolution to (1.1)-(1.4).

Proof. The implication (iii) ⇒ (i) is customary and well known, in particular see [20], Proposition 5.1 in the
constrained framework and [18], [19], [15], [28] for the unconstrained framework.
Now we prove that (i)⇒ (ii). Given t ∈ [0, T ] and x ∈ Rd, by the super-optimality of u there exists ȳ, ᾱ
such that

u(t, x) ≥ u(t+ h, ȳ(t+ h)) +

∫ t+h

t

`(ȳ(s), ᾱ(s))ds, ∀h ∈ [0, T − t].

We set

η̄(h) := u(t, x)−
∫ t+h

t

`(ȳ(s), ᾱ(s))ds.

For any φ ∈ C1((0, T )× Rd) such that u− φ attains a local minimum at (t, x), we have

η̄(h) ≥ u(t+ h, ȳ(t+ h)) ≥ φ(t+ h, ȳ(t+ h)) + u(t, x)− φ(t, x), ∀h ∈ [0, T − t],

i.e.
φ(t, x)− φ(t+ h, ȳ(t+ h)) + η̄(h)− η̄(0) ≥ 0, ∀h ∈ [0, T − t].

Up to a subsequence, let hn → 0+ such that there exists p̄ ∈ Rd, q̄ ∈ R satisfying

ȳ(t+ hn)− x
hn

→ p̄,
η̄(hn)− η̄(0)

hn
→ q̄.

It is clear that (p̄, q̄) ∈ G(x) since G is usc and convex valued. Moreover, by [26, Lemma 3.6]

p̄ ∈ co FE(x).
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Therefore, by the definition of GE
(p̄, q̄) ∈ co GE(x).

We then deduce that
−φt(t, x) + sup

(p,q)∈co GE(x)

{−p ·Dφ(t, x) + q} ≥ 0.

The separation theorem implies that

−φt(t, x) + sup
(p,q)∈GE(x)

{−p ·Dφ(t, x) + q} ≥ 0.

By the definition of GE(x), for any (p, q) ∈ GE(x), there exists a ∈ AE(x) such that

p = f(x, a), q ≤ −`(x, a).

Thus, we conclude that

−φt(t, x) + sup
a∈AE(x)

{−f(x, a) ·Dφ(t, x)− `(x, a)} ≥ 0,

which ends the proof.
Now we prove that (ii) ⇒ (iii). Let u be a supersolution to (1.1)-(1.3), for any (t, x) ∈ (0, T ) × Rd and
φ ∈ C1((0, T )× Rd) such that u− φ attains a local minimum at (t, x), we have

−∂tφ(t, x) + sup
a∈AE(x)

{−f(x, a) ·Dφ(t, x)− `(x, a)} ≥ 0.

Note that AE(x) ⊂ A(x), then

−∂tφ(t, x) + sup
a∈A(x)

{−f(x, a) ·Dφ(t, x)− `(x, a)} ≥ 0,

which is the desired result.

4 Subsolutions and sub-optimality

This section is devoted to the characterization of the sub-optimality via the HJB inequalities. In the
standard setting where the dynamics are not stratified, the multifunction of dynamics has to be Lipschitz to
obtain the characterization of the sub-optimality. This property is not satisfied in our case and no classical
arguments can be adapted here. However, we mention that on each subdomain the (augmented) dynamics
are locally Lipschitz continuous as indicated in Proposition 1.3. Here is to investigate the desired sub-
optimality property in each subdomain, and then the properties are glued together to obtain the complete
characterization result. This idea was firstly introduced in [9].

The characterization of the sub-optimality is the following. We split it into two theorems depending
whether we assume (H2) (Theorem 4.2) or (H3) (Theorem 4.1).

Theorem 4.1. Assume (H1), (HF), (HL), (HG), (H3). Let u : [0, T ]×Rd → R be a lsc function. Then
the following are equivalent.

(i) u satisfies the sub-optimality;

(ii) u is the bilateral subsolution to (1.1)-(1.4).

Since the proof of Theorem 4.1 follows the strategy used for a stratified state constrained Mayer problem
in [21], Proposition 3.5, we give it in Appendix B. However, we remark that our setting is different from
[21], in particular we have discontinuous and unbounded dynamic and cost on each interfaces.

Theorem 4.2. Assume (H1), (HF), (HL), (HG), (H2). Let u : [0, T ] × Rd → R be an usc function,
such that u is continuous on Γ and the restriction of u on [0, T ] × Γ is locally Lipschitz continuous. Then
the following are equivalent.

(i) u satisfies the sub-optimality;
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(ii) u is the subsolution to (1.1)-(1.3);

(iii) u is the subsolution to (1.1)-(1.4).

Proof. Note that (ii)⇒ (iii) follows since, for any x ∈Mk with k ∈ {0, . . . , l+m}, every element of AEMk
(x)

belongs to AE(x) and then HMk
(x, ·) ≤ HE(x, ·).

Now we prove that (i)⇒ (ii). First we remark that the significant role of the essential dynamics FE is that
any dynamic in FE is used by some trajectories as stated in the following lemma. For the proof we refer to
[26, Lemma 3.9].

Lemma 4.3. Assume (H1), (HF), (HL), (HG). Let k ∈ {0, . . . ,m+ l}, t ∈ [0, T ) and x ∈Mk. Then for
any (p, q) ∈ GEMk

(x), ξ ∈ R, there exist τ > t and a C1 trajectory (y(·), η(·)) satisfying (2.7) in (t, τ) such
that y(t) = x, η(t) = ξ, with (ẏ(t), η̇(t)) = (p, q) and y(s) ∈Mk for s ∈ [t, τ ].

Then Lemma 4.3 implies that, for any k ∈ {0, . . . ,m + l}, t ∈ (0, T ), x ∈ Rd and a ∈ AE(x) such that
f(x, a) ∈ FEMk

(x) where x ∈ Mk, there exists τ > t, y, η ∈ C1[t, τ) satisfying (2.7) in (t, τ) such that
y(t) = x, η(t) = u(t, x) with (ẏ(t), η̇(t)) = (f(x, a),−`(x, a)) and y(s) ∈Mk for s ∈ [t, τ ].

The sub-optimality of u implies that

u(t, x) ≤ u(t+ h, y(t+ h)) +

∫ t+h

t

`(y(s), α(s))ds,

where (y, α) satisfies (2.6). The definition of η implies that

η(t+ h) ≤ u(t, x)−
∫ t+h

t

`(y(s), α(s))ds, for h ∈ [0, τ − t].

Thus, we have
η(t+ h) ≤ u(t+ h, y(t+ h)).

For any φ ∈ C((0, T ) × Rd) satisfying φ ∈ C1((0, T ) ×Mk) such that u − φ attains a local maximum at
(t, x), we have

u(t+ h, y(t+ h))− φ(t+ h, y(t+ h)) ≤ u(t, x)− φ(t, x).

Then we obtain
η(t+ h) ≤ φ(t+ h, y(t+ h))− φ(t, x) + η(t).

Since y(s) ∈Mk for s ∈ [t, t+ h], we then deduce that

η̇(t) ≤ ∂tφ(t, x) +DMk
φ(t, x) · ẏ(t),

i.e.
−∂tφ(t, x)−DMk

φ(t, x) · f(x, a)− `(x, a) ≤ 0.

Now we prove that (iii)⇒(ii). Since the proof is quite long, we divide it into four steps. In Step 1 we
treat the trajectories staying in one subdomain (see Proposition 4.4). In Step 2 we deal with trajectories
exhibiting a type of "Zeno" effect, i.e crossing the interfaces infinitely during finite time (see Proposition
4.5). In Step 3 we deal with the general case (Proposition 4.6). Finally in Step 4 we conclude the proof of
(iii) ⇒ (ii).

Step. 1-Trajectories in one subdomain.

Proposition 4.4. Assume (H1), (HF), (HL), (HG). Let u be an usc subsolution to (1.1)-(1.4), k ∈
{0, . . . ,m + l} and (y(·), η(·)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ Mk for s ∈ [a, b]. Then it
holds that

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b).

Proof. Using the fact that y(s) ∈Mk for s ∈ [a, b], then we deduce that

(ẏ(s), η̇(s)) ∈ GMk
(y(s)), ∀ s ∈ (a, b),
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where GMk
is Lipschitz continuous. Let φ ∈ C0((0, T )×Rd)∩C1((0, T )×Mk) and (t, x) a local maximum

point of u− φ on (0, T )×Mk. Since u is subsolution to (1.1), we have on (0, T )×Mk

−∂tφ(t, x) + sup
a∈AE

Mk
(x)

{−f(x, a) ·Dφ(t, x)− `(x, a)} ≤ 0,

Then, by the definition of η, we have

−∂tφ(t, x) + sup
(p,q)∈GMk

(x)

{−p ·Dφ(t, x) + q} ≤ 0.

We set
ξ := u(a, y(a))− η(a).

By applying [15, Theorem 4.3.8] for the multifunction {1} × GMk
(·) and Hp(u) ∩ (R ×Mk × R), since

(a, y(a), η(a) + ξ) ∈ Hp(u) ∩ (R×Mk × R) we obtain

(s, y(s), η(s) + ξ) ∈ Hp(u) ∩ (R×Mk × R) ∀ s ∈ [a, b].

By taking s = b we finally get
u(b, y(b)) ≥ η(b) + ξ,

which ends the proof.

Step. 2-"Zeno" type trajectories.

Proposition 4.5. Assume (H1), (HF), (HL), (HG), (H2). Let u be an usc subsolution to (1.1)-(1.4)
such that u is continuous on Γ and the restriction of u on [0, T ]×Γ is locally Lipschitz continuous. Take Γk
for some k ∈ {0, . . . , l} and D a union of subdomains with Γk ⊂ D. Assume that D enjoys the following
property: for any (y(·), η(·)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ D for s ∈ [a, b], it holds that

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b). (4.14)

Then for any (y(·), η(·)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ D ∪Γk for s ∈ [a, b], it still holds
that

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b).

Proof. Let (y(·), η(·)) satisfy (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈ D ∪ Γk for s ∈ [a, b]. Without loss of
generality, suppose that y(a) ∈ Γk and y(b) ∈ Γk. Otherwise, suppose for example y(a) /∈ Γk, then y(a) ∈ D.
We consider the first arrival time τ1 of y for Γk and we take ε > 0 small enough such that

[a, τ1 − ε] ∈ [a, τ1).

By (4.14) we have
u(a, y(a))− η(a) ≤ u(τ1 − ε), y(τ1 − ε))− η(τ1 − ε)

and we conclude sending ε → 0, by the continuity of y(·), η(·) and u(·, ·). Analogously, we treat the case
y(b) ∈ D by considering the last exit time of y for Γk.
We select a compact set K ⊂ Rd containing in its interior the reachable set

RGΓk
(y([a, b]) ∩ Γk, b) =

⋃
t∈[a,b]

{x ∈ Rd | ∃ traj. w of GΓk
with w(a) ∈ y([a, b]) ∩ Γk, w(t) = x}.

We denote by Γ\k an open neighbourhood of Γk such that y([a, b]) ⊂ Γ\k and we introduce the following
notations that will appear in the forthcoming estimates.

• Lu is the Lipschitz constants of u in (K ∩ Γk)× [0, T ];

• M estimates from above the diameter of GΓk
(x) for x ∈ RGΓk

(y[a, b] ∩ Γk, b);

• LG is a Lipschitz constant for GΓk
(suitably extended outside the interfaces, see Corollary A.2 of [25])

in K ∩ Γ\k.
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By (H1), Γk ∩ D = ∅.
Let J := {s ∈ [a, b] : y(s) 6∈ Γk}, then J is an open set and can be written as the unions of disjoint

intervals:

J =

∞⋃
n=1

(an, bn).

For a fixed p ∈ N, we set

Jp :=

p⋃
n=1

(an, bn)

as the union of the first p intervals. After reindexing, we assume without loss of generality that

a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ap < bp.

We set b0 := a and ap+1 := b, and we choose p sufficiently large such that

meas(J\Jp) <
r

2MeLT
,

where r > 0 is given by
r := inf{‖y(s)− z‖ : s ∈ [a, b], z ∈ Γk\Γk}.

At first, we focus on the part of y(·) restricted on [an, bn] for n = 1, . . . , p. Note that for s ∈ (an, bn),
y(s) ∈ D. Let ε > 0 small enough such that

[an + ε, bn − ε] ⊂ (an, bn),

then by the assumption, it follows that

u(an + ε, y(an + ε))− η(an + ε) ≤ u(bn − ε, y(bn − ε))− η(bn − ε).

By the continuity of y(·), η(·) and u(·, ·), we obtain by setting ε→ 0

u(an, y(an))− η(an) ≤ u(bn, y(bn))− η(bn).

The next step is to deal with the part of y(·) restricted on [bn, an+1] for n = 0, . . . , p. We set εn :=
meas([bn, an+1] ∩ J), then

∑p
n=0 εn = meas(J\Jp).

For any s ∈ [bn, an+1]\J , y(s) ∈ Γk. It follows that

(ẏ(s), η̇(s)) ∈ GΓk
(y(s)) a.e. s ∈ [bn, an+1]\J.

Now we calculate how far (y(·), η(·)) is from any trajectory lying in Γk driven by the dynamics GΓk
by

ξn :=

∫ an+1

bn

dist ((ẏ(s), η̇(s)), GΓk
(y(s))) ds ≤ 2Mεn.

By Proposition 1.3, GΓk
is locally Lipschitz. Then we can apply Filippov’s Theorem (see [14], Theorem 3.1.6

and also [15], Proposition 3.2 and we get that there exists (zn, ζn) satisfying

(żn(s), ζ̇n(s)) ∈ GΓk
(zn(s)), a.e. s ∈ [bn, an+1]

with (zn(bn), ζn(bn)) = (y(bn), η(bn)), and

‖(zn(an+1), ζn(an+1))− (y(an+1), η(an+1))‖ ≤ eLG(an+1−bn)ξn ≤ 2MeLG(an+1−bn)εn.

From the above properties of zn and the choice of p, we observe that zn(s) ∈ Γk for s ∈ [bn, an+1]. Thus,
from Proposition 4.4 one obtains

u(bn, zn(bn))− ζn(bn) ≤ u(an+1, zn(an+1))− ζn(an+1).

This implies for p big enough

u(bn, y(bn))− η(bn) ≤ u(an+1, y(an+1))− η(an+1) + 2M(Lu + 1)eLG(an+1−bn)εn.
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Then for n = 0, . . . , p, we deduce that

u(an, y(an))− η(an) ≤ u(an+1, y(an+1))− η(an+1) + 2M(Lu + 1)eLG(an+1−bn)εn.

Finally,

u(a, y(a))− η(a) = u(b0, y(b0))− η(b0)

≤ u(a1, y(a1))− η(a1) + 2M(Lu + 1)eLG(a1−a)ε0

≤ u(a2, y(a2))− η(a2) + 2M(Lu + 1)eLG(a2−a)(ε0 + ε1)

· · ·

≤ u(ap+1, y(ap+1))− η(ap+1) + 2M(Lu + 1)eLG(ap+1−a)

p∑
n=0

εn

= u(b, y(b))− η(b) + 2M(Lu + 1)eLG(b−a)meas(J\Jp).

By taking p→ +∞, one has meas(J\Jp)→ 0 and the desired result is obtained.

Step. 3-General case.

Proposition 4.6. Assume (H1), (HF), (HL), (HG), (H2). Let u be an usc subsolution to (1.1)-(1.4).
If u is continuous on [0, T ]×Γ and the restriction of u on [0, T ]×Γ is locally Lipschitz continuous, then for
any (y(·), η(·)) satisfying (2.7) on some [a, b] ⊂ [0, T ], it holds that

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b). (4.15)

Proof. Let D be a union of some subdomains and dD ∈ {0, . . . , d} be the minimal dimension of the subdo-
mains which are subsets of D. The proof of (4.15) is based on the following induction argument with regard
to dD:

Claim : for any d̃ = 0, . . . , d, any D with dD ≥ d̃ and any (y, η) driven by G with y lying within D, (4.15)
holds.

Let us first check the case when d̃ = d. In this case, dD = d, then D is a union of d-manifolds, which are
disjoint by (H1). For any trajectory (y, η) driven by G with y lying within D, y lies entirely within one of
the d-manifolds. Hence, Claim follows by Proposition 4.4.

Now we assume that Claim is true for some d̃ ∈ {1, . . . , d} and we prove that Claim still holds true for
d̃− 1. In this case, dD = d̃− 1. Then the following three cases can occur.

Case 1: if D contains only one subdomain, i.e. D =Mk for some k ∈ {0, . . . , l+m}, by Proposition 4.4
it follows that Claim holds.

Case 2: If D contains more than one subdomain and D is connected, let M′1, . . . ,M′p be all the sub-
domains of D with the dimension dD. Then K := D\(∪pk=1M′k) is a union of subdomains with dimension
greater than d̃. As an induction hypothesis, (4.15) holds true for any (y, η) driven by G with y lying within
K.

Now note that, for all i ∈ {1, · · · , p} there exists some k such that M′i = Γk and M′i ⊂ K. Then
Proposition 4.5 implies that (4.15) holds true for any (y, η) driven by G with y lying within K ∪M′1. We
continue applying Proposition 4.5 for K ∪M′1 and M′2 until K ∪M′1 ∪ · · · ∪M′p−1) and M′p, finally it is
obtained that (4.15) holds true for any (y, η) driven by G with y lying within D (= K ∪M′1 ∪ · · · ∪M′p).

Case 3: If D is not connected, for any (y, η) driven by G with y lying within D, y lies within one
connected component of D since y is continuous. Then the proof follows the same argument as in the above
case. And the induction step is complete.
Finally, we conclude the proof by taking D = Rd with dD being the dimension of Γ0.

Step. 4 Finally we conclude the proof of (iii) ⇒ (i). For any (t, x) ∈ [0, T ] × Rd, and any (y(·), α(·))
satisfying (2.6), we set

η(s) := u(t, x)−
∫ s

t

`(y(s′), α(s′))ds′, for s ∈ [t, T ].

Since (y(·), η(·)) satisfies (2.7), Proposition 4.6 implies that

u(t, x)− η(t) ≤ u(t+ h, y(t+ h))− η(t+ h), ∀h ∈ [0, T − t],
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i.e.

0 ≤ u(t+ h, y(t+ h))− u(t, x) +

∫ t+h

t

`(y(s), α(s))ds, ∀h ∈ [0, T − t],

which ends the proof.

5 Proof of the main results

In this section we prove our main results, that is Theorem 1.8 and Theorem 1.9. First we prove Theorem
1.8.

Proof of Theorem 1.8.

Step. 1 First we prove the following comparison principle. Let u1, u2 : [0, T ] × Rd → R be respectively a
supersolution and subsolution to (1.1)-(1.3) ((1.1)-(1.4)) with u1(T, ·) ≤ u2(T, ·). Assume, in addition, that
u1 is continuous at any point of Γ. Then

u1(t, x) ≤ u2(t, x), ∀ t ∈ (0, T ), x ∈ Rd.

Indeed, by Theorem 3.1, u2 satisfies the super-optimality, i.e. there exists ȳ, ᾱ such that

u2(t, x) ≥ u2(T, ȳ(T )) +

∫ T

t

`(ȳ(s), ᾱ(s))ds.

By Theorem 4.2, u1 satisfies the sub-optimality. Then we have

u1(t, x) ≤ u1(T, ȳ(T )) +

∫ T

t

`(ȳ(s), ᾱ(s))ds.

Then we deduce that
u1(t, x)− u2(t, x) ≤ u1(T, ȳ(T ))− u2(T, ȳ(T )) ≤ 0.

Step. 2 Now we prove that the value function v is the unique continuous viscosity solution to (1.1)-(1.3)
((1.1)-(1.4)) with λl-superlinear growth. The continuity and the λl-superlinear growth of v are given respec-
tively in Proposition 2.6 and Proposition 2.2. In addition, the restriction of v on [0, T ]×Γ is locally Lipschitz
continuous (see Appendix A, Proposition 2.6). Then, by Proposition 2.3, Theorem 3.1 and Theorem 4.2, v
is a viscosity solution to (1.1)-(1.3) ((1.1)-(1.4)) with v(T, x) = ϕ(x) for all x ∈ Rd. The uniqueness of v
follows by Step 1.

Now we prove Theorem 1.9.

Proof of Theorem 1.9. We proceed as in Theorem 1.8 and first we prove the following comparison principle.
Let u1, u2 : [0, T ] × Rd → R are respectively a supersolution and bilateral subsolution to (1.1)-(1.4) with
u1(T, ·) ≤ u2(T, ·). Then

u1(t, x) ≤ u2(t, x), ∀ t ∈ (0, T ), x ∈ Rd. (5.16)

We omit the proof of (5.16) since it follows as in Theorem 1.8 by using Theorem 4.1 instead of Theorem
4.2. Next, thanks to Proposition 2.2, the value function v is lsc with λ-superlinear growth. Also, it is a
bilateral viscosity solution to (1.1)-(1.4) due to Proposition 2.3, Theorem 3.1 and Theorem 4.2. Moreover
v(T, x) = ϕ(x) for all x ∈ Rd. The uniqueness of a lsc bilateral solution to (1.1)-(1.4) follows by the
comparison principle.

16



6 Stability result

Let (fn)n∈N and (`n)n∈N be a sequence of functions defined on Rd ×A such that

fn → f, `n → ` locally uniformly in Rd ×A .

For convenience of notation we denote for each n ∈ N

Fn(x) = {fn(x, a) | a ∈ A }, Ln(x) = {`n(x, a) | a ∈ A }

and we suppose that Fn, Ln satisfies (HF)-(HL) with constants uniform in n.
As in Definition 1.1 and Definition 1.2, we redefine the essential dynamics FE,n, the augmented dynamics

Gn, GnMk
and the essential control sets AE,n and AE,nMk

for eachMk ∈M .
We set

HE,n(x, p) := sup
a∈AE,n(x)

{−fn(x, a) · p− `n(x, a)},

and consider the following equation:

− ∂tun +HE,n(x,Dun) = 0. (6.17)

We have the following stability result for the supersolutions.

Theorem 6.1. Assume (H1), (HF), (HL), (HG), (H2). If un is a lsc supersolution to

−∂tun +HE,n(x,Dun) = 0,

and un converges to a lsc function u locally uniformly in [0, T ]×Rd, then u is a supersolution to (1.1)-(1.3).

Proof. By Theorem 3.1, it suffices to prove that u is a supersolution to (1.1)-(1.4).
For any t ∈ (0, T ), x ∈ Rd, φ ∈ C1((0, T )× Rd) such that u− φ attains a local strict minimum at (t, x),

then there exists tn ∈ (0, T ), xn ∈ Rd such that un − φ attains a local minimum at (tn, xn) with tn → t,
xn → x. Thus,

−∂tφ(tn, xn) + sup
(p,q)∈Gn(xn)

{−p ·Dφ(tn, xn) + q} ≥ 0.

For any ε > 0, since Gn → G locally uniformly and G is usc, for n sufficiently large we have

Gn(xn) ⊂ G(xn) + εB(0, 1) ⊂ G(x) + 2εB(0, 1).

Then there exists C > 0 such that

−∂tφ(tn, xn) + sup
(p,q)∈G(x)

{−p ·Dφ(tn, xn) + q}+ Cε ≥ 0.

By taking n→∞ then ε→ 0, we obtain

−∂tφ(t, x) + sup
(p,q)∈G(x)

{−p ·Dφ(t, x) + q} ≥ 0.

The definition of G then implies that

−∂tφ(t, x) + sup
a∈A
{−f(x, a) ·Dφ(t, x)− `(x, a)} ≥ 0.

Therefore u is a supersolution to (1.1)-(1.4).

The stability result for the subsolutions is the following.

Theorem 6.2. Assume (HF), (HL), (HG), (H2). If un is a usc subsolution to

−∂tun +HE,n(x,Dun) = 0,

un|[0,T ]×Mk
is locally Lipschitz continuous and un converges to an usc function u locally uniformly in [0, T ]×

Rd, then u is a subsolution to (1.1)-(1.3).
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Proof. Note that in (0, T ) × Ωi, i = 1, . . . ,m, the proof follows from the standard arguments for stability
results on viscosity solutions since HE,n and HE are Lipschitz continuous in Ωi × Rd.

For any t ∈ (0, T ), x ∈ Γ, φ ∈ C((0, T )×Rd), φ ∈ C1((0, T )×Mk) with x ∈Mk such that u−φ attains a
local strict maximum at (t, x), then (t, x) 7→ u(t, x)−φ(t, x)−CdMk

(x) also attains a local strict maximum
at (t, x) for any constant C > 0. Since un → u, there exists tn ∈ (0, T ), xn ∈ Rd such that un − φ − dMk

attains a local maximum at (tn, xn) with tn → t, xn → x.
We claim that with a big enough C,

xn ∈Mk.

If xn ∈ Ωi for some i ∈ {1, . . . ,m}, note that dMk
(·) is differentiable in Ωi. Since un is a subsolution to

(6.18), we have by choosing C = n

−∂tφ(tn, xn) + sup
a∈A

{
−fni (xn, a) ·

(
Dφ(tn, xn) + n

xn − PMk
(xn)

|xn − PMk
(xn)|

)
− `ni (xn, a)

}
≤ 0.

Because of (H2), the above inequality does not hold true when n is big enough. Then we conclude that
xn ∈ Γ.

Now for any z ∈ Γ close to x, using the fact that un|[0,T ]×Mk
is locally Lipschitz continuous,

un(t, z)− φ(t, z)− CdMk
(z)

≤ un(t, PMk
(z))− φ(t, PMk

(z)) + (Lun + Lφ)dMk
(z)− CdMk

(z),

where Lun , Lφ are respectively the local Lipschitz constants of un and φ. Since Lun are uniform in n, we
can take C > Lun

+ Lφ, then

un(t, z)− φ(t, z)− CdMk
(z) ≤ un(t, PMk

(z))− φ(t, PMk
(z)),

which implies that xn ∈Mk, and the claim is proved.
Since un is a subsolution to (1.1)-(1.3), then

−∂tφ(tn, xn) + sup
a∈AE,n

Mk
(xn)

{−fn(xn, a) ·DMk
φ(tn, xn)− `n(xn, a)} ≤ 0,

which by the definition of AE,nMk
(xn) and the augmented dynamics is equivalent to

−∂tφ(tn, xn) + sup
(p,q)∈Gn

Mk
(xn)∩

(
TMk

(xn)×R
){−p ·DMk

φ(tn, xn) + q} ≤ 0,

Note that φ ∈ C1((0, T )×Mk), one has

∂tφ(tn, xn)→ ∂tφ(t, x) and DMk
φ(tn, xn)→ DMk

φ(t, x) when n→∞.

By the Lipschitz continuity of Fn, Ln uniformly in n, we deduce that there exists some constant L > 0 such
that

GnMk
(x) ⊂ GnMk

(xn) + LB(0, |xn − x|).

Therefore for any ε > 0, there exists N1 ∈ N such that for all n ≥ N1

−∂tφ(t, x) + sup
(p,q)∈Gn

Mk
(x)∩

(
TMk

(xn)×R
){−p ·DMk

φ(t, x) + q} ≤ ε.

By the local uniform convergence of fn and `n in Rd × A , we obtain GnMk
(x) → GMk

(x) with respect to
the Hausdorff metric. Thus, for any ε > 0, there exists N2 ∈ N such that for all n ≥ N2

−∂tφ(t, x) + sup
(p,q)∈GMk

(x)∩
(
TMk

(xn)×R
){−p ·DMk

φ(t, x) + q} ≤ ε.

Besides, note that xn, x ∈Mk and xn → x, it holds that for n sufficiently large

TMk
(x) ⊂ TMk

(xn).
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Consequently, for any ε > 0, there exists N3 ∈ N such that for all n ≥ N3

−∂tφ(t, x) + sup
(p,q)∈GMk

(x)∩
(
TMk

(x)×R
){−p ·DMk

φ(t, x) + q} ≤ ε.

The above inequality holds for arbitrary ε > 0, therefore

−∂tφ(t, x) + sup
(p,q)∈GMk

(x)∩
(
TMk

(x)×R
){−p ·DMk

φ(t, x) + q} ≤ 0,

which is equivalent to

−∂tφ(tn, xn) + sup
a∈AE

Mk
(x)

{−f(x, a) ·DMk
φ(t, x)− `(x, a)} ≤ 0.

We then conclude that u is a subsolution to (1.1)-(1.3).

Finally, we provide the stability result with respect to the final cost ϕ.

Theorem 6.3. Assume (Hϕ1) (HF), (HL), (HG), (H2). Let ϕn : Rd × R be a sequence of Lipschitz
continuous functions, such that ϕn → ϕ locally uniformly in Rd. Let un be the solution to{

−∂tun(t, x) +HE,n(x,Dun(t, x)) = 0 in (0, T )× Rd,
un(T, x) = ϕn(x) in Rd, (6.18)

such that the restriction of un to [0, T ] × Γ is locally Lipschitz continuous. If un converges to a continuous
function u locally uniformly in [0, T ]× Rd, then u is the solution to (1.1)-(1.3).

Proof. By Theorem 6.1 and Theorem 6.2, u is a supersolution and a subsolution of (1.1)-(1.3). Besides, for
any x ∈ Rd,

u(T, x) = lim
n→∞

un(T, x) = lim
n→∞

ϕn(T, x) = ϕ(T, x),

i.e. u satisfies the final condition. Thus, u is the solution to (1.1)-(1.3).

A Appendix A

Let us start by the proof of Proposition 1.3.

Proof of Proposition 1.3. For k ∈ {1, · · · ,m + l}, consider the subdomain Mk, which in the following
proof we denote by M for simplicity. We consider the following three cases according to the dimension of
M.

Case 1: Mk = Ωi, i ∈ {1, . . . ,m}.
The claim simply follows by noting that in this case TMk

(x) = Rd, and then GM is locally Lipschitz
continuous since f(x, a) and `(x, a) are locally Lipschitz continuous for each a ∈ A .

Case 2: M∈ Γ \ (Γ0
k)k=1,...q×q.

Note that the proof follows the main ideas of [25], Theorem A.1. Nevertheless, we give the proof for
completeness and for a better understanding of Case 3.

We want to show the existence of L̄ > 0 such that for any K compact ofM, x, z ∈ K and (f(x, a), q1) ∈
GM(x), q1 ≤ −`(x, a) there exist a control c and (f(z, c), q2) ∈ GM(z), q2 ≤ −`(z, c) such that

|f(x, a)− f(z, c)|+ |q1 − q2| ≤ L̄|x− z|, (A.19)

or, equivalently,
GM(x) ⊂ GM(z) + L̄B(0, |x− z|).

It is not restrictive to prove the above inequality for |x − z| small, therefore since there are just a finite
number of connected components of K intersecting Γ and such components are at a positive distance apart,
we can assume, without lose of generality, that Γ is connected. We denote by n the exterior normal vector
to M as defined in subsection (1.2). Then, by the regularity of Γ and since K is connected, n is Lipschitz
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continuous. To simplify the notations, we denote by L the Lipschitz constant of f, ` and n in K. Moreover,
we denote by M a constant estimating form above |n| in K and and |f |, |`| in K ×A .

Also, since f(x, a) ∈ TM(x) onM we have

f(x, a) · n(x) = 0. (A.20)

Since f, ` are locally Lipschitz we have

|f(x, a)− f(z, a)| ≤ L|x− z|, |`(x, a)− `(z, a)| ≤ L|x− z|. (A.21)

Note that, if f(z, a) ·n(z) = 0, then f(z, a) ∈ TM(z) and by (A.20) we deduce (A.19) with L̄ = 2L. Suppose
now that

f(z, a) · n(z) := −β < 0. (A.22)

The controllability assumption (H2) implies in particular that there exists b ∈ A such that

f(z, b) · n(z) := γ > 0. (A.23)

Note that by (A.20) and (A.21), we have

β = |f(z, a) · n(z)| ≤ (L+ML)|x− z| := C|x− z|,

and then
|x− z| ≥ β

C
. (A.24)

By the convexity assumption (HG) for G(z), there exists c ∈ A , q̃ ∈ R such that

(f(z, c), q̃) =
γ

β + γ
(f(z, a),−`(z, a)) +

β

β + γ
(f(z, b),−`(z, b)), q̃ ≤ −`(z, c). (A.25)

Then, we show that (A.19) holds for such c ∈ A . Indeed, by (A.25) and (A.24), we get

|f(z, a)− f(z, c)| ≤ 2M
β

β + γ
≤ 2M

γ
β ≤ 2MC

γ
|x− z|, (A.26)

and by the first of (A.21) and (A.26) we conclude

|f(x, a)− f(z, c)| ≤ |f(x, a)− f(z, a)|+ |f(z, a)− f(z, c)| ≤
(
L+

2MC

γ

)
|x− z|.

Moreover by (A.22) and (A.23), we have

f(z, c) · n(z) =
γ

β + γ
f(z, a) · n(z) +

β

β + γ
f(z, b) · n(z) = 0,

which implies that f(z, c) ∈ TM(z).
Observe that

q̃ = − γ

β + γ
`(z, a)− β

β + γ
`(z, b)

≥ − γ

β + γ
(`(x, a) + L|x− z|)− β

β + γ
`(z, b)

≥ −`(x, a)− L|x− z|+ β

β + γ
(`(x, a)− `(z, b))

≥ q1 − L|x− z| − 2M
β

γ

≥ q1 −
(
L+

2MC

γ

)
|x− z|,

where we used the definition of qx and (A.24). If we set q2 := q1 − (L+ 2MC/γ)|x− z|, then we have

q2 ≤ q̃ ≤ −`(z, c)
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and therefore

(f(z, c), q2) ∈ GM(z), |(f(x, a), q1)− (f(z, c), q2)| ≤ (L+
2MC

γ
)|x− z|.

Then we conclude that
GM(x) ⊂ GM(z) + (L+

2MC

γ
)B(0, |x− z|).

Case 3: M∈ (Γ0
k)k. Denote for simplicityM = Γ0 and let Hj1 ,Hj2 be such thatM = Hj1 ∩Hj2 . The

proof essentially follows by noting that TΓ0(·) = THj1
(·)∩ THj2

(·) and by applying the same arguments used
in Case 2. We just give a sketch of the main steps.

We want to show that, given a compact K and x, z ∈ K, (f(x, a), q1) ∈ GΓ0
(x), q1 ≤ −`(x, a), there exist

a control c ∈ A and (f(z, c), q2) ∈ GΓ0
(z), q2 ≤ −`(z, c) such that

|f(x, a)− f(z, c)|+ |q1 − q2| ≤ L̄|x− z|. (A.27)

Note that the condition f(z, c) ∈ TΓ0 now reads f(z, c) ∈ THj1(z)∩THj2(z), that is f(z, c) ·n1(z) = 0, f(z, c) ·
n2(z) = 0, where n1(z), n2(z) are the normal respectively to Hj1 and Hj2 as defined in subsection 1.2. By
Case 2 we can suppose that f(z, a)·n1(z) = 0 without loss of generality. Suppose that f(z, a)·n2(z) = −β < 0
as in (A.22). Then we proceed analogously as in Case 1 using the controllability assumption (H2) on Hj2
and we find b ∈ A such that

f(z, b) = n2(z)γ, γ > 0.

Then, by the convexity of G(z), we find a control c ∈ A such that

f(z, c) =
γ

β + γ
f(z, a) +

β

β + γ
f(z, b)

and then we conclude
f(z, c) · n2(z) = 0, f(z, c) · n1(z) = 0.

The rest of the proof can be carried out exactly as in Case 1 and we omit the details. Finally, not that the
case f(z, a) · n1(z) > 0 or f(z, a) · n1(z) < 0 can be treated analogously.

Now we prove Proposition 1.4.

Proof of Proposition 1.4. We start by proving (i). For each j = 0, . . . , l, if F (x) ∩ TΓj
(x) = ∅ for

any x ∈ Γj , then GΓj
(x) = ∅ by definition. Otherwise if there exists r2 > 0 such that for any x ∈ Γj ,

B(0, r2) ⊂ F (x), then GΓj is locally Lipschitz continuous on Γj by Proposition 1.3.
Now we proceed to prove (ii). For each j = 0, . . . , l and x ∈ Γj with FΓj (x) 6= ∅, GΓj is locally Lipschitz

continuous on Γj by the above arguments. And FΓj
is locally Lipschitz continuous on Γj as well. For any

x′ ∈ R(x; t) ∩ Γj , there exists y(·) satisfying

ẏ(s) ∈ F (y(s)) a.e. s ∈ (0, t), y(0) = x and y(t) = x′.

Let r0 > 0 such that
d(y(s),Γj) < r0 for s ∈ [0, t], t ≤ εj ,

where d(·,Γj) is the distance function to Γj . We set

D :=
⋃

s∈[0,t]

B(y(s), r0).

Then there exists M,L > 0 such that

‖p‖ ≤M, ∀ p ∈ F (x), x ∈ D,

and
FΓj

(x1) ⊂ FΓj
(x2) + L‖x1 − x2‖B(0, 1), ∀x1, x2 ∈ D,
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since D is bounded. Here FΓj
is extended to the domain D by projection to Γj . Let εj be small enough

such that

K

∫ t

0

d(ẏ(s), FΓj
(y(s)))ds ≤ r0,

where K := exp(Lt). By Filippov Existence Theorem [12, Theorem 3.1.6], there exists z(·) such that

ż(s) ∈ FΓj
(z(s)) a.e. s ∈ (0, t), z(0) = x,

and

‖z(t)− y(t)‖ ≤ K
∫ t

0

d(ẏ(s), FΓj
(y(s)))ds ≤ 2KMt.

Let τ = ‖z(t)−y(t)‖
r where r is given in (H3), we define

z̃(s) =

{
z(s) for s ∈ [0, t],

z(t) + y(t)−z(t)
τ (s− t) for s ∈ (t, t+ τ ].

Then the assumption (H3) implies that

˙̃z(s) ∈ FΓj (z̃(s)) a.e. s ∈ (0, t+ τ), z̃(0) = x and z̃(t+ τ) = y(t) = x′.

Therefore, x′ ∈ Rj(x; t+ τ) with

t ∈ [0, εj ] and t+ τ ≤ t+
2KMt

r
≤
(

1 +
2KM

r

)
t.

Consequently, we conclude the proof by setting ∆j := 1 + 2KM
r .

Now we prove Proposition 2.6.

Proof of Proposition 2.6. We split the proof into the following three steps. In Step 1 we prove the local
Lipschitz continuity on [0, T ]× Γ, in Step 2 we prove the continuity on [0, T ]× Γ and finally in Step 3 we
prove the continuity on [0, T ]× Rd.

Step. 1- Local Lipschitz continuity on [0, T ]× Γ.

Proof. For any t ∈ [0, T ], we firstly prove that v|[0,T ]×Γ(t, ·) is locally Lipschitz continuous on Γ. Let x, z ∈ Γ
and let B be a ball containing x, z. We consider two cases according to the positions of x, z, either x, z belongs
to the same hyperplane Case 1, or not Case 2. In Case 1 the proof relies strongly on the controllability
assumption (H2) and is quite standard (see [25], Theorem 4.5 (part 1)). Then, the proof in Case 2 is carried
out by relying on the result of Case 1 and using significantly the cellular structure of our decomposition of
Rd.

Case 1: x, z ∈ Hj , for some j ∈ {1, . . . , q}.
The super-optimality implies that for any ε > 0 there exists (ȳ, ᾱ) satisfying (2.6) with ȳ(t) = z such

that

v(t, z) ≥ ϕ(ȳ(T )) +

∫ T

t

`(ȳ(s), ᾱ(s))ds− ε. (A.28)

We set
h :=

|x− z|
r1

, ξ(s) := x+ r1
z − x
|z − x|

(s− t), for s ∈ [t, t+ h],

where r1 > 0 is as in assumption (H2). Note that ξ is the segment joining x with z during the time interval
[t, t+ h]. Since |ξ̇| = r1 and ξ(s) ∈ Γ for any s ∈ [t, t+ h], by (H2), there exists α ∈ A such that

ξ̇(s) = f(ξ(s), α(s)), a.e. s ∈ (t, t+ h).

We define
ỹ(s) :=

{
ξ(s) for s ∈ [t, t+ h],
ȳ(s− h) for s ∈ [t+ h, T ],
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and
α̃(s) :=

{
α(s) for s ∈ [t, t+ h],
ᾱ(s− h) for s ∈ [t+ h, T ].

Then (ỹ, α̃) satisfies
˙̃y(s) = f(ỹ(s), α̃(s)), a.e. s ∈ (t, T ), ỹ(t) = x.

Let K be a compact containing the support of ȳ(s) for s ∈ [t, T ] and denote by M an upper bound for the
cost and the dynamic on K. Let Lϕ denote the Lipschitz constant of ϕ on K. By the sub-optimality of v,
(A.28), the Lipschitz continuity of φ, we conclude

v(t, x)− v(t, z) ≤ ϕ(ỹ(T )) +

∫ T

t

`(ỹ(s), α̃(s))ds− ϕ(ȳ(T ))−
∫ T

t

`(ȳ(s), ᾱ(s))ds+ ε

= Lϕ|ȳ(T − h)− ȳ(T )|+
∫ t+h

t

`(ξ(s), α(s))ds−
∫ T

T−h
`(ȳ(s), ᾱ(s))ds+ ε

≤ LϕMh+ 2Mh+ ε =
M(Lϕ + 2)

r
|x− z|+ ε ∀ε ≥ 0.

Then by the arbitrary choice of ε,

v(t, x)− v(t, z) ≤ M(Lϕ + 2)

r
|x− z|,

and we conclude the local Lipschitz continuity of v|[0,T ]×Γ(t, ·) on each Hj , for j = 1, · · · , q.
Case 2: x, z are not on the same hyperplane.
Suppose without loss of generality that x ∈ Hj1 , z ∈ Hj2 for some j1, j2 ∈ {1, · · · q}. Then we have the

following two cases:

(i) Hj1 ∩Hj2 = ∅;

(ii) Hj1 ∩Hj2 6= ∅.

We give the proof in case Case 2 (ii) since the proof in case Case 2 (i) follows from Case 1 and Case 2
(ii). We denote Γ0 = Hj1 ∩Hj2 . Consider the projections of x, z on Γ0: PΓ0(x) and PΓ0(z). Then we have

|v(t, x)− v(t, z)| ≤ |v(t, x)− v(t,PΓ0
(x))|+ |v(t,PΓ0

(x))− v(t,PΓ0
(z))|+ |v(t,PΓ0

(z))− v(t, z)|

≤ Lϕ(M + 2)

r
(|x− PΓ0(x)|+ |PΓ0(x)− PΓ0(z)|+ |PΓ0(z)− z|) . (A.29)

The last inequality holds because x,PΓ0
(x) ∈ Hj1 and z,PΓ0

(z) ∈ Hj2 .
Now we need to estimate the length of the polyline linking x, PΓ0

(x), PΓ0
(z) and z by the length of the

segment joining x with z. Since

〈x− PΓ0
(x),PΓ0

(x)− PΓ0
(z)〉 = 0, 〈z − PΓ0

(z),PΓ0
(x)− PΓ0

(z)〉 = 0,

we have

|x− z|2 = |x− PΓ0
(x) + PΓ0

(x)− PΓ0
(z) + PΓ0

(z)− z|2

= |x− PΓ0
(x)|2 + |PΓ0

(x)− PΓ0
(z)|2 + |PΓ0

(z)− z|2 + 2〈x− PΓ0
(x),PΓ0

(z)− z〉.

Note that
|〈x− PΓ0

(x),PΓ0
(z)− z〉| = |x− PΓ0

(x)||z − PΓ0
(z)||〈~n1, ~n2〉| = 0,

where n1, n2 are respectively the normal to Hj1 ,Hj2 passing through x and z.
Then

|x− z|2 ≥ |x− PΓ0
(x)|2 + |PΓ0

(x)− PΓ0
(z)|2 + |PΓ0

(z)− z|2

≥ 1

2
(|x− PΓ0

(x)|+ |PΓ0
(x)− PΓ0

(z)|+ |PΓ0
(z)− z|)2

.

Together with (A.29), it is obtained that

|v(t, x)− v(t, z)| ≤ M(Lϕ + 2)

r

√
2|x− z|. (A.30)
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Now given x ∈ Γ, we proceed to prove the local Lipschitz continuity of v|[0,T ]×Γ(·, x) on [0, T ]. For any
t1, t2 ∈ [0, T ], we assume without loss of generality that t1 < t2. For any α ∈ A, let yαt2,x be the solution
of (2.6) with the initial condition yαt2,x(t2) = x. Denote by B a ball containing x and let K be a compact
containing the support of yαt2,x respectively in [t2, T ]. Let M be an upper-bound for ` in K. By (H2), let
a ∈ A such that f(x, a) = 0. We set

α1(s) =

{
a for s ∈ [t1, t2),
α(s) for s ∈ [t2, T ].

Let yα1
t1,x be the solution of (2.6) with the initial data (t1, x) and the control α1. Then we have

yα1
t1,x =

{
x for s ∈ [t1, t2),
yαt2,x for s ∈ [t2, T ].

Therefore ∣∣∣∣∣ϕ(yα1
t1,x(T )) +

∫ T

t1

`(yα1
t1,x(s), α1(s))ds− ϕ(yαt2,x(T ))−

∫ T

t2

`(yαt2,x(s), α(s))ds

∣∣∣∣∣
≤

∣∣∣∣∫ t2

t1

`(x, a)ds

∣∣∣∣ ≤M(t2 − t1).

Step. 2- Continuity on [0, T ]× Γ.
In order to show the continuity of the value function on [0, T ]× Γ, we need the following lemma on the

behavior of controlled dynamics. We refer also to [25, Lemma 4.3] for an analogous result in the setting of a
two-domain partitions of Rd and control problems with bounded cost and dynamic. The proof is postponed
at the end of the proof of Proposition 2.6.

Lemma A.1. Assume (H1), (HF), (HL), (HG) , (H2)(ii). Let t ∈ [0, T ], x ∈ Γ and {xn} be a sequence
such that xn ∈ Ωi for some i ∈ {1, . . . ,m} and xn → x as n → +∞. Then for n large enough there exists
two trajectories yn, yn driven by F and hn → 0, hn → 0 as n→ +∞ such that

yn(t) = xn, yn(t+ hn) ∈ Γ, yn([t, t+ hn)) ⊂ Ωi,

y
n
(t) ∈ Γ, y

n
(t+ hn) = xn, yn((t, t+ hn]) ⊂ Ωi.

Now we prove that v is continuous at any point of [0, T ]× Γ.

Proof. Taking into account that v, restricted on Γ, is continuous, it is enough to prove that for any t ∈ [0, T ],
x ∈ Γ,

v(tn, xn)→ v(t, x), for any tn → t, xn → x, tn ∈ [0, T ], xn ∈ Ωi, i ∈ {1, . . . ,m}.

By applying Lemma A.1, for n large enough there exist , hn, hn and yn, yn driven by F such that

yn(t) = xn, yn(t+ hn) ∈ Γ, yn([t, t+ hn)) ⊂ Ωi,

y
n
(t) ∈ Γ, y

n
(t+ hn) = xn, yn((t, t+ hn]) ⊂ Ωi.

Note that hn, hn → 0 and by the local boundedness of f there exists some constant M such that

|yn(t+ hn)− x| ≤ |yn(t+ hn)− xn|+ |xn − x| ≤Mhn + |xn − x|,

which implies yn(t+ hn)→ x. By the same arguments, y
n
(t)→ x.

Let αn, αn be the corresponding controls for yn, yn. By the sub-optimality satisfied by v, we have

v(tn, xn) ≤ v(t+ hn, yn(t+ hn)) +

∫ t+hn

tn

`(yn(s), αn(s))ds ≤ v(t+ hn, yn(t+ hn)) +Mn(hn + t− tn),

v(tn − hn, yn(t)) ≤ v(tn, xn) +

∫ tn

tn−hn

`(y
n
(s), αn(s))ds ≤ v(tn, xn) +Mnhn.
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where Mn = maxs∈(tn,tn+hn) l(yn(s)) and Mn = maxs∈(tn−hn,tn) l(yn(s)). For any s ∈ (tn, tn + hn) we
estimate the cost by the Gronwall lemma and we get

l(yn(s)) ≤ cl(1 + |yn(s)|)λlecfλls.

Then, since yn(s) is uniformly bounded in n for s ∈ (tn, tn + hn) and for large n, we get

Mnhn → 0, Mnhn → 0, as n→ +∞.

Putting n→ +∞ and by the continuity of v|[0,T ]×Γ, we derive

lim sup
tn→t, xn→x

v(tn, xn) ≤ v(t, x), v(t, x) ≤ lim inf
tn→t, xn→x

v(tn, xn),

which shows the assertion.

Step. 3-Continuity in [0, T ]× Rd.

Proof. The proof follows similar arguments to [25], Theorem 4.5 (part 3) and essentially extends the result
to the case of unbounded cost and dynamic. We consider a bounded subset B of Ωi. We prove that, given
t ∈ [0, T ], for any ε > 0, there exists δ > 0 such that

|v(t, z)− v(t, x)| < ε, for any x, z ∈ B such that |x− z| < δ. (A.31)

We denote by K a compact set containing the support of any integral curve of F , starting at B, and defined
in [0, T ]. In the following, we denote by L and Lφ the Lipschitz constant respectively of fi,`i in K ×A and
of φ in K.
By the super-optimality of v, there exists (ȳx, ᾱ) satisfying (2.6) with ȳx(t) = x such that

v(t, x) ≥ v(t+ h, ȳx(t+ h)) +

∫ t+h

t

`(ȳx(s), ᾱ(s))ds− ε

2
, ∀h ≥ 0. (A.32)

Let ȳz be the solution of (2.6) with the control ᾱ and the initial condition ȳz(t) = z. By the sub-optimality
of v,

v(t, z) ≤ v(t+ h, ȳz(t+ h)) +

∫ t+h

t

`(ȳz(s), ᾱ(s))ds, ∀h ≥ 0. (A.33)

Now define
T̃ := inf{s : ȳx(s) 6∈ Ωi or ȳz(s) 6∈ Ωi, s ∈ [t, T ]}.

If T̃ = T , then ȳx and ȳz stay in Ωi during (t, T ). Thus, ȳx and ȳz are always driven by Fi and the Gronwall
lemma implies that

|ȳx(s)− ȳz(s)| ≤ eLs|x− z|, ∀ s ∈ [t, T ],

where L depends on the compact K where the support of y lies. Then by taking h = T − t in (A.32) and
(A.33) we obtain

v(t, z)− v(t, x)

≤ ϕ(ȳz(T )) +

∫ T

t

`i(ȳz(s), ᾱ(s))ds− ϕ(ȳx(T ))−
∫ T

t

`i(ȳx(s), ᾱ(s))ds+
ε

2

≤ (Lϕ + TL)eLT |x− z|+ ε

2
.

The assertion holds true by taking any δ > 0 with δ ≤ e−LT

2(Lϕ+TL)ε.

Otherwise, if T̃ < T , we still have

|ȳx(s)− ȳz(s)| ≤ eLs|x− z|, ∀ s ∈ [t, T̃ ].

By taking h = T̃ − t in (A.32) and (A.33) we obtain

v(t, z)− v(t, x)

≤ v(T̃ , ȳz(T̃ )) +

∫ T̃

t

`i(ȳz(s), ᾱ(s))ds− v(T̃ , ȳx(T̃ ))−
∫ T̃

t

`i(ȳx(s), ᾱ(s))ds+
ε

2

≤ v(T̃ , ȳz(T̃ ))− v(T̃ , ȳx(T̃ )) + TLeLT |x− z|. (A.34)
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Note that T̃ < T implies that ȳx(T̃ ) ∈ Γ or ȳz(T̃ ) ∈ Γ. Without loss of generality suppose that ȳx(T̃ ) ∈ Γ.
By the continuity of v(T̃ , ·) on Γ, there exists δ1 > 0 such that

|v(T̃ , x′)− v(T̃ , ȳx(T̃ ))| < ε

2
, ∀x′ ∈ Rd, |x′ − ȳx(T̃ )| < δ1. (A.35)

Take δ > 0 such that

δ < min{e−LT̃ δ1,
e−LT

2TL
ε}.

Then, for any |x− z| < δ, we have
|ȳx(T̃ )− ȳz(T̃ )| < δ1, (A.36)

and
TLeLT |x− z| < ε

2
. (A.37)

Then, by (A.36) and (A.35) with x′ = ȳz(T̃ ), we get

v(T̃ , ȳz(T̃ ))− v(T̃ , ȳx(T̃ )) <
ε

2
(A.38)

and the claim (A.31) follows by coupling (A.37), (A.38) and (A.34).

Finally we prove Lemma A.1.

Proof of Lemma A.1. Without loss of generality, we suppose that x ∈ Hj for just one j ∈ {1, . . . , q}.
Since xn → x, we have that for n large enough, xn ∈ Ωi such that Ω̄i ∩Hj 6= ∅. Let n ≥ 0 be fixed.

Define gj : Rd → R as

gj(x) :=

{
dHj (x) if (x− PHj (x)) · ~nj ≥ 0,
−dHj

(x) otherwise,

where nj denotes the normal vector to each Hj as defined in subsection 1.2. By applying [25, Lemma 4.3]
for K = {x} of Hj and Ωi, there exists S > 0 such that for any n large enough, there exists two trajectories
yn, zn driven by F and tn, tn less than Sgj(xn) with

yn(t) = xn, yn(t+ tn) ∈ Hj ,

zn(t) ∈ Hj , zn(t+ tn) = xn.

Note that tn, tn → 0 as n→ +∞. For yn, we take hn := min{s : yn(s) ∈ Γ, s ∈ [t, t+ tn]}, then we have

yn(t) = xn, yn(t+ hn) ∈ Γ, yn([t, t+ hn)) ⊂ Ωi.

For zn, we take τn := sup{s : zn(s) 6∈ Ωj , s ∈ [t, t+ tn]}, hn = tn − τn and y
n
(·) = zn(· − τn), then we have

y
n
(t) ∈ Γ, y

n
(t+ hn) = xn, yn((t, t+ hn]) ⊂ Ωi.

and the claim follows by noting that hn ≤ τn, hn ≤ τn and then hn, hn → 0 as n→ +∞.
Finally, if x ∈ Hj1 ∩ Hj2 for some j1, j2 ∈ {1, . . . q}, there exist the desired S, yn, yn, hn, hn with

hn, hn ≤ Smin{gj1(xn), gj2(xn)}.

B Appendix B

B.1 Some background in non smooth analysis: trajectories and invariance
We recall here some fundamental results which we need in the characterization of the sub-optimality.

The first proposition states the existence of smooth trajectories for a given initial data, namely, initial point
and initial velocity. The proof is analogous to the proof of Proposition 4.1 of [20] and we omit it.

26



Lemma B.1. Assume (H1), (HF), (HL), (HG), (H3). Then, for any k ∈ {0, · · ·m + l} such that
AMk

has nonempty images, for every (t, x) ∈ [0, T ] × Mk and any a ∈ AMk
(x) there exist τ > 0, a

measurable control map α : (t − τ, t + τ ] → A, a measurable function r : (t − τ, t + τ ] → [0,+∞) and
(y(·), η(·)) ∈ C1((t− τ, t+ τ ]), y(s) ∈Mk for any s ∈ (t− τ, t+ τ ], such that

ẏ(s) = f(y(s), α(s)), η̇(s) = −`(y(s), α(s))− r(s)

and
y(t) = x, ẏ(t) = f(x, a), η(t) = 0, η̇(t) = l(x, a).

We recall the notion of proximal subgradient, proximal normal cone and its relation with the proximal
subgradients. We refer to [15] for more details.

Definition B.2. Let ω : Rd → R ∪ {+∞} be a given l.s.c function. A viscosity subgradient η ∈ Rd of ω at
x ∈ dom ω is called a proximal subgradient of ω at x if for some σ > 0 the test function g : Rd → R can
be taken as

g(y) :=< ζ, y − x > −σ|y − x|2, ∀y ∈ Rd.

We denote the set of all proximal subgradients at x by ∂Pω(x).

Let B ⊆ Rd be a locally closed set. For any x ∈ B a vector η ∈ Rd is called proximal normal to B at x if
there exists σ = σ(x, η) > 0 so that

|η|
2σ
|x− y|2 ≥< η, y − x > ∀y ∈ B.

The Proximal normal cone to B at x is the set of all such vectors η. We denote it by NP
B (x).

When B = Ep(ω) where ω : Rd → R ∪ {+∞} is a l.s.c function, then for each x ∈ dom ω, the following
relation holds:

ξ ∈ ∂Pω(x)⇐⇒ (ξ,−1) ⊆ NP
B (x, ω(x)), ∀x ∈ dom ω. (B.39)

Finally, we present a useful criterion for strong invariance adapted to smooth manifolds. For the proof we
refer to [20] Proposition 4.2 or [21] Lemma 3.4.

Lemma B.3. Suppose M ⊆ Rd is locally closed, B ⊆ Rd is closed with B ∩ M̄ 6= ∅ and Γ : M̄  Rd is
locally Lipschitz and locally bounded.

Let r > 0 and assume that there exists c = c(r) > 0 such that

sup
ν∈Γ(x)

< x− s, ν >≤ c dist B∩M̄ (x)2, ∀x ∈M ∩Br, ∀s ∈ proj B∩M̄ (x).

Then for any absolutely continuous arc γ : [0, T ]→ M̄ that satisfies

γ̇ ∈ Γ(γ) a.e. on [0, T ] and γ(t) ∈M ∩Br ∀t ∈ (0, T ),

the following estimate holds true

dist B∩M̄ (γ(t)) ≤ ect dist B∩M̄ (γ(0)) ∀t ∈ [0, T ].

B.2 Proof of Theorem 4.1

Proof. First we prove the implication (i) ⇒ (ii), that is, if u : [0, T ]×Rd → R is a lsc function satisfying the
sub-optimality, then is the bilateral subsolution to (1.1)-(1.4).

Let (t0, x0) ∈ (0, T )×Rd, k ∈ {0, . . . ,m+ l} with x0 ∈Mk and φ ∈ C1((0, T )×Mk) such that u|Mk
−φ

attains a local minimum at (t0, x0). We assume AMk
(x0) 6= ∅, otherwise the claim is trivial. For any

a ∈ AMk
(x0), since GMk

is locally Lipschitz continuous, by Lemma B.1, there exist τ > 0, (y(·), η(·)) ∈
C1((t0 − τ, t0]), y(s) ∈ Mk for any s ∈ (t0 − τ, t0] and a measurable control map α : (t0 − τ, t0] → A such
that

ẏ(s) = f(y(s), α(s)), η̇(s) ≤ −`(y(s), α(s)) (B.40)

and
y(t0) = x0, ẏ(t0) = f(x0, a), η(t0) = 0, η̇(t0) = l(x0, a). (B.41)
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Take ȳ, ᾱ satisfying (2.10) on (0, t0 − τ) such and ȳ(t0 − τ) = y(t0 − τ) and remark that ỹ, α̃ where ỹ =
ȳ1[0,t0−τ) + y1[t0−τ,t0], α̃ = ᾱ1[0,t0−τ) + α1[t0−τ,t0] satisfy (2.10) on (0, t0) with ỹ(t0) = x0. Therefore, since
u satisfies the suboptimality and then by Proposition 2.4, u satisfies the backward sub-optimality, we have
that

u(t0, x0) ≥ u(t0 − h, y(t0 − h))− η(t0 − h) + η(t0) ∀h ∈ [0, τ). (B.42)

Since (t0, x0) is a local minimum of u|Mk
− φ we have

u(t0, x0)− φ(t0, x0) ≤ u(t0 − h, y(t0 − h))− φ(t0 − h, y(t0 − h)) ∀h ∈ [0, τ), (B.43)

and by combining (B.42) and (B.43) we get

φ(t0 − h, y(t0 − h))− φ(t0, x0)− η(t0 − h) + η(t0) ≤ 0 ∀h ∈ [0, τ). (B.44)

By (B.44), (B.40) and (B.41) we get

−∂tφ(t0, x0)−Dφ(t0, x0) · f(x0, a)− `(x0, a) ≤ 0, ∀ a ∈ AMk
(x0).

from which we conclude
−∂tφ(t0, x0) +HMk

(x0, Dφ(t0, x0)) ≤ 0,

that is, u is a bilateral subsolution to (1.1)-(1.4).
Now we prove the implication (ii) ⇒ (i). We will prove that, if u : [0, T ] × Rd → R is a lsc bilateral

subsolution to (1.1)-(1.4) and if (y(·), η(·)) satisfies (2.7) on some [a, b] ⊂ [0, T ], it holds that

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b). (B.45)

Note that the suboptimality follows from (B.45) by the same arguments used in Step 4 of the proof of
Theorem 4.2. We recall that for any (x, t) ∈ Rd × [0, T ], we denote by STt (x) any trajectory satisfying (2.6).
We divide the proof into three steps. In Step 1 we treat the case of trajectories staying on one subdomain
in Proposition B.4. Then in Step 2 we deal with the regular trajectories and finally in Step 3 we deal with
non regular trajectories.

Step. 1-Trajectories in a subdomain.

Proposition B.4. Let (H1), (HF), (HL), (HG) hold. Let u be a lsc bilateral subsolution to (1.1)-(1.4),
k ∈ {0, . . . ,m+ l} and (y(·), η(·)) satisfying (2.7) on some [a, b] ⊂ [0, T ] with y(s) ∈Mk for s ∈ [a, b]. Then
it holds that

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b). (B.46)

Proof. We consider the backward augmented dynamic defined for any x ∈Mk as follows

GMk
(x) = {−(f(x, a), l(x, a) + r), a ∈ AMk

(x), 0 ≤ r ≤ b(x, a)}.

Note that the mapping Gk has convex compact images by (HG), has nonempty images and is locally
Lipschitz by Proposition 1.3. Set Mk = R×Mk × R2 and define

Gk(t, x, z, w) = {−1} ×GMk
(x)× {0}, ∀(t, x, z, w) ∈ [0, T ]×Mk × R2.

Note that Mk is an embedded manifold of Rd+3 and Gk satisfies the same assumptions of GMk
. Consider

the closed set Sk = Ep(uk) where ∀(t, x, z) ∈ [0, T ]×Mk × R{
uk(t, x, z) = u(x) + z if x ∈Mk,
+∞ otherwise .

Note that, if u is a l.s.c. bilateral subsolution of (1.1)-(1.4), the following hold

sup
ν∈Gk(t,x,z,w)

(η, ν) ≤ 0 ∀(t, x, z, w) ∈ Sk,∀η ∈ NP
Sk(t, x, z, w). (B.47)

Indeed, if Sk = ∅, it holds by vacuity. Otherwise, take (t, x, z, w) ∈ Sk and a proximal normal (ξ,−p) ∈
NP
Sk(t, x, z, w). Therefore we have p ≥ 0 since Sk is the epigraph of a function. Consider p > 0, then

w = uk(t, x, z) and by (B.39) we have

1

p
ξ ∈ ∂Puk(t, x, z) ⊆ ∂puk(t, x)× {1},
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and then for any ν ∈ Gk(t, x, z, w), for some α ∈ AMk
(x), r ≥ 0 and for (θ, ζ) ∈ ∂Puk(t, x) we get

< (ξ,−p), ν > = p(−θ− < ζ, f(x, α) > −`(x, α)− r)
≤ −θ + sup

α∈AMk

{− < ζ, f(x, α) > −`(x, α)}. (B.48)

Since u is subsolution of (1.1)-(1.4) and ν ∈ Gk(t, x, z, w) is arbitrary, we can take the supremum over v
and obtain the desired inequality. If p = 0, we use the Rockafellar’s horizontal Theorem (cf. [13], Theorem
11.30) and the continuity of Gk to obtain (B.47) for any η.
Now take [a, b] ⊆ [0, T ] and y ∈ Sba(x) as in the statement. Let r > r̃ > 0 be large enough so that
y([a, b]) ⊆ Br and

sup
X∈M∩Br̃

| proj Sk(X)| < R.

Let Lk be the Lipschitz constant for Gk on Mk ∩Br. Note that Sk ∩M̄ = Sk and X− proj Sk(X) ∈ NP
Sk(X)

for any X ∈ Sk. Therefore, (B.47) implies (B.39) with c = Lk. Then, by Lemma B.3 we have that for any
absolutely continuous arc γ : [a, b]→Mk which satisfies

γ̇ ∈ Gk(γ) a.e. on [a, b] and γ(s) ∈Mk ∩Br ∀s ∈ (a, b),

the following holds
dist Sk(γ(s)) ≤ eLks dist Sk(γ(a)) ∀s ∈ [a, b]. (B.49)

Let α ∈ A(x) be the control associated to the trajectory y. Note that the absolutely continuous arc defined
by

γy(s) =

(
(a+ b− s, y(a+ b− s),−

∫ s

a

`(y(a+ b− t), α(a+ b− t)dt, u(b, y(b))

)
, ∀s ∈ [a, b]

fulfills the condition for (B.49) to holds. Finally, since γy(a) ∈ Sk, (B.49) implies that γy(b) ∈ Sk which
leads to (B.46) after some algebraic steps.

Step. 2-Regular trajectories. We take [a, x] ∈ [0, T ]× Rd, and y ∈ STa (x) for which there exists a partition
of [a, T ], a = t0 < t1 < · · · < tn < tn+1 = T , so that for any l ∈ {0, . . . , n} we can find k such that y(s) ∈Mk

on (tl, tl+1). Then by applying Proposition B.4 on each subinterval (tl, tl+1), we get for any b ⊆ [a, T ]

u(a, y(a))− η(a) ≤ u(b, y(b))− η(b).

Step. 3- Non regular trajectories. We use the following lemma, which is proved in [21], Lemma 3.3.

Lemma B.5. Assume (H1), (Hf), (Hl), (Hg), (H3). Let (t, x) ∈ [0, T ]× Rd and y(·) ∈ STt (x) be given,
then for any ε > 0 and τ ∈ [t, T ] we can find xε ∈ B(x, ε), tε ∈ (t − ε, t + ε) ∩ [0, τ ] and yε ∈ Sτtε(xε) that
verifies yε(τ) = y(τ) and that is regular in the following sense:
There exists a partition of [t, τ ], {t = t0 < t1 < · · · < tn < tn+1 = τ}, so that for any l ∈ {0, · · · , n} we can
find k such that yε(s) ∈Mk on (tl, tl+1).

Then we treat non regular trajectories by applying Lemma B.5 as follows. Let (a, x) ∈ [0, T ] × Rd,
b ∈ [a, T ] and y ∈ STa (x) and take a sequence εn ⊆ (0, 1) with εn → 0. Let xn ∈ Rd, tn ∈ [0, T ] and
yn ∈ Sbtn(xn) given by Lemma B.5 with ε = εn. Then we have that

u(tn, xn)− η(tn) ≤ u(b, y(b))− η(b).

Then, since xn → x, tn → a, and by the lower semi-continuity of u, we get (B.45) and we conclude the proof.
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