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Optimizing Vehicle Motion Control for Generating Multiple Sensations

Moad Kissai®, Xavier Mouton?, Bruno Monsuez', Didier Martinez?, and Adriana Tapus'

Abstract—Most of automotive researches focus on au-
tonomous vehicles. Studies regarding trajectory planning and
trajectory tracking became preponderant. As in case of com-
mercial ground vehicles there is a driver in the loop, one
should raise the important question of how the trajectory
should be tracked. In this paper, we investigate the influence of
controlling integrated chassis systems on the vehicle’s behavior.
A fixed Model Predictive Control is used to track the trajectory.
Tunable vehicle motion control is however used to provide
different motion feelings. Results show that a specific trajectory
could be followed in different manners. Therefore, vehicle
dynamics can be and should be controlled in such a way
to generate adaptive trust feelings to passengers in case of
autonomous driving.

Index Terms— Autonomous Vehicles, Vehicle Motion Con-
trol, Chassis Systems, Control Allocation, Optimization, Co-
simulation.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) are one
of the most important features in ground vehicles. Normal
drivers are usually trained to handle a vehicle in normal
situations. In hazardous situations, vehicle dynamics become
less obvious to predict. Assistance systems provide then the
necessary control to help drivers continue their maneuvers
with less damages. Both car manufacturers and equipment
suppliers are actively working on developing new technolo-
gies to enhance the vehicle’s safety. It started with the
Anti-lock Braking System (ABS) in 1978 [1]. This system
consists of relaxing the brakes to regain adherence and then
braking again to decelerate the vehicle. The major goal
of ABS was to reduce the distance of braking for better
longitudinal control. A significant progress was provided by
the Electronic Stability Program (ESP) in 1992 [1]. This
system consists of a differential braking between right and
left tires to provide a yaw moment and control the yaw
rate. This is particularly beneficial for obstacle avoidance
for example. The ESP brought then a lateral control to
help drivers stabilize their vehicles. A natural evolution
would be a global control or fully autonomous vehicles.
In this case, longitudinal, lateral, and eventually vertical
control logics should be coordinated to handle vehicle and
tire dynamic couplings [2]. Moreover, with the addition of
new technologies, vehicles become over-actuated [3]. Control
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should be allocated to the right actuators and effectors no
matter what the situation is.

In this context, different strategies have been adopted
in the literature. Two major control approaches have been
distinguished in [2]: the Downstream Approach and the
Upstream Approach. In the first approach, data-based and
techniques such as Artificial Neural Network [4], or rule-
based techniques such as Fuzzy Logic Control [5] are used
downstream systems’ standalone controllers. These tech-
niques handle specific use-cases and depend on designers’
expertise. As no customer feedback about autonomous vehi-
cles is available, coordination should rather be more general
independent from any use-case. This can only be done by
describing mathematically the dynamic couplings and use
optimization-based techniques. A sufficient amount of infor-
mation is then required to distribute the commands and allo-
cation is done upstream the systems’ standalone controllers
[2]. Optimization-based control allocation techniques offer
additional attractive features. In fact, optimization is carried
out by taking into account multi-objectives. In [6],[7],[8] for
example, energy consumption has been used as a criterion
to allocation precision and stability. This is particularly
beneficial for electric vehicles [9]. Having multiple ADAS or
chassis systems can then offer supplementary possibilities.
Vehicle motion can be then modified in a way to fulfill
multiple objectives.

For autonomous vehicles however, qualitative objectives
could be required. When a driver has its hands off the
steering wheel, if an unexpected motion is generated, he
could be tempted to regain control of the vehicle. In case of
a vehicle equipped with an Electric Power-Assisted Steering
(EPAS) system, this may present few risks for drivers’ hands
due to the important amount of steering wheel torque [3].
One way to prevent this, is to tune the vehicle motion in
a way to generate expected motions like a human being
would do. To the best of our knowledge, there exist two
method to tune the vehicle behavior. Either we act on motion
references to be followed by the vehicle so the controllers
impose different commands to actuators, or we modify the
control allocation strategy so the commands are distributed
differently.

The purpose of this paper is to compare both approaches
to highlight the advantages and drawbacks of each one. The
goal is to give few insights about the ability of modern
control techniques to provide additional degrees of freedom
regarding motion feelings control. Investigations aiming to
adapt these techniques to drivers’ profiles are still needed
with the help of experiments. Here, a Model Predictive
Control (MPC) provided by LMS Imagine.Lab AMESim®



is used for trajectory tracking. Focus has been put more on
vehicle motion control tuning. A Gain-Scheduled H., con-
troller has been selected as the high-level controller for its ro-
bustness and dynamic couplings management. Optimization-
based Control Allocation methods are then used to distribute
the commands into the different actuators taking into account
tire potential. Results by co-simulation of AMESim® and
Matlab/Simulink® showed attractive improvements brought
by these control methods to handle on one hand complex
coupled situations, and on the other hand, to provide different
motions while tracking the same trajectory.

The rest of the paper is structured as follows: We start in
Section II by presenting the different modelings required for
the problem definition. In Section III, the different control
methods adopted are described. The two approaches enabling
the motion behavior tuning are both presented in Section
IV. Section V presents results obtained by co-simulation
of Matlab/Simulink® and AMESim®. A discussion about
future cars challenges and the relevance of this work is
provided in Section VI. Conclusions and future works are
outlined in Section VII.

II. SYSTEM MODELING

The vehicle considered in this paper is equipped with an
Electric Power-Assisted Steering (EPAS) system, an Elec-
tronic Stability Program (ESP), and a Torque Vectoring (TV)
system. This latter is realized by means of four motor-wheels.
The EPAS is mainly controlled by the MPC. The goal is
to study interactions between systems and what a better
coordination can bring to the vehicle motion control.

As no active suspensions are considered, a planar vehicle
model can be adopted. Nevertheless, as the ESP and TV are
based on differential forces between right and left wheels, a
four-wheeled vehicle model is necessary [10]. Using New-
ton’s laws of motion, one can find easily the following state-
representation [3]:

HEEIE
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Fxtot
Mztot

With:

. : longitudinal velocity of the vehicle,

: lateral velocity of the vehicle,

: yaw rate of the vehicle,

z.o,. Sum of longitudinal forces applied at the vehicle’s
Center of Gravity (CoG),

e M, ; sum of yaw moments applied at the vehicle’s CoG,

e M : vehicle’s overall mass,
e I, : vehicle’s yaw moment of inertia.
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Where:
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With:
o F,,  : front-right longitudinal force,
o F,,, : front-left longitudinal force,
o Fj, . : rear-right longitudinal force,
o Fj,, : rear-left longitudinal force,
e 0y : front steering angle,
o Iy :distance between the front axle and the vehicle’s
CoG,
o 1, : vehicle’s track.

Note that we have considered only controllable forces to
distribute by the control allocation algorithm. In fact, the
lateral force induced by the front steering is controlled by
the MPC. Introducing this force also in the vehicle motion
control induces request conflicts!.

Regarding tire forces, a linear tire model with varying
parameters developed in [11] is used to take into account
the couplings at the tire level. The forces are expressed as
following:

Fx:C;(a7M>Fz)K @)
F,=C; (k,p, F,) (6)
where
« K : the longitudinal slip,
o « : the side-slip,
o I : the friction coefficient,
o F, : the vertical load,

o Cf(a,pu, F,) : the tire varying longitudinal stiffness
with respect to the side-slip «, p, and F,,
e C*(k,u, F,) : the tire varying cornering stiffness with
respect to the longitudinal slip «, p, and F.
Detailed expressions of C¥ («, i, F,) and C} (s, i, F,) can
be found in [11].
In order to respect the friction ellipse concept [12], dy-
namic constraints are added [11]:

Fy <\/(uF.)* — F? (7)

Fy <\/(uF.)? — F2 ®)

I1I. VEHICLE MOTION CONTROL

Today’s vehicles are over-actuated [3]. Integrated systems
are expected to grow in number in the upcoming years due
to the road-map towards autonomous vehicles. A discussion
about control architectures to be adopted in order to face the
growing number of integrated systems is provided in [2].
A multi-layered architecture is claimed to present several
advantages, especially when systems coordination is located

IThis case has been verified by simulation.



upstream the systems themselves. The same approach is
adopted here. The control architecture is divided in a high-
level control to generate the required sum of forces and
moments necessary to move the vehicle, a middle-level
control is used to distribute optimally the commands into the
four wheels, and a low-level control is used to transform the
forces into torques to be generated by the different actuators.

A. High-Level Control

The objective of this layer is to generate the generalized
forces and moments to be applied at the vehicle’s CoG.
Equations (1) and (2) are considered. The model can be
then considered as linear with the varying parameter V,,. To
take into account this variation, a gain scheduled controller
is chosen with V,, as the scheduling variable. In fact, today’s
vehicles are equipped with an inertial measurement unit and
a yaw rate sensor?. Therefore, Vy can be estimated using a
simplified vehicle model as in [3].

Moreover, as stated in [13], vehicle motion control faces
several problems related to parameter uncertainties. The
control should valid whether there is only the driver in the
vehicle or with other passengers, whether tires are brand
new or not and so on. A robust controller is then needed.
The Ho synthesis has been selected to be able to optimize
the controller parameters. As this synthesis usually generate
high order controllers [14], a common practice consists on
reducing the controller in the frequency domain while keep-
ing an acceptable level of robustness [15]. Here, a different
methodology is adopted. As most industrials prefer PID
controllers for implementation issues, we add the controller
structure as a requirement in the Ho, synthesis. To choose
the suitable structure to be adopted, a pre-study of the plant is
required. We suppose that in stable maneuvers V), has a very
low value. Therefore, a decoupled controller can be chosen.
Moreover, due to the integral characteristic of each control
axis, a PI controller can be chosen at each axis. Four tunable
parameters are then chosen in the optimization H ., problem.
More details about this methodology can be found in [16].

Regarding performance weighting functions, closed loop
shaping is used for defining control design requirements
as in [17]. We choose here a steady-state offset less than
1%, a closed-loop bandwidth higher than 1Hz?, and an
amplification of high-frequency noise less than a factor 3.
The Ho, synthesis is iterated for different values V,. A
gain-scheduled H, controller is finally synthesized, which
depends on V), estimations.

One major difference with respect to [17] investigations is
the scheduling parameter. In our case, the gain-scheduling is
only used for the high-level control. In [17] gain-scheduling
is used to coordinate subsystems depending on a stability
index. In this paper, optimization-based control allocation
techniques are selected to handle subsystems coordination.

2 According to the co-authors working in the Group Renault.
3To prevent the control allocation algorithm from operating at 100Hz
frequencies for example.

B. Middle-Level Control

The goal of middle-level control is to optimally distribute
the generalized forces generated by the high-level control to
ensure the execution of these forces. As long as an over-
actuated system is concerned, multiple objectives can be
fulfilled. This is very important for this study as several
problems are aimed to be addressed regarding autonomous
vehicles. Optimization-based control allocation techniques
are then selected to handle the forces distribution problem.

The control allocation problem is defined as follows [18]:
find the control vector, @ € R™ such that

Beﬁ'ﬁ = ﬁdes (9)

subject to
{ﬁmzn S ) S _‘maz (10)
U < Umag (11)

where Beg € R™*™ is a control effectiveness matrix,
Umin € R™ and 4, € R™ are the lower and upper position
limits, respectively, @ € R™ is the control rate, U, € R™
is the maximum control rate, U4., € R"™ are the desired
accelerations, n is the number of control effectors, and m is
the number of axes to control.

Several solvers can be used to solve a multi-objective
problem. Sequential Least Squares (SLS) uses a two stage
Active Set Algorithm (ASA) to handle two optimization
problems [19]. The Weighted Least Squares (WLS) solves
the bounded least squares problem using one stage ASA after
few matrix transformations by means of different weights
[19]. Other techniques not based on ASA that can be cited are
Cascading Generalized Inverses (CGI) [20] and the Fixed-
Point Iteration (FPI) [21]. We choose here the WLS based
on ASA for its flexibility to express multiple objectives, and
for its relative rapidity due to its one stage formulation. The
optimal solution is then:

min
Upmin <UL Umaz

Uopt = ATy (12)

> Wi (Bid — )|
l

e Uy : optimal control vector,

o [ : number of objectives,

e 7  :weight of the i*" objective,

« W; : non-singular weighting matrices defining pref-
erences of each axis,

o U, : desired vector of the " objective,

o B; : effectiveness matrix relating the control vector
to the desired i*" objective.

Regarding the EPAS-ESP-TV coordination case:

F,

Zfl

Fay, (13)

Trl

F"K rr

Umin and U,q, reflect tire limits with respect to the friction
ellipse concept (7) and (8). Regarding vertical forces, we



have [3]:

1 . 1 h 1 h
F,, =-Mg——-Ma,— — -=Ma,— 14
n=gMop —gMasp =g Maym o (14)
1 . 1 h 1 h
F,, =-Mg——-Ma,—+-Ma,— 15
o= Moy = gMaep v o May w15
1 Iy 1 h 1 h
F, =- =+ -Ma,— — =Ma,— 16
n = gMop T aMaa =g Maym (16)
1 Iy 1 h 1 h
F, =-Mg=+-Ma,— + -Ma,— 17
w = gMep g Mar g May s (D)
where:
e g : gravitational acceleration,
e a, : vehicle’s longitudinal acceleration,
e a, : vehicle’s lateral acceleration,
e [, : distance between the rear axle and the vehicle’s
CoG,
e L : vehicle’s wheelbase,
e h : height of vehicle’s centre of gravity.

For the friction coefficient, the problem is more complex.
In fact, tires are the only effectors for ground vehicles.
Their behavior changes with friction. Control logic would
not be as effective as in the normal situation. The changes
in friction should then be predicted to reconfigure the control
algorithm and act differently on tire, and on the reference in
order to follow feasible targets. The difficulty is that this
coefficient can only be estimated when exceeding it when
using effect-based estimation methods [22]. It could be then
too late to control the vehicle afterwards. Data-based tech-
niques could provide better solutions [23]. Experimental tests
showed promising results. These techniques should be further
investigated. This however goes beyond the scope of this
work. In this paper, we suppose that the friction coefficient
can be estimated as in [24]. H . synthesis has been chosen in
order the generate a high-level robust controller and reduce
the negative effects of this hypothesis.
The desired acceleration ¥4, in this case is:

= FItot
Vdes = M

Ztot

(18)

The effectiveness matrix related to control allocation pre-
cision Beg is:

cos(67) cos(df) 1 1
Besr = b b bt (19)
2,1 2,2 5 3

where:

o bo1 =lfsin(dy) — %cos(éf) ,

o bao =lssin(dy) + %Tcos (0f) .

C. Low-Level Control

The low-level control corresponds to the most intern loop.
Adopting a closed loop here leads to very high crossover
frequencies. Moreover, the control allocation algorithm gen-
erates tire forces. Therefore, for a closed-loop low-level
control, either we should be able to measure online tire
forces, which is not the case in commercial vehicles, or we

can use the inverse of the linear tire model with varying
parameters as an interface between the two layers, and
control the wheels’ speed. For simplicity, and as this part
goes beyond the scope of this paper, only a direct calculation
is adopted:

Ty, = —RiFy,

)

(20)

Where:
o Tj,, : brake torque at the ¢ — j* wheel,
e R; : wheels’ effective radius of axle

9
[

IV. TUNABLE MOTION BEHAVIOR

Several challenges need to be overcome regarding au-
tonomous vehicles. Most researches focus on trajectory
planning and tracking problems. However, this needs to be
designed by taking into account the human in the loop.
The vehicle behavior should be more similar to a human
driving than a robot driving. Drivers have different profiles
and different driving styles. Motions generating excitement
feelings among certain people could generate in contrast fear
feelings among others. The goal of this paper is to prove
the ability of modern control techniques to provide different
motion behaviors, and therefore different motion feelings to
passengers.

Two different approaches to tune the vehicle motion
behavior are exposed here. The first approach consists of
modifying the motion targets to follow. The high-level con-
trol should in this case generate different generalized forces
in order to amplify or reduce the vehicle response, or change
its dynamics. The second approach consists of allocating
differently the commands into the subsystems to generate
different accelerations.

A. Reference Tuning

It should be noted that the MPC algorithm provided by
LMS Imagine.Lab AMESim® can generate a steering wheel
angle and a velocity profile. The MPC here can represent a
driver model or a virtual driver. This paper focuses more
on the vehicle motion control in general after receiving
the signals generated by the MPC without differentiating
between a real or virtual driver.

The yaw rate reference needs to be generated using only
the steering wheel angle value and the vehicle’s speed value.
The bicycle model can then be used to generate the yaw
rate target [25]. This simplified vehicle model represents
the nominal lateral behavior of the car and is characterized
by its fast computation to generate a reference, especially
the static version of the model. Nevertheless, the dynamic
bicycle model is used here to be able to not only generate
and amplified yaw rate, but also to be able to control the
transient behavior of the vehicle. The yaw rate reference is
then:

'l/Jref = :

14 Tyuns MV?
L4+t (Carly = Cal
¥ B0,y (Cortr = Cosli)
‘ 2n

oy

43 = f for “front” or r for “rear”, and j = I for “left” or r for “right”.



where:

e Kyyy: tuning gain,

e Tiun - tuning lag,

o C,, : initial cornering stiffness of front axle when no
longitudinal slip is considered,

o C,, : initial cornering stiffness of rear axle when no
longitudinal slip is considered.

Kiyn and 7y, can be then manually varied to see the
influence on the vehicle behavior.

B. Tuned Control Allocation

It is claimed that motion sickness and discomfort are
related to the vehicle’s accelerations [26]. One could think
of adding an additional objective to the control allocation
problem to distribute differently the commands, and try
to fulfill different objectives when it is possible. However,
in equation (9), as we express tire forces with respect to
generalized forces at the vehicle’s center of gravity, we
already link tire forces to accelerations. Adding another
objective with almost the same effectiveness matrix leads
to a rank deficiency. The optimization algorithm cannot then
find a solution. This would not have been the case, if for
example we want to penalize the lateral acceleration with
another subsystem as the 4-Wheel Steering System. The idea
is then to amplify or reduce the accelerations directly by
generating amplified or reduced generalized forces. Equation
(9) becomes then:

Beﬂ'ﬂ = nges (22)

Where T is a diagonal matrix with tuning parameters to
amplify or reduce components of Uges.

This actually prevents from several difficulties. In this way,
desired accelerations are not be predefined. And there is no
need to add an additional objective, which can slow down the
computation. However, this can lead to control imprecision.
The tuning parameters should not reach large values. Again,
this may need additional experimental tests. The optimal
control vector is then:

||Wca (Beﬂ"ﬁ - Tﬁdes)”2 (23)

Uppt = arg min
v ﬁnlingﬁgﬁnlaz

The Active Set Algorithm (ASA) is then used [19]. The
cost function is rewritten following the ASA formulation:

min
Umin SULUTmaz

V. CO-SIMULATION RESULTS

(24)

Uppt = ATY

Adl — BH

As optimization-based control allocation algorithms are
involved, the solver has been written in Matlab R2015a®
for its strong numerical computation. Regarding LMS Imag-
ine.Lab AMESim®, it proposes a wide vehicle dynamics
library for high-fidelity modeling. To take advantage from
each software, both are co-simulated using Simulink® as an
interface. The high, middle, and low level control logic is
implemented in Simulink, while a high-fidelity car model
with 15 degrees of freedom is selected in AMESim. The

maneuver consists on a trajectory race tracking with high-
speed values. The approved Magny-Cours area® has been
reproduced in 3D by AMESim developers using softwares
Open Street Map and JOSM. We use then this severe
maneuver to see the motion feelings generated while keeping
the same trajectory.

It is important to keep the same trajectory in all simula-
tions because we want to separate the effect of generating
different trajectories for different feelings from achieving this
with different accelerations (Fig.1).

Y (m)

——Reference trajectory
----1st Approach: Reference Tuning
------- 2nd Approach: CA Tuning

() 100 200 X (m) 300 400 500

Fig. 1. Trajectories in all simulations.

A. First Approach: Reference Tuning

First, we use equation (21) to change the yaw rate ref-
erence by means of Ky, for the response amplitude and
Tiun for the transient behavior. The yaw rate responses are
illustrated in Fig. 2.

05"~ —Neutral
——Reduced Gain

—Amplified Lag
——Amplified Gain

Yaw rate (rad/s)

L
0 20 40 60 80 100 120

Time (s)
Fig. 2. Yaw rate responses in case of reference tuning.

We notice that there is not much effect on the yaw rate
response. In fact, when tracking the exact same trajectory
with the same velocity, the yaw rate will always be the same.
So when amplifying for example Ki,,, to keep the same
yaw rate, the MPC computes less front steering angle so the
reference stay the same as Fig. 3 shows.

In Fig. 4 we can see that it is the difference between right
and left tire forces that complements the influence of the
front steering to turn the vehicle.

Therefore, this approach is not efficient regarding tuning
accelerations for different feelings when there is a strict
trajectory tracking along with a vehicle motion control (Fig.
5).

5Magny-Cours, Nevers, Niévre, Bourgogne, 58470, France.
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Fig. 4. Engine torques in case of reference tuning.

Howeyver, this can be relevant when there is a human driver
as only few effort is needed to turn the vehicle. The torque
vectoring and ESP act as assistance systems. This might also
be even more beneficial for automated emergency steering
for obstacle avoidance for example, as even if the driver
want to take back the control, the steering wheel does not
turn too much to hurt the driver’s hands.

B. Second Approach: Tuned Control Allocation

Here, we penalize the forces allocation to influence di-
rectly the generated accelerations. As we can see in Fig. 6,
we can obtain different lateral accelerations.

Which gives then different yaw rate responses while
keeping the same trajectory (Fig. 7).

Regarding the front steering angle, this have little impact
regarding the amplitude, only the transient behavior is dif-
ferent as Fig. 8 shows.

So to benefit from advantages of both approaches, a mixed
approach is presented in the next paragraph.

C. Mixed Approach

Here, both the reference and the control allocation are
tuned. This allows us the have different accelerations re-
sponses as Fig. 9 shows

Along with different steering wheel effort at the same time.

And all of that while keeping the same trajectory. In
this way, trajectory tracking can be decoupled from motion
control, and both security and comfort can be ensured. But
of course, with additional chassis systems, e.g. the 4-Wheel
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Fig. 5.

Lateral acceleration in case of reference tuning.

Lateral acceleration (mlsz)
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=—Neutral
—Amplified forces

I
0 20 40 60 80 100 120

Time (s)
Fig. 6. Lateral acceleration in case of control allocation tuning.

Steering system, we can even allow different trajectory gen-
eration to have even more motion feelings. This corresponds
to one of our future works.

VI. FUTURE CARS MOTION-RELATED
CHALLENGES

This paper aims to prove the potential of modern control
technique to provide different motion feelings. This could
be used to tune the vehicle behavior in order to make au-
tonomous vehicles motions predictable and then trustful [27].
This can facilitate the acceptance of such robots/autonomous
vehicles in the society and then accelerate their development.
However, each driver has its own perception of what a
trustful motion means. The same vehicle motion behavior can
therefore generate different feelings in humans, depending
on their past experience with non-autonomous vehicles.
Two approaches to tune the vehicle motion behavior have
been presented in this paper. The first approach consists of
changing the motion reference, while the second one is based
on a tuning of control allocation algorithms.

A. Importance of Motion References

In the first approach, an addition tuning gain and tuning lag
have been added in order to change the response amplitude
but also the transient behavior. This enables to parametrize
the vehicle response to commands generated by either a
human driver or a virtual driver. In fact, in case of a
human drive, starting from a steering wheel angle input,
the generated yaw rate by the vehicle can be amplified,
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Fig. 8. Steering wheel angle in case of control allocation tuning.

reduced, delayed and so on, thanks to activation of the other
subsystems. This provides different sensations to the driver
itself and additional possibilities. The same logic can be
applied for a virtual driver. If the MPC generates only a front
steering angle to track a trajectory, the remaining systems can
be used to change the dynamic responses of the vehicle. The
driver can then choose among a sportive virtual driver, or a
more careful virtual driver.

More complex reference models can be used to provide
additional degrees of freedom. However, this additional pa-
rameters should be linked to motion feelings. Each parameter
influence should be identified by experimental tests on hu-
mans. But these tests could be hard to interpret if results
vary from a driver to another. A preliminary study could
be necessary to classify first human drivers in order to be
able to identify the influence of each parameter on generated
sensations.

B. Control Allocation Challenges

Here, a simple approach has been adopted for tuning con-
trol allocation algorithms. Accelerations have been directly
amplified or reduced as these variables are directly related
to motion feelings. However, this approach faces the same
problem as the first one. The amount of accelerations to add
or reduce should be controllable and adapted to each driver.
Only experimental tests involving humans could give insights
about the influence of tuning control allocation objectives.
Moreover, qualitative objectives as trust feelings, comfort and
so one could be more sophisticated than only accelerations
tuning. The control allocation problem could become a
multi-objective problem with variable priorities depending
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on the situation. In this context, authors in [28] proposed
an interesting approach regarding objectives priority vari-
ance. Their approach consists on defining stabilization and
trajectory tracking envelopes in the MPC algorithm where
the considered states should remain. But when an obstacle
has to be avoided, these envelopes can be violated in a short
amount of time to ensure passenger security, then stabilize
the vehicle. These adaptability should be also permitted in
control allocation optimization algorithms. But again, the
considered qualitative objectives should be first identified
and then formalized. Moreover, adaptability could also be
needed not only to take account of the environment changes,
but also depending on the driving styles. As authors of [29]
have reported, passengers have different expectations from
autonomous driving than manual driving, as in the first case,
passengers get easily bored.

Also, more chassis systems should be integrated and
studied. 4-Wheels Steering (4WS) system for example could
provide more comfortable and pleasant cornering maneuvers
without influencing the vehicle’s longitudinal speed as the
brakes do [30]. This shows the lack of researches in the
literature about vehicle motion control and motion feelings.
More support and corporation are expected from car manu-
facturer for deeper investigations.

VII. CONCLUSIONS

In this paper, two approaches for tuning vehicle behavior
have been compared. While the first one consists of changing
motion references dynamics, the second one consists of
distributing differently the commands into subsystems by



means of a tuning matrix to amplify or reduce accelerations.
Results showed that in the first approach, the use of TV and
ESP is amplified to realize maneuvers with less front steering
angle, and in the second approach, accelerations have directly
been tuned to enable different motion feelings. Therefore, a
mixed approach have been proposed to benefit from both
advantages.

This demonstrates the need of implementing this kind
of modern control algorithms in future cars. The more
autonomous the vehicle will become, the more authority the
driver should delegate, and the more the vehicle behavior
should stay predictable to prevent drivers from taking back
suddenly the control.

The goal of this paper is to prove that with a multi-
layered architecture, control problems are separated from
distribution problems. Therefore, by means of modern con-
trol techniques, additional objectives can be satisfied. For
future autonomous vehicles where human acceptance is not
ensured yet, this represent an opportunity to exploit more the
vehicle’s potential in a way to adapt its behavior to humans
expectations.

The authors recognize that more evidence should be pro-
vided by means of real experiments before proposing any
standards. For this reason, future works will focus on taking
care of implementation issues on one hand, and study the
option of generating different trajectories for more motion
feelings on the other hand. We expect more collaboration
from car manufacturers in order to prove our claims and
participate in autonomous vehicles development.
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