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ABSTRACT

Unmanned systems used for threat detection and identification are still not efficient enough for monitoring
autonomously the battlefield. The limitation on size and energy makes those systems unable to use most state-
of-the-art computer vision algorithms for recognition. The bio-inspired approach based on the humans peripheral
and foveal visions has been reported as a way to combine recognition performance and computational efficiency.
As a low resolution camera observes a large zone and detects significant changes, a second camera focuses on each
event and provides a high resolution image of it. While such biomimetic existing approaches usually separate
the two vision modes according to their functionality (e.g. detection, recognition) and to their basic primitives
(i.e. features, algorithms), our approach uses common structures and features for both peripheral and foveal
cameras, thereby decreasing the computational load with respect to the previous approaches.
The proposed approach is demonstrated using simulated data. The outcome proves particularly attractive for
real time embedded systems, as the primitives (features and classifier) have already proven good performances
in low power embedded systems. This first result reveals the high potential of dual views fusion technique in the
context of long duration unmanned video surveillance systems. It also encourages us to go further into miming
the mechanisms of the human eye. In particular, it is expected that adding a retro-action of the fovea towards
the peripheral vision will further enhance the quality and efficiency of the detection process.

Keywords: Computer vision, Embedded systems, Biologically inspired, Peripheral/Foveal vision, Recognition.

1. INTRODUCTION

The interest in Computer Vision has recently gained importance, specially due to the last ten years progresses
in imaging and computing technologies like the high quality, low power and cheap cameras, the high resolu-
tion image sensors, the high speed processors and parallel processing architectures. All those revolutions have
brought more precise and higher quality input image information and allowed very fast computation. They
have made possible to use algorithms that were computationally too expensive and limited by costly and cum-
bersome hardware, cameras and frame grabbers. The increase in precision and quality of the sensor as well
as the acceleration of the computation permit the development of new detection and recognition algorithms
with really good performance and thereby open new horizon for artificial intelligence. However, the exponen-
tial performance and complexity improvements as well as the lower energy and financial costs of the hardware
systems, that was described by the law of Moore, has now reached its limits [1]. And in the current state, the
most promising computer vision algorithms are still using too much computational resources and energy to be
usable in an unmanned system. In applications of Defense and Security as well as in industrial applications of
autonomous monitoring and surveillance, unmanned systems are developed under several strong constraints. In
fact, they need to be easily carried and sometimes hidden, they need to have a long autonomy while keeping a
continuous attention on every event happening in their zone of surveillance. That implies a minimization of the
size, the weight, the computing resources and the energy consumption. Often the existing surveillance systems
limit their functions to detection or even only to video transmission, letting the receiver computer or even the
human operator performing the recognition process. But with the growth of information quantity coming from
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the high quality cameras and also from complementary multi-modal sensors, the bandwidth for their transmis-
sion becomes quickly saturated. To reduce this amount of information it is important to place the recognition
process in the unmanned system, thereby reducing them to only interesting events. Our research project aims
to conceive, validate and optimize an architecture model improving the detection and recognition processes for
unmanned video surveillance systems. The system should be minimized in size, weight and energy consumption,
while performing real-time generic surveillance activities like detection, recognition and identification of events
of interest such as unauthorized/authorized locations, actions, behaviors, situations of danger, involving differ-
ent types of objects like humans, animals, cars, drones, etc. As usual in Computer Vision, the bio-inspiration
seems to be a good guide for such problematics. Here in particular, the human visual system helps us in the
construction of our model.

In this paper we propose a model and make an evaluation of its first developments. In Sec.2, we describe
the elements in the human visual system that inspired us for the model, we show how to go further in the
biomimicry of this system compared to other academic models already presented, and we have a look on which
computing system could be the most appropriate for the implementation and validation of such system. Then
in Sec.3 the functioning of this model is presented. In Sec.4, we present the new results obtained with the first
implementation of the model and we estimate its expected computational performance. Finally in Sec.5, we
explain why this model seems promising and which further developments are planned.

2. RELATED WORK

In order to design a model for unmanned video surveillance systems, it seems interesting to have a look on the
natural systems. Indeed, the biological systems are a good source of inspiration in many computation fields (e.g.
swarm intelligence, evolutionary computing, artificial neural networks, artificial immune systems [2]), because
of their variety, their adaptability, and their sophistication still unequaled by the human made systems. In
this paragraph, we have an overview on the biological vision systems and their biomimetic to establish which
trends should be taken for the model design. In fact, the biomimetics of natural vision systems can bring a level
of genericity and help to optimize architectures for unmanned systems. However the limitation in the current
electronic and computing resources is a restraint in the biomimetic possibilities. Consequently, a study of the
available computing resources is also necessary to establish our model.

2.1 Biological human vision

Recently new interests in biological visual systems and other sensor systems have arisen and have helped in the
development of new methods. Among those approaches the human vision is the most investigated. The recent
advances in neurosciences show several key points of its process that can be exploited by future bio-inspired
vision systems. Since the works of Hermann von Helmoltz at the end of 19th century showing that the eyes
only couldn’t make the vision possible [3], psychophysicists, neurophyicists and physiologists have continued to
improve the knowledge on the primate vision. Schematically, the human visual system is composed of three pro-
cessing parts: the retina, the lateral geniculate nucleus (LGN) and the visual cortex (Fig.1). A recent description
of it can be found in [4] for more details.

Figure 1: Representative schema of the human visual system. The retina, the LGN and the visual cortex belongs
to three different parts of the skull.



The retina is the first part of the system. It captures the photons from the observed scene and performs the first
cellular processes on the image. The photons are perceived by two types of photo-receptors: the rods, sensitive
to the light intensity, and the cones, sensitive to the photon’s wavelength (i.e. its color). There are three kinds
of cones: one sensitive to the red wavelength, one to the green one and the last to the blue one. Those two
types of receptors are not evenly distributed on the retina, the cones are concentrated in the center part of the
retina, called fovea, and the rods are mostly absent from the fovea and more concentrated in the periphery of
the retina. This repartition reflects the actual two vision fields used by humans: the peripheral vision, which
consists in being attentive to any change within a low resolution peripheral view, and the foveal vision, which
consists in focusing on something particular in the scene in order to interpret it (Fig.2).

a. b.

Figure 2: Repartition of the cone and rod cells on the retina. a. Representative schema of the two visual fields.
b. Density repartition of the receptors depending on the angle view. There is a ”blind spot” in this repartition
corresponding to the optical nerve.

The signal perceived by cones and rods is processed in the retina by complex cells, providing to the signal trans-
mitted to the brain a higher level spatio-temporal structure, related to motion, direction or contrast information.
The retina of the two eyes are linked to the LGN by the optical nerve. The LGN is composed of six layers of
neurons. Those layers receive and process separately the different kinds of signals sent by the eyes. There, a first
stereoscopic matching is done as well as a higher level of processing. The feed-forward, feedback and transversal
neural connections present in the LGN permit: to send the visual information to another part of the brain, the
visual cortex; to match information coming from the two eyes; and also to control them, their position, their
focus, etc. Finally the last processing part, and the most complex one, is the visual cortex. It is decomposed
into different layers: V1, V2, etc. Some seem to process information linked to the ’where’ (MT), others to the
’what’ (IT) (Fig.3). It is often represented as a feed-forward processing model in which the signals are processed
successively by the layers. Each layer would bring a higher level of description of the observed scene.

Figure 3: Simplified schema of the right hemisphere visual cortex of a primate. It shows the two parallel visual
processing streams: ”what” and ”where”. (Schema from the article of James A. Bourne [5]).

This classical visual cortex model is however controversial, as feedback and transversal neural connections exist
between all those layers and the LGN. A more consistent model should try to combine in a more intimate way
the different visual processes of the brain which are enabled by those neural connections.



2.2 Human vision biomimetics

As the knowledge on the human visual system was growing, the adapted models for smart recognition changed.
Today, there are two models that are mostly used by the computer vision community (Fig.4).
On the one hand, the full-neural model simulates the whole visual process by a neural network taking as an
input the RGB matrix and giving as an output the class of an object or a scene (deep neural networks are such
examples). On the other hand, the feed-forward model pre-processes the RGB matrix with feature extractors
in order to have more relevant information before classification process (e.g. neural network, support vector
machine or random forest). The first model has recently presented a lot of interesting results, however it needs
very large computing capacities and a large dataset to be configured. Even if many researches aim to adapt
it to long autonomy unmanned systems, embedded deep networks are not fully available yet or even proved to
be as performant on embedded systems as they are on powerful workstations. The best performing version of
the second model shows the same difficulties as the first one, since they often use very complex features and
high-power learning systems. However, the sub-optimal versions of this model, using low-power learning systems
and simple features, could be improved if they are getting closer to the biological model.

a. b.

Figure 4: The two most used models: a. The full-neural model learns the classification function directly from
input images. b. The feed-forward model uses a feature extraction step to reduce the complexity of the following
classification process.

There already exists some hardware sensor combinations that are closer to the biological system than the current
use of a single camera using a CMOS or CCD sensor. In fact there is the possibility to recreate the stereo-vision
with two cameras, the dual field of views (peripheral/foveal) with two cameras and even the asynchronous
transmission of the visual information. Indeed, some recently developed cameras called spike cameras are event-
driven like the retina (whereas the CMOS/CCD cameras are time-driven). But their formalism for application
as well as their implementation within complete systems don’t seem mature enough today for an autonomous
surveillance system. The stereo-vision brings more spatial information to the system, making it more precise,
but it generates complex reconstruction algorithms increasing the need in size, weight and energy. The gain of
the stereovision for feed-forward model are bellow our expectations specially when compare to the dual field view
that drastically reduces the quantity of processed information. Indeed, the peripheral view camera can have a
low resolution as the high resolution camera is used in the foveal field only when something is detected. Several
researchers already tested this dual field vision for autonomous surveillance. Hengster et al.[6] and Xu and Song
[7] realized a complete system where the information from the peripheral camera guides the position of the foveal
camera. They were able to make it run in real-time. Horaud et al.[8], like Huang et al. [9] went further by
using the information of the foveal camera for improving tracking capabilities, doing so they showed a real-time
cooperation possibility. They showed by their implementation the reproducibility of one of the feedback actions
between the brain and the eyes: the control of the position and the focus of the eyes.
Recently Medathati et al.[10] drew attention to the importance of those retroactions and even more of the
interactions between the different computation layers in the vision process and encouraged the computer vision
community to develop a new computational model of the human vision that would take them into account.



2.3 Hardware advances and limits

Since the era of ubiquitous parallel processing, there exist a large number of different hardware devices that can
be used to implement more and more sophisticated biomimetic models. From a computational point of view,
indeed, the human visual system is intrinsically parallel and heterogeneous.
However, these devices do not have the same flexibility and the same computational costs, in terms of time
and energy. The digital signal processors (DSP) can execute specialized instructions. The graphic processor
unit (GPU), specially the most recent ones, are also very flexible and programmable, but they consume a lot of
energy. It is the same for the Intel Xeon Phi processors, which are easily programmable, but not size, weight
and power (SWaP) optimized. The Heterogeneous data processing on FPGA or System on Chip (SoC) provides
many libraries of configurable logic blocks enabling parallel processing within a parallel structure. Moreover, a
parallel processing on such optimized structures is performed with a lower clock frequency, reducing the overall
energy requirements. A comparison of the most recent systems shows that the FPGAs and SoCs are best adapted
to an embedded application miming the visual human system (Tab.1).

Table 1: SoC Performances table

Xilinx MPSoC
ZU15EG

Altera Arria 10
SX 660

NVIDIA Tegra
X1

NVIDIA PX2

Technology TSMC 16nm TSMC 20nm TSMC 20nm TSMC 16nm

Compute units ∗
747 000 (LUT)
+ 3 528 (DSP)

660 000 (LUT)
+ 1 688 (DSP)

256 CUDA
Core (Maxwell)

2 * 256 CUDA
Core (Pascal)

Single Precision 32bits
(GFLOPS) :

1 333 1 519 512 8 000

Thermal Dissipation
Power (Watts)

„4 „5 8 250

The FPGA proved to be a good choice for embedded application, as the European Laboratory for Sensory Intelli-
gence was able to develop efficient and low consumption neural networks [11]. At the same time, companies such
as Qualcomm and Movidius developed vision processors based on the feed-forward and the full-neural models.
But their low-power processors have not proved yet to be adapted to long autonomy detection and recognition
applications.

During our research on existing bio-inspired visual processing systems, a processor developed by BVS-Tech
[12] drew our attention. Its development began thirty years ago with the first implementation [13] made by
its inventor P. Pirim. Since then, it went up following a bio-inspired approach using the last technological and
biological discoveries. The chip mime the vision functions described by Hubel and Wiesel [14] and it follows the
principle of cortex plasticity demonstrated by Bach-y-Rita [15]. The system also mimes the ”dynamic attractor”
studied by Rennó-Costa et al. [16], which permits the convergence to the combined information of the ”what”
and ”where” streams. Its implementation is done with a unique process scanning all pixels at high frequency.
Then, the connections of this system, compared to full-neural networks, are drastically reduced and thus its
processing time too. The processor has been used in different use-cases (detection, traking and recognition [17]
[18]), this diversity shows a certain flexibility of the system, which is low-power (3W). The combination of these

∗For the FPGA it represents the Logical Unit Table (LUT) and the Digital Signal Processing block (DSP). For
the NVIDIA GPU, the Core CUDA is based on the Maxwell and Pascal architecture, each unit is composed of SMM
(Streaming Multiprocessor). One SMM (Maxwell) includes 4 32-way SIMD.
: FLOPS : Floating Point Operation Per Second, the operation can be an addition or a multiplication, this metric
represents the theoretical performance.



properties widen the application range. However there is still no formalization of the system permitting its inte-
gration in a complete visual system. This formalization will help the understanding and therefore the integration
in our processing model, while keeping its interesting computational performances.

Biomimetic models in Computer Vision are limited by the processor capabilities and its need in energy that
often goes beyond the embedded application limits. The SWaP constraints of an unmanned video surveillance
system impose to choose electronic implementation device such as FPGA or SoC, which are low power. As
those hardware devices are limited in computational power, it is also essential that the algorithms minimize
their computational needs. Moreover, the recent biological studies urge Computer Vision researchers on re-
newing their models for more accurate ones. In fact, the use of pre-processing like those made in the retina,
the LGN and the cortex layers and the use of all direction connections between processing parts would bring a
higher level of understanding while reducing the information quantity. Thus, it would enable a reduction in the
computational costs when implementing the model. The interesting processor developed by BVS-Tech is able
to extract spatio-temporal features, detect and recognize objects in a biologically inspired way with very low
computational requirements. The adaptation of this processor for a dual vision field system could enable the
combination of information from the two views and thus the construction of a more biologically plausible model,
able to outperform the existing models for unmanned video surveillance.

3. OUR APPROACH

The study of the biological human vision system and the study of the different image analysis computing systems
made in Sec.2 provided us with trends for improvement that could benefit to unmanned surveillance systems.
Our approach is based on the dual field of view model using the classical feed-forward computer vision model for
recognition. We propose to improve this model by combining information from the two visions in a bio-inspired
processing adapted from the BVS-Tech technology. Firstly, a mathematical formalization of the BVS-Tech chip
processing is proposed in order to describe how the chip works and then how to use it in the proposed model.
Secondly, the detailed description of the model integrating this processing on the two combined vision information
is presented.

3.1 Mathematical formalization

The chip developed by the BVS-Tech company is composed of three levels of processing [17]: the feature extrac-
tion, the objects’ detection and description and the classification made by an associative memory. The feature
extraction level is composed of local computation of the following features: luminance, hue, saturation, gradient
module and angle, curvature, velocity module and direction. Those local features correspond to some processing
made in the retina, the LGN and the first cortex layers. The objects’ detector and descriptor converge to the
objects parts in the image, giving their position and their feature description. Then, the classification level uses
an associative memory. (Fig.5).

Figure 5: Schema representative of the BVS-Tech chip processes: the feature extraction (in green the temporal
features and in red the spatial features), the detector and descriptor processing, which gives a set of sub-object
description and position Vk, the classification processing.



The originality of the processor mostly lies in the detector and descriptor module. Its construction is generic
and independent from the input features. In fact, in the same way as the human brain plasticity, its internal
processes could be used on visual, acoustic and tactile features alike. The object’s detector and descriptor is a
combination of multiple ”bio-inspired perception sensors” (BIPS). Each of them converge to a local maximum
of energy combining the temporal and spatial informations. This process corresponds to a ”dynamic attractor”
(DA), which does the correspondence between the ”what” and ”where” processing parts within the visual cortex.
The BIPS module is constructed as a combination of three sub-modules attached to one temporal feature or one
of the two spatial features : X or Y. Each sub-module converges dynamically to the maximum of the marginal
histogram corresponding to the feature it is attached to. These ”feature mode detectors” (FMDs), are linked
by AND connections and dynamically update their pixel validation criteria, which permit the convergence to a
local maximum of energy in the three dimensional feature space (Fig.6).

Figure 6: Representative schema of the BIPS module, which is composed of three ”feature mode detectors”
(FMDs) linked by the bus of pixel validation. The FMD processing the temporal feature F gives information
about the ”what” and the FMDs processing the spatial features X and Y give information about the ”where”.
The output of the three FMDs correspond to a sub-object description and position V .

Figure 7: Representative schema of an extended BIPS module, which is composed of several LMDs linked by
the bus of pixel validation. Its output corresponds to a sub-object description and position V .

Currently the BIPS module is composed by only one temporal feature and the two spatial features. The com-
bination of several modules BIPS by XOR and AND connections permits to obtain local maxima of energy
of various temporal features. But, the structural description of the detector and descriptor can be simplified
mathematically to combinations of FMDs. A set of those sub-modules linked by AND connections gives the
description and position of a sub-object (Fig.7). Such extended BIPS modules still follows the principle of a
DA but with more features. And their combination by XOR connections gives a set of sub-object positions and
descriptions composing the input image. The mathematical description of the FMD sub-module, made in the
following paragraph, permits to understand and adapt the complete module to specific needs.



The input of the module is a set of features Fn calculated by the feature extractor.

Fn : Xˆ Y ÝÑ Ωn

x, y ÝÑ f “ Fnpx, yq,
(1)

where X “ v0;Ww and Y “ v0;Hw are the pixel coordinate ranges of the input image. The feature extractor
makes actually the transition from the input image to the multi-dimensional feature space Ω. It can be described
by the function F :

F : Xˆ Y ÝÑ Ω “ Ω1 ˆ . . .ˆ ΩK

x, y ÝÑ f “ F px, yq
ô pf1, . . . , fKq “ pF1px, yq, . . . , FKpx, yqq .

(2)

The feature extractor F of the BVS-Tech chip is described in the Tab.2.

Table 2: Feature extractor of the BVS-Tech chip. YCbCrptq is the input image.

Feature Definition

Luminance Y

Hue arctan

ˆ

Cb

Cr

˙

Saturation
b

C2
r ` C2

b

Estimated
background Yest

αYptq ` p1´ αqYestpt´ 1q, where α “
1

2Dt

Temporal Constant
Dt

$

’

’

&

’

’

%

Dtptq “ Dtpt´ 1q ´ 1 if |Yptq ´Yestpt´ 1q| ą ε
Dt

and Dt ą 0

Dtptq “ Dtpt´ 1q ` 1 if |Yptq ´Yestpt´ 1q| ď ε
Dt

and Dt ă Dtmax

Velocity
ÝÑ
V Apparent displacement vector, provided by optical flow estimation

Gradient
ÝÑ∇Y

Curvature ´
1

||
ÝÑ∇Y||

.
B2Y

Bt2 , where t is the unit isophote vector, perpendicular to the gradient

The function of a DA is to converge iteratively to a selection of pixels representative of a local maximum of energy
in the feature space Ω. We call sub-object O such selection of pixels. At each iterative step k, the extended BIPS
module process can be decomposed into two steps: the marginal histograms computation and the sub-object Ok

creation. Where the sequence pOkqk converges to O.

The marginal histogram Hk
n corresponding to the feature Fn is:

Hk
n : Ωn ÝÑ N

f ÝÑ q “ Hk
npfq,

(3)

where

Hk
npfq “ card

"

p P Xˆ Y
N

Fnppq “ f,
@m P v1;Kw, Fmppq P rA

k
m;Bk

ms

*

. (4)



Ak
m and Bk

m are respectively the lower and upper bounds of the feature m and form the active domain Pk defined
by:

Pk “

K
ź

m“1

rAk
m;Bk

ms. (5)

The sub-object corresponding to this active domain is:

Ok “ F´1pPkq,
ô Ok “

 

p P Xˆ Y
L

@m P v1;Kw, Ak
m ď Fmppq ď Bk

m

(

,
ô Ok “

Ş

1ďnďK

F´1
m

`

rAk
m;Bk

ms
˘

,

ñ Hk
npfq “ card tp P Ok {Fnppq “ f u

(6)

At the initialization step, O0 “ Ω and @m P v1;Kw, B0
m (respectively A0

m) is equal to the maximum (respectively
the minimum) of Ωm. Then at each iterative step k, the bounds of the feature n are updated, where n is such
that D p P N { k “ pK ` n.

The computation of the marginal histogram gives the following information, that corresponds to the output
of the nth FMD.

Nk “ card pOkq “
ř

fPΩn

Hk
npfq, @n P v1;Kw

Mk
n “ max

fPΩn

`

Hk
npfq

˘

V k
n “ arg max

fPΩn

`

Hk
npfq

˘

(7)

where Nk is the number of selected pixels, Mk
n is the maximum of the marginal histogram n and V k

n is one of
the value corresponding to the maximum.

The update of the bounds Ak
n and Bk

n plays an important role for the convergence of the DA to the right
sub-object O. There are two different kinds of update, depending on what kind of sub-object we are looking
for: one concentrates around a unique maximum (mode 1), the other includes all significant maxima (mode 2)
(Fig.8). The two modes are described below:

Mode 1 :

Ak`1
n “ inf

!

f P Ωn

M

@f
1

P rf ;V k
n s, H

k
npf

1

q ą τn,k

)

,

Bk`1
n “ sup

!

f P Ωn

M

@f
1

P rV k
n ; f s, Hk

npf
1

q ą τn,k

)

,
(8)

Mode 2 :

Ak`1
n “ sup

!

f P Ωn

M

@f
1

P rminpΩnq; f s, H
k
npf

1

q ă τn,k

)

,

Bk`1
n “ inf

!

f P Ωn

M

@f
1

P rf ; maxpΩnqs, H
k
npf

1

q ă τn,k

)

,
(9)

where τn,k ăMk
n .



Figure 8: Example of the marginal histogram corresponding to the gradient angle feature computed from a car
image at the first iteration. The outputs of the FMD are represented for both modes.

The sequence pPkqk of active domains is a decreasing sequence that can never be empty. Consequently, it
converges in a finite time to a domain P depending on the choice of all τn,k. And the sequence of corresponding
pOkqk converges to the sub-object O:

D klim P N, Oklim
“ lim

kÝÑ8
Ok “ O,

ñ

$

’

’

’

’

&

’

’

’

’

%

@ k ě klim, Ak
m “ lim

lÝÑ8
Al

m “ Am,

Bk
m “ lim

lÝÑ8
Bl

m “ Bm,

O “
Ş

1ďmďK

F´1
m prAm;Bmsq .

(10)

In the BVS-Tech chip, τn,k “
Mk

n

2
.

In case of noisy images the DA can converge on a small group of noisy pixels. To reject those ”false detections”,
the system is also configured to stop the convergence if the number of selected pixels Nk is inferior to a threshold.
Then all the FMDs of the extended BIPS module are reinitialized until another sub-object comes into the video
frame. This module permits to find one sub-object in the image. To find several sub-objects, the liaison XOR
must be added between different modules. In most of cases, the XOR liaisons aim to split the feature space and let
each DA converge in difference parts of the space. Moreover, the system is dynamic. It is adapted to video inputs
and the incrementation of its convergence correspond to the incrementation of video frames. In order to adapt
the convergence to moving sub-objects, a prediction ∆k

n is added when computing the new limits Ak`1
n and Bk`1

n .

The study of the BVS-Tech system and the mathematical formalization of its ’detector and descriptor’ module
demonstrate how this latter converge to local maxima of energy of the feature space and which parameters
influence this convergence. This mathematical understanding is the first step towards the definition of a global
vision system able to classify relevant objects.

3.2 Field combination model

The study of the possible biomimetic made in Sec.2.2 gave us three principal trends that would improve the
dual field feed-forward recognition model. Firstly, we can go further in the dual vision biomimicry best suited
to unmanned video systems. In fact, as explained in Sec.2.2, most researchers associate the peripheral vision to



the detection and control processes and the foveal vision to the recognition process only. But the biology of the
brain does not make such separation, both signals coming from the fovea and the periphery of the retina are
processed by similar cells and brain circuits. It can then be supposed that both information from the fovea and
the periphery are useful to the detection and the recognition processes. Therefore, the proposed model does not
have such separation (Fig.9).

a. b.

Figure 9: a. The classical model used in dual field systems: the peripheral vision is used for the detection and
control function, the foveal vision is used for recognition. b. The advanced model, closer to the biological system.

Secondly, the use of generic and bio-inspired feature extractor, detector and descriptor like the one used in the
BVS-Tech chip could permit an improvement of the recognition performance while keeping the size, weight,
power consumption minimal. Such system can be adapted to the foveal images, the peripheral images, as well
as the combination of the two and provides a reduced and higher level information on the relevant elements
of the scene. Thirdly, the feed-forward model, composed by such module and a classification process, could be
enhanced by adding feedback and transversal connections like those present in the brain. The exact reproduction
of those connections is not currently possible as they are not yet all completely understood and it is consequently
rather hard to reproduce the same behavior at the electronic level. But the model architecture can take into
account the existence of such feedback and internal exchanges and have some connections of the same kind:
the retro-action for the foveal camera control can use the attention information coming from the analyze of
the peripheral view and the tracking information coming from the foveal view. Also, connections between the
different internal modules of the system will permit a dynamical adaptation of the feature extractors and the
’detector and descriptor’ parameters (Fig.10). Thus, the context and the objects described by the analyze of
both peripheral and foveal views can influence the internal mechanisms by changing: the features to extract, the
input set of features for each sub-module, the convergence mode or its parameters.

In this model the processing steps can be described in three principal modules as follows.
Firstly the images from the peripheral view and the foveal view are transformed into a feature space. The chosen
features can be simple or complex, representative of local, regional or global characteristics, but they should
respect the constraints of an autonomous visual system and they should discriminate different classes of objects.
Secondly, the extracted features are sent to extended BIPS modules as defined in Sec.3.1. Each module is com-
posed of several ”feature mode detectors” (FMDs) that are linked by AND connections and provide respectively
an output vector Vn which permits the description of the sub-object the module is converging to. Each vector
contains information on the number of pixels Nk, the maximum Mk

n and its associated values: the histogram
value V k

n , the prediction ∆k
n, the threshold τkn and the bounds Ak

n and Bk
n. The combination of these vectors

provides information on the position, the feature description and the degree of confidence of the sub-object.
Thirdly, the outputs from all the extended BIPS modules form a vector describing the different sub-objects of
the scene (Fig.11). Then, this vector can be used for the classification process.



Figure 10: Model of detection and recognition processes combining both peripheral and foveal informations,
integrating the descriptor and detector module adapted from the BVS-Tech technology and using different kinds
of connections between the processes to enhance the performances.

Figure 11: Combination of FMDs forming a detector and descriptor module. It is composed by several DAs j
converging to different sub-objects. Their inputs are made by selections of features from the feature input set
pFiqi and their outputs pVjqj by the combined outputs of each FMD. Each Vj is a representation of a sub-object
and the final vector V is the representation of the scene.

Our approach is based on bio-inspired processes that can enhance the recognition performances in an unmanned
video surveillance system: the dual field vision view, the features extraction, the combination of those informa-
tion in a generic detector and descriptor and finally the classification. But we also based our approach on existing
hardware equipments, that shows the possibility of respecting SWaP constraints and specifications for embedded
optronics equipment. The dual field of view has already been used in different cases cited in Sec.2.2, three
real-time classification processes implemented on a FPGA [11] and the system on-chip developed by BVS-Tech
shows some interesting results. As no mathematical formalization had ever been made on the BVS’s concept,



we studied and formalized it in order to adapt it to any recognition system architecture. This study shows
that the originality of the system relies on a module reproducing some of the function of the biologic ”dynamic
attractors”. This module is composed of several ”feature mode detectors”, that can be combined by AND and
XOR connections to converge to a rich description of the scene. If those connections are fixed, the output of the
module is a fixed size vector that can become the input of the following classification process.

4. METHOD AND FIRST EXPERIMENTAL RESULTS

The model proposed in Sec.3 is firstly tested with a simulation on computer. The current state of the simulation
allows to recreate the recognition performance of the BVS-Tech chip and to extend it to different combinations
of FMDs. Evaluating the computational performance is also possible as we already know the computational cost
of the B-SAVED and BVS-Tech chip.

4.1 System model simulation

The model is composed of several modules connected to each other (see Fig.10). In order to test this model and
easily manipulate its modules and their parameters, we developed a simulator in C++. The current software
simulator mainly reproduces the feature extractor and the FMD functions. It is easily configurable with different
combination rules of FMDs and it has been graphically interfaced for direct result visualization and validation.
Thus the connection rules i.e. AND and XOR, and the choice of FMDs can be fully customized to match the
application requirements. Currently the feature extractors correspond to those performed in the BVS-Tech chip.
However, other features can be added and used as input of the FMDs. For the moment, the classification part
has not been yet added as the first experimentation was to analyze the results issued by the FMDs.
The implemented feature extractors correspond to the tonal, structural and dynamic features developed in the
BVS-Tech chip. The output images of this first module are shown in the Figures 12 and 13. In the Fig.12, they
correspond to the luminance, the hue, the saturation and the gradient angle and module. In the Fig.13, they
correspond to the temporal constant Dt and the velocity module and direction. Those tests have been realized
on images and video available on the Matlab library.

Figure 12: Capture of the graphical user interface for the feature outputs visualization and configuration. The
luminance, saturation, hue, gradient angle and module and the hue and angle valid pixels matrix are displayed
in the window. The hue is computed only for pixels whose saturation is above thres sat: here fixed to 20. The
gradient angle is computed only for pixels whose gradient module is above thres grad: here fixed to 20. The
derivated Gaussian kernels used for the gradient computation are of size 7x7.



Figure 13: Capture of the graphical user interface with another set of features. The temporal constant Dt
(Tab.2), the background estimation, the velocity module and direction, the optical flow corresponding and the
dynamic valid pixels matrix are displayed in the window. The dynamic features are computed only for pixels
whose difference between luminance and estimated background is above thres dt here fixed to 50. The Dt is
incremented or decremented of dt unit: here equal to 1; and is between 0 and dt max: here equal to 8.

The behavior of the FMD and the combinations of FMDs have also been tested on simulated and real images.
The simulated images permit to confirm the expected behaviors of the sub-module. The manual construction of
the image permit to create images with the different scenarii for the convergence. We have been able to test the
convergence with different feature spaces, where there is only one sub-object, then with several sub-objects in
the condition of perfect and non perfect differentiability of the sub-objects. Then, we used real images to observe
the behavior of the sub-module in real condition with noise and a multitude of sub-objects.

The Fig.14 shows the evolution from k “ 1 to k “ 4 of a basic combination of FMDs: one on the hue, one
on X and one on Y (like the BIPS module). This example on a perfect green circle shows how each FMD
converges to the maximum of the corresponding feature histogram and the evolution of the active domain Pk

and the sub-object Ok. We can observe the convergence obtained by alternating the update of each FMD. Here
the threshold is set to:

τn,k “
Mk

n

2

In the Fig.15, we use another synthetic static image and show the results obtained with different τn,k. This
threshold has a strong influence on the convergence. When it is small compare to Mk

n , the sub-object obtained is
larger, and can incorporate some noise around the true values of the sub-object features. At the opposite, when
it is near Mk

n , the resulting sub-object corresponds only to a compact part of the real sub-object.
In the Fig.16, the XOR connection between different extended BIPS module has been tested. One converges to
the red ball, while another converges to the background, a third one to the line of black dashes and the last one
to the gray rectangle. The first set is focused on the hue, while the three other sets are focused on the luminance.
At the first step, two FMDs receive a non empty set of valid pixels: the set of FMDs on the hue and the first
set of FMDs on the luminance. The convergence of the DA 1 and the DA 2 are done at the step 4. The DAs
3 and 4 depend on the convergence of the precedent DAs of the same kind, consequently their convergence is
obtained at step 5 for the DA 3 and at step 6 for the DA 4. This example shows the sequentiality needed for
the XOR connections. The exact implication of those connections will be studied in future works. This example
also shows the use of the mode 2 to detect the line of black dashes, whereas the mode 1 would have converged
to only one of the black dashes.
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Figure 14: Representation of three FMDs outputs on a simulated static image. The time is incremented from
left to right. The first line shows the matrix of valid pixels, the second line the spatial bounds projected in the
image, the third, fourth and fifth lines shows respectively the hue, X and Y histograms and their bounds.
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Figure 15: Spatial bounds obtained by three FMDs (hue,X and Y), with different thresholds τn,k.



k “ 1 k “ 3

k “ 5 k “ 6

Figure 16: Spatial bounds obtained by four extended BIPS module linked by XOR connections. The first set is
composed of one FMD for the hue, one for X and one for Y. The three other sets are composed of one FMD for
the luminance, one for the X and one for the Y. The mode 2 is used for the spatial features convergence. The
convergence of all sets is achieved in 6 steps.

In the Fig.17, another combinations of FMDs has been tested on a real image. The sets are all using one
FMD for the gradient angle, one for X’ and one for Y’, where X’ and Y’ are the rotated space features. All use
the mode 1 for the temporal feature and the mode 2 for the spatial feature.
The DA 1 converges to the horizon, the DA 2 converges to the right side of the yellow line, the DA 3 converges
to the left side of the yellow line and the DA 4 converges to the left side of the road. This example illustrates
several aspects of the system. Firstly, its capacity to adapt to the rotation. Secondly, the relevance of using the
mode 2 to find sub-objects that can be occluded (e.g the horizon) or are very thin (e.g. road borders), which
causes discontinuities within the sub-object. Thirdly, the importance of the choice of FMDs composition (e.g.
here, the number of sets is not sufficient to entirely recover the road borders).

The first experiments confirm the expected behavior of the combination of FMDs. The convergence are ob-
tained between four to seven steps depending on the number of XOR and AND connections. But it also reveals
the importance of the feature and parameter choices. The threshold τn,k plays an important role in the separa-
tion of sub-objects and their delimitation. The chosen modes, the order of the DAs and of the sub-modules also
have an influence on the result.



k “ 1 k “ 3

k “ 5 k “ 7

Figure 17: Spatial bounds obtained by four extended BIPS modules linked by XOR connections. They are
composed of one FMDs for the gradient angle, one for X’ and one for Y’. The mode 2 is used for the spatial
feature convergences. At step 7, all the DA have converged.

4.2 Evaluation of performance

The proposed model is based on different existing hardwares, whose computational performance are known.
This allows us to estimate the overall costs and performances of an implemented version of the model. The
B-SAVED system [11], developed at the European Laboratory for Sensory Intelligence (ELSI) is a platform for
research development, which could integrate the model proposed in this publication. Its hardware design, with
three cameras for the peripheral view and one mobile camera for the foveal view, only requires 3W with its
detection, classification and transmission units ON. The BVS-Tech chip [17], whose processes are to be used in
the model, showed a consumption of 2, 1W when integrated in a complete visual system. An estimation of the
model consumption, if it only combines the previous hardware, should be around 5.1W.

This promising estimation only confirms that the model would be adapted to SWaP constraints, but an es-
timation must also be done on its computational time to demonstrate its capacity to work in real-time. It can
be analyzed on the basis of the computational time required for each function in the BVS-Tech implementa-
tion. The computation of each frame can be decomposed into the following steps: feature extraction, histogram
computation (including computation of maximum and its argument), prediction and new histograms bounds Ak

n

and Bk
n computation. Indeed, the modeled and simulated feature extraction modules, as well as the FMDs, can

evolve in parallel on FPGA. The four steps can be splited: the two formers are dependent on the number of
pixels per frame and the two latters are dependent on the number of bins of the histogram.



The input data are analyzed pixel per pixel at clock rate, which is mandatory for the histogram constructions.
For each pixel, the feature extractions used in the BVS-Tech chip and the update of the histogram have a neg-
ligible computational time compared to the pixel clock time (highly parallelized structure with high frequency
clock). These processes need at the most four operations. A dedicated clock rate (4ˆpixel clock) enables to
avoid any extra delay. Consequently, the computational cost of the overall process is equal to the frame rate.
The prediction ∆k

n and new bounds Ak
n and Bk

n computation (Fig.8) are dynamically adjusted as the different
successive histogram bins are read. The two functions need to go through all the histogram values, which are
defined by a fixed number of bins Nbin (in the BVS-Tech chip this number is 1024, as it works in 10 bits).
Concerning the prediction step, which is used for moving objects, it currently corresponds to the difference be-
tween medians from the previous and the current steps. The computation of the median needs only one reading
process for each histogram value. The computation of the new limits needs even less reading processes as it goes
only from the maximum to the new bounds values (for the mode 1) or from the domain borders to the new
bounds values (for the mode 2) (the two modes have been described in Fig.8). Consequently, the computational
time for this group of functions corresponds to at most one time the number of bins of the histogram.

Table 3: Computational time performance

Function Time (pixel clock quantity)

Feature extraction and Histogram computation ăW ˚ H

Prediction and new borders computation ă Nbin

Complete system ă pW ˚ Hq `Nbin

The BVS-Tech chip uses the pixel clock range: 25-50MHz. In real-time (30fps), the system should be able to
analyze 1, 5G pixels. For example, using a standard CMOS sensor Wide VGA (752 ˆ 480 pixels) and a pixel
clock frequency of 27MHz and 10 bits for coding the features, the computation time for each frame would be less
than 13 ms. In order to mitigate the computational cost and data transfer a dual vision mechanism with low
resolution CMOS sensors is well suited for this new concept. The computation time then permits to work with
a high frame rate and to obtain results at 30fps. Then, the object representation results require several frames
to converge. The number of frames depends on the choice of features and the disposition of the FMDs as shown
in Sec.3.1. The frame rate parameter is of major importance to maintain a real-time detection and recognition.
In fact, the DA needs a number of frames superior to the number of FMDs it is composed of to converge. In the
best case, one evaluation of all the chosen FMDs is enough for the system to converge. This best case is obtained
when the sub-object is well separated from the other sub-objects in the chosen feature space. This implies a
right choice of features and of the threshold τn,k.

This work demonstrated that the main software modules emulating the BVS-Tech technology are fulfilling the
embedded specifications in terms of energy requirements, computational costs and resources. Most of the math-
ematical processes are simple, use generic feature sets and evolve in real-time. The mathematical model is now
established, is promising and our software development kit will enable us to evaluate the different combinations
of FMDs and to include retro-action processes for the control and automatic adaptation of the main parameters.

5. DISCUSSION

This paper essentially focused on the mathematical formalization of the BVS-Tech technology processes and
their adaptation to an original vision system made of two vision fields. This formalization is the basis to study
its parameters both for their influence on the output and for the way they can be automatically adapted. The
originality of the BVS-Tech chip resides in the DA. This module permits a description of the scene’s sub-objects
with relevant data.
The first experiments showed that the resulting sub-objects are strongly influenced by four factors: the input
features, the threshold τn,k, the mode and the order of the FMDs.



The Tab.4 summarizes these parameters and their influence on the results.

Table 4: DA’s parameters of influence

Parameter Space Influence

Input feature Fni
Ωni

Separability of the sub-objects in the feature space

Threshold τni,k r0;Mk
ni
s

Separability of the sub-objects in the feature space
Pixel repartition in the active domain

Mode t1, 2u Type of sub-object

FMD order

ˆ

´

F
j

nj
i

¯

1ďiďKj

˙

1ďjďJ
tΩ1, . . . ,ΩIu

N
Type of sub-object

Firstly, the input features create the space in which the sub-objects will be differentiable. More features increase
the possibility to separate all sub-objects, but it also increases the number of frames to converge.

Secondly, the threshold τn,k is a kind of density criterion: cardpOkq

cardpPkq
. If the threshold is high almost all elements

of the active domain will correspond to the final sub-object. At the opposite, if the threshold is low, the final
sub-object can correspond to only few elements of the active domain. Moreover, the parallelepipedic form of
the active domain influence the final sub-object, which can be truncated if the threshold is too high. Currently

this threshold is computed as τn,k “
Mk

n

2 , but it could take into account the number of pixels of the current
sub-object Nk and the dimension of the active domain Pk for a better control of the final sub-object.
Thirdly, the mode influence the kind of sub-object the DAs will converge to, e.g. disconnected sub-objects with
the same strong feature modality like a dashed line would be detected as different sub-object with the mode 1
and as a unique sub-object with the mode 2.
Finally, the order of the FMDs influences the convergence time and the final multi-modal description. Indeed,
each marginal histogram is computed on its active domain which depends on the preceding FMD bounds. e.g.
a moving object in front of a uniform wall is not detected by the first DA if this one begins with a tonal feature
FMD, as the wall modality is stronger than the object modality. But if the first DA begins with a dynamic
feature FMD, then the object is now the first element detected. Obviously, the choice of the FMD order is
strongly dependent on the choice of the feature space.

6. CONCLUSION

Inspired from the biological human vision, the proposed model aims to be suitable for constrained applications
and to improve their detection and recognition processes. Based on existing energy frugal and bio-inspired
devices, the model combines two fields of view in a feature extractor, detector and descriptor, which reduces
the input images to a small amount of relevant data. The ’detector and descriptor’ device has been for the first
time mathematically formalized and simulated for experimenting its behavior. Four parameters of the system
have been identified as having a strong influence on the final results. Forthcoming research will consist in deeper
understanding the four parameters dynamical aspect influence. We have tested a feed-forward approach and have
now to investigate the retro-actions of the main parameters to improve the detection and recognition processes.
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