%0 Journal Article %T Spectral analysis of polygonal cavities containing a negative-index material %T Analyse spectrale de cavités polygonales contenant un matériau d'indice négative %+ Propagation des Ondes : Étude Mathématique et Simulation (POEMS) %A Hazard, Christophe %A Paolantoni, Sandrine %< avec comité de lecture %@ 2644-9463 %J Annales Henri Lebesgue %I UFR de Mathématiques - IRMAR %V 3 %P 1161-1193 %8 2020 %D 2020 %R 10.5802/ahl.58 %K dispersion %K Drude model %K essential spectrum %K resonance %Z Mathematics [math]/Analysis of PDEs [math.AP] %Z Mathematics [math]/Spectral Theory [math.SP]Journal articles %X The purpose of this paper is to investigate the spectral effects of an interface between vacuumand a negative-index material (NIM), that is, a dispersive material whose electric permittivity andmagnetic permeability become negative in some frequency range. We consider here an elementarysituation, namely, 1) the simplest existing model of NIM : the non dissipative Drude model, for whichnegativity occurs at low frequencies; 2) a two-dimensional scalar model derived from the completeMaxwell’s equations; 3) the case of a simple bounded cavity: a polygonal domain partially filled witha portion of Drude material. Because of the frequency dispersion (the permittivity and permeabilitydepend on the frequency), the spectral analysis of such a cavity is unusual since it yields a nonlineareigenvalue problem. Thanks to the use of an additional unknown, we linearize the problem and wepresent a complete description of the spectrum. We show in particular that the interface betweenthe NIM and vacuum is responsible for various resonance phenomena related to various componentsof an essential spectrum. %G English %2 https://hal-ensta-paris.archives-ouvertes.fr/hal-01626868v2/document %2 https://hal-ensta-paris.archives-ouvertes.fr/hal-01626868v2/file/AHL_2020__3__1161_0.pdf %L hal-01626868 %U https://hal-ensta-paris.archives-ouvertes.fr/hal-01626868 %~ ENSTA %~ CNRS %~ INRIA %~ INRIA-SACLAY %~ INSMI %~ INRIA_TEST %~ TESTALAIN1 %~ UMA_ENSTA %~ INRIA2 %~ TDS-MACS %~ UNIV-PARIS-SACLAY %~ IP_PARIS %~ IP_PARIS_COPIE %~ GS-COMPUTER-SCIENCE %~ INRIAARTDOI