%0 Journal Article %T Monte-Carlo Algorithms for Forward Feynman-Kac type representation for semilinear nonconservative Partial Differential Equations %+ Unité de Mathématiques Appliquées (UMA) %+ EDF R&D (EDF R&D) %+ Laboratoire de Finance des Marchés d'Energie (FiME Lab) %+ Optimisation et commande (OC) %A Le Cavil, Anthony %A Oudjane, Nadia %A Russo, Francesco %@ 0929-9629 %J Monte Carlo Methods and Applications %I De Gruyter %V 24 %N 1 %P 55-70 %8 2018 %D 2018 %Z 1709.04777 %R 10.1515/mcma-2018-0005 %K Semilinear Partial Differential Equations %K Nonlinear Feynman-Kac type functional %K Particle systems %K Euler schemes %Z 60H30; 60J60; 65C05; 65C35; 68U20; 35K58. %Z Mathematics [math]/Probability [math.PR]Journal articles %X The paper is devoted to the construction of a probabilistic particle algorithm. This is related to nonlin-ear forward Feynman-Kac type equation, which represents the solution of a nonconservative semilinear parabolic Partial Differential Equations (PDE). Illustrations of the efficiency of the algorithm are provided by numerical experiments. %G English %2 https://hal-ensta-paris.archives-ouvertes.fr/hal-01586861/document %2 https://hal-ensta-paris.archives-ouvertes.fr/hal-01586861/file/Paper_Simulation20170911SubmittedMonteCarlo.pdf %L hal-01586861 %U https://hal-ensta-paris.archives-ouvertes.fr/hal-01586861 %~ ENSTA %~ UNIV-DAUPHINE %~ INSMI %~ UMA_ENSTA %~ PSL %~ UNIV-PARIS-SACLAY %~ ENSTA-SACLAY %~ EDF %~ UNIV-DAUPHINE-PSL