T. Tajima and J. M. Dawson, Laser Electron Accelerator, Physical Review Letters, vol.29, issue.4, pp.267-270, 1979.
DOI : 10.1103/PhysRevLett.29.581

J. Faure, Y. Glinec, A. Pukhov, and S. Kiselev, A laser???plasma accelerator producing monoenergetic electron beams, Nature, vol.55, issue.7008, pp.541-544, 2004.
DOI : 10.1017/S0022377899007515

URL : https://hal.archives-ouvertes.fr/hal-00508775

S. Mangles, C. Murphy, and Z. Najmudin, Monoenergetic beams of relativistic electrons from intense laser???plasma interactions, Nature, vol.3, issue.7008, pp.535-538, 2004.
DOI : 10.1063/1.1447556

C. G. Geddes, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, vol.22, issue.7008, pp.538-541, 2004.
DOI : 10.1063/1.1633003

J. Faure, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, vol.77, issue.7120, pp.737-746, 2006.
DOI : 10.1038/nature05393

URL : https://hal.archives-ouvertes.fr/hal-00502237

C. Rechatin, Controlling the Phase-Space Volume of Injected Electrons in a Laser-Plasma Accelerator, Physical Review Letters, vol.22, issue.16, p.164801, 2009.
DOI : 10.1088/1367-2630/11/1/013011

URL : https://hal.archives-ouvertes.fr/hal-00498543

C. Mcguffey, Ionization Induced Trapping in a Laser Wakefield Accelerator, Physical Review Letters, vol.91, issue.2, p.25004, 2010.
DOI : 10.1103/PhysRevLett.63.2212

A. Pak, Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes, Physical Review Letters, vol.64, issue.2, p.25003, 2010.
DOI : 10.1103/PhysRevLett.96.215001

J. S. Liu, All-Optical Cascaded Laser Wakefield Accelerator Using Ionization-Induced Injection, Physical Review Letters, vol.107, issue.3, p.35001, 2011.
DOI : 10.1103/PhysRevSTAB.10.061301

B. B. Pollock, Electron Beam from a Two-Stage Laser Wakefield Accelerator, Physical Review Letters, vol.64, issue.4, p.45001, 2011.
DOI : 10.1038/nphys1538

C. Geddes, Plasma-Density-Gradient Injection of Low Absolute-Momentum-Spread Electron Bunches, Physical Review Letters, vol.100, issue.21, p.215004, 2008.
DOI : 10.1103/PhysRevSTAB.3.021301

. Gonsalves, Tunable laser plasma accelerator based on longitudinal density tailoring, Nature Physics, vol.7, issue.11, pp.862-866, 2011.
DOI : 10.1063/1.2929672

A. Buck, Shock-Front Injector for High-Quality Laser-Plasma Acceleration, Physical Review Letters, vol.110, issue.18, p.185006, 2013.
DOI : 10.1103/PhysRevLett.103.194804

C. Thaury, Shock assisted ionization injection in laser-plasma accelerators, Scientific Reports, vol.17, issue.1, p.16310, 2015.
DOI : 10.1038/ncomms7860

URL : https://hal.archives-ouvertes.fr/hal-01234027

H. T. Kim, Enhancement of Electron Energy to the Multi-GeV Regime by a Dual-Stage Laser-Wakefield Accelerator Pumped by Petawatt Laser Pulses, Physical Review Letters, vol.111, issue.16, p.165002, 2013.
DOI : 10.1017/S0263034610000674

W. P. Leemans, Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime, Physical Review Letters, vol.113, issue.24, p.245002, 2014.
DOI : 10.1063/1.3520352

X. Wang, Quasi-monoenergetic laser-plasma acceleration of electrons to 2???GeV, Nature Communications, vol.52, 1988.
DOI : 10.1038/nphoton.2012.82

P. Tournois, Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems, Optics Communications, vol.140, issue.4-6, pp.245-249, 1997.
DOI : 10.1016/S0030-4018(97)00153-3

T. Oksenhendler, Self-referenced spectral interferometry, Applied Physics B, vol.20, issue.1-2, pp.7-12, 2010.
DOI : 10.1007/s00340-010-3916-y

C. Liu, Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses, Optics Letters, vol.39, issue.1, pp.80-83, 2014.
DOI : 10.1364/OL.39.000080

J. Schreiber, Complete Temporal Characterization of Asymmetric Pulse Compression in a Laser Wakefield, Physical Review Letters, vol.105, issue.23, pp.1-4, 2010.
DOI : 10.1063/1.860046

S. Y. Kalmykov, Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse, New Journal of Physics, vol.12, issue.4, p.45019, 2010.
DOI : 10.1088/1367-2630/12/4/045019

W. S. Warren, H. Rabitz, and M. Dahleh, Coherent Control of Quantum Dynamics: The Dream Is Alive, Science, vol.259, issue.5101, pp.1581-1590, 1993.
DOI : 10.1126/science.259.5101.1581

D. Lee, J. Kim, K. Hong, and C. Nam, Coherent Control of High-Order Harmonics with Chirped Femtosecond Laser Pulses, Physical Review Letters, vol.79, issue.24, p.243902, 2001.
DOI : 10.1103/PhysRevLett.79.2971

W. P. Leemans, Electron-Yield Enhancement in a Laser-Wakefield Accelerator Driven by Asymmetric Laser Pulses, Physical Review Letters, vol.264, issue.17, p.174802, 2002.
DOI : 10.1016/0010-4655(94)00173-Y

C. B. Schroeder, Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators, Physics of Plasmas, vol.10, issue.5, pp.2039-2046, 2003.
DOI : 10.1103/PhysRevLett.84.3081

N. M. Hafz, Utilizing asymmetric laser pulses for the generation of high-quality wakefield-accelerated electron beams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.654, issue.1, pp.592-596, 2011.
DOI : 10.1016/j.nima.2011.07.024

B. S. Rao, . Moorti, . Naik, &. Pa, and P. D. Gupta, Effect of chirp on self-modulation and laser wakefield electron acceleration in the regime of quasimonoenergetic electron beam generation, Physical Review Special Topics - Accelerators and Beams, vol.16, issue.9, p.91301, 2013.
DOI : 10.1364/OL.28.001823

A. Weiner, Ultrafast optics wiley series in pure and applied optics, 2009.

V. B. Pathak, J. Vieira, R. Fonseca, and L. Silva, Effect of the frequency chirp on laser wakefield acceleration, New Journal of Physics, vol.14, issue.2, p.23057, 2012.
DOI : 10.1088/1367-2630/14/2/023057

S. Y. Kalmykov, . Beck, X. Davoine, E. Lefebvre, and B. Shadwick, Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime, New Journal of Physics, vol.14, issue.3, p.33025, 2012.
DOI : 10.1088/1367-2630/14/3/033025

S. Y. Kalmykov, X. Davoine, I. Ghebregziabher, and B. A. Shadwick, Customizable electron beams from optically controlled laser plasma acceleration for ??-ray sources based on inverse Thomson scattering, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.829, pp.52-57, 2016.
DOI : 10.1016/j.nima.2015.12.066

A. Ting, Temporal Evolution of Self-Modulated Laser Wakefields Measured by Coherent Thomson Scattering, Physical Review Letters, vol.71, issue.27, pp.5377-5380, 1996.
DOI : 10.1103/PhysRevLett.71.2409

R. Fonseca, L. Silva, and F. Tsung, OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators, Lect. Notes Comput. Sci, vol.2331, pp.342-351, 2002.
DOI : 10.1007/3-540-47789-6_36

Y. Glinec, Absolute calibration for a broad range single shot electron spectrometer, Review of Scientific Instruments, vol.77, issue.10, pp.1-7, 2006.
DOI : 10.1103/PhysRevLett.96.105004

URL : https://hal.archives-ouvertes.fr/hal-00502322

A. F. Lifschitz, Particle-in-Cell modelling of laser???plasma interaction using Fourier decomposition, Journal of Computational Physics, vol.228, issue.5, pp.1803-1814, 2009.
DOI : 10.1016/j.jcp.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-00576913

M. Fuchs, Laser-driven soft-X-ray undulator source, Nature Physics, vol.86, issue.11, pp.826-829, 2009.
DOI : 10.1038/nphys1404

URL : http://www.nature.com/nphys/journal/v5/n11/pdf/nphys1404.pdf

K. T. Phuoc, All-optical Compton gamma-ray source, Nature Photonics, vol.17, issue.5, pp.1-4, 2012.
DOI : 10.1063/1.3469581

URL : https://hal.archives-ouvertes.fr/hal-01164111

N. D. Powers, Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source, Nature Photonics, vol.107, issue.1, pp.28-31, 2013.
DOI : 10.1103/PhysRevLett.107.045001

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, 01 Hz 10 PW Ti:sapphire laser, Optics Letters, vol.35, issue.18, pp.3021-3024, 2010.
DOI : 10.1364/OL.35.003021

. Sourcelab and . Sl-alc-hi, Available at: http://www.sourcelab-plasma.com/sourcelab-products/gas-targetry