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ABSTRACT

This paper is concerned with perceptual control strategies for phys-
ical modeling synthesis of vibrating resonant objects colliding non-
linearly with rigid obstacles. For this purpose, we investigate sound
morphologies from samples synthesized using physical modeling
for non-linear interactions. As a starting point, we study the effect
of linear and non-linear springs and collisions on a single-degree-
of-freedom system and on a stiff strings. We then synthesize real-
istic sounds of a stiff string colliding with a rigid obstacle. Numer-
ical simulations allowed the definition of specific signal patterns
characterizing the non linear behavior of the interaction according
to the attributes of the obstacle. Finally, a global description of
the sound morphology associated with this type of interaction is
proposed. This study constitutes a first step towards further per-
ceptual investigations geared towards the development of intuitive
synthesis controls.

1. INTRODUCTION

This paper is concerned with the perceptual control of environmen-
tal sound synthesis processes, based on the ecological approach
to auditory events [1],[2]. This approach, adapted from the eco-
logical approach to visual perception [3], supposes the existence
of invariant structures (specific patterns in the perceived signal)
that carry the necessary information for the recognition of sound
events. These structures can be split in two groups: the structural
invariants, which enable the recognition of properties of a sound-
ing object and transformational invariants, that describe the trans-
formations of the object. This theory was first exploited by War-
ren and Verbrugge concerning the auditory recognition of acoustic
events [4]. Then, some studies have identified invariants contain-
ing sufficient information to discriminate the material [5] or the
size [6] of impacted objects. More recently, This approach has in-
spired a conceptual description of sounds through an action-object
paradigm [7],[8],[9].

Research into sound invariants is of great interest for the per-
ceptual control of sound synthesis. Indeed, the definition of a mor-
phology corresponding to an invariant allows for simplified control
through the mapping of several synthesis parameters to one global
parameter described perceptually. Thus, it allows for the control of
sound synthesis processes using high level descriptors, according
to perceptual measures.

This conceptual description has led synthesis processes based
on the source-filter model. In [7],[8],[9] transformational invari-
ants are responsible for the evocation of a sound-producing action
(scratching, rolling), while structural invariants are responsible for
the evocation of the exited object (shape, material, size). Hence,
in the source-filter model the resulting sound is obtained by the
convolution between the transformational invariant defining the
source (action) and the structural invariant defining the filter (ob-
ject).

One aim here is to develop new tools for sound designers, giv-
ing them an alternative to databases of recorded sounds for differ-
ent applications such as video games. It leads to real-time synthe-
sis of sounds in virtual or augmented reality environments directly
controlled by the in-game events. In contrast to methods based on
the use of a database of recorded sounds, such a synthesis proce-
dure can adapt quickly to event occuring during gameplay. Also,
it opens the perspective of generating unheard sounds that carry
information contained in the sound invariants: "sound metaphors".

In previous studies, the mapping of perceptual features onto
synthesis parameters for an intuitive control of sounds has been
proposed [10]. Aramaki et al. developed an impact sound synthe-
sizer intuitively controlled with semantic labels describing the per-
ceived material, size and shape of the object [11],[12]. Here, the
authors defined several labeled structural invariants (material, size
and shape) in relation to signal properties (modes, damping). The
impact synthesizer was extended to continuous-interaction sounds:
rubbing, scratching, and rolling [9]. Here, transformational invari-
ants are characterized as a statistical description of the excitation
signal in relation to the perceived action. Also, Thoret et al. pro-
posed a description of the non-linear transitions between squeaks
and self-oscillation [13].

The aim of this study is to define the invariants relative to the
disturbance undergone by a vibrating resonant object when it col-
lides with a non-resonant obstacle. This kind of interaction are a
regular occurrence in daily life. For example, in the case of elec-
tronic vibrating objects, one can hear a "buzzy" sound whenever
they touch a stiff obstacle (washing machine, microwave, vibrating
phone...). It occurs as well in various acoustic musical instruments.
For instance, the particular timbre of the tanpura results from the
collisions between the strings and the bridge [14]. Also, guitarists
can produce a screaming tone by playing a pinched harmonic, and
a large range of sounds can be generated using prepared pianos
[15]. We can see here that this type of interaction includes a wide
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range of phenomena from a perceptual point of view. Indeed, we
perceive a vibrating phone on a table as a sequence of impacts, a
natural harmonic on a string produces a short "buzzy" sound fol-
lowed by a new modal state of the string, and in some other cases,
it may produce harmonic distortion, affect the sustain, the modes’
frequency or even change the type of interaction (e.g., transition
from squeak to self-oscillation on a glass).

As a first step towards define these invariants, we consider a
1-D resonant object (a stiff string) colliding with a clamped stiff
obstacle not located too close to the string ends. This would cor-
respond to the action of choking a string or playing a natural har-
monic if the obstacle is located at a specific position. In this case,
there is no possible coupling between the string and the barrier as
both of them are clamped to the ground and we do not study the
specific behavior when the obstacle is close to the bridge.

There are recent investigations into the numerical modeling of
collisions in musical instruments [16][17], but very little work on
the perceptual characterization of the synthesized signal.

Our approach consists in first gathering a database representa-
tive of the diversity of sounds that can be produced with this type
of interaction. We made the choice here to synthesize samples us-
ing a numerical solving of the differential equations that describe
the physical behavior of the system, as it allows the synthesis of
realistic sounds with a precise control over all the experimental
parameters. We then propose an empirical description of the sig-
nal related to the type of interaction. Finally, we make hypotheses
regarding the signal elements that seem to be significant for the
perception of the phenomena to characterize the related sound in-
variant.

The next step is to validate these hypotheses through listen-
ing tests that consist in comparing reference sounds synthesised
with the physical model to sounds synthesized with a signal model
reproducing precisely the sound morphologies that seem to be im-
portant for the perception of the phenomena according to our ob-
servations. The sounds will be synthesized to evoke different spa-
tial locations and structure of the obstacle.

Also, we may expand our study to include interactions close to
the string ends (e.g. tanpura), with coupling between the objects
(e.g. rattling elements) and apply these sound invariants to any
type of objects (shape, material and size). This will lead to other
perceptual tests and, it is hoped, to a real-time synthesis process
controlled by perceptual features according to the action-object
conceptual description of sounds. The final aim is to improve the
design of the source-filter synthesis process and the related con-
ceptual description of sounds to include this new type of interac-
tion.

This article is organized as follows: To introduce how non-
linear interactions modify the response of a system, a brief overview
of the effects of non-linear springs and collisions on a single-degree-
of-freedom system is presented in the next section. The following
section details the effect of springs and collisions on a stiff string,
and a description of signal morphology is proposed subsequently.
Conclusions and perspectives are presented in the last section.

Sound examples are available at https://drive.google.
com/open?id=1sNUu6krfWO-rCZD_vJV4SrZ4RUyloJfq

2. NON-LINEAR SPRINGS AND COLLISIONS ON A
SINGLE DEGREE-OF-FREEDOM SYSTEM

In this section, we aim to describe the effects of collisions on the
signal morphology for the simplest vibrating system: a 1 Degree-
of-Freedom (DoF) mass/spring/damper system. This is the first
step to understand how the signal is affected by collisions on a
rigid barrier.

2.1. Single degree-of-freedom system

Consider a mechanical damped harmonic oscillator, of mass M ,
stiffness K

0

and damping constant �
0

, and with displacement u (t)
as a function of time t. The ordinary differential equation govern-
ing the displacement of the oscillator is

d2u
dt2

= �!2

0

u� 2�
0

du
dt

(1)

where !
0

=
p

K
0

/M . For underdamped conditions (as is usually
the case in musical systems), the general solution is

u (t) = e��0t (A cos(!t) +B sin(!t)) (2)

where ! =
p

!2

0

� �2

0

, and for some constants A and B deter-
mined by initial conditions.

In discrete time, consider the time series un, representing an
approximation to u (t) at time t = nk, where k is the time step
(and Fs = 1/k is the associated sample rate). An explicit fi-
nite difference scheme approximating (6) above may be written,
in condensed operator form, as:

�ttu
n = �!2

0

un � 2�
0

�t·u
n (3)

where

�ttu
n =

1
k2

�

un+1 � 2un + un�1

�

, �t·u
n =

1
2k

�

un+1 � un�1

�

(4)
This scheme may be written more explicitly as a recursion al-

lowing the calculation of un+1 from un and un�1:

un+1 = (un(2� k2!2) + un�1(�1 + k�
0

))/(1 + k�
0

) (5)

2.2. Effect of a non-linear spring

As we model the barrier as a unilateral non-linear spring, it is of
interest to take a look at a classic non-linear spring (see figure1):

u(t)

K0 K1

M

Figure 1: Damped harmonic oscillator with a cubic spring of stiff-
ness coefficient K

1

.

d2u
dt2

= �!2

0

u� 2�
0

du
dt

�H(t� t
0

)!4

1

u3 (6)
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With !
1

= 4

q

K1
M , K

1

the stiffness of the cubic spring,H(t) the
Heaviside step function, and t

0

the time of appearance of the non-
linear spring (here, we set t

0

= 1s).
We solve the problem with the following scheme[18]:

�ttu
n = �!2

0

un � 2�
0

�t·u
n �H[n� t

0

k
]!4

1

(un)2µt·u (7)

with µt·u = (un+1 + un�1)/2, H[n] the discrete Heaviside step
function.

The appearance of the non-linear part in a second time allows
us to visualise the linear behavior (for t < t

0

) and the non-linear
behavior (t > t

0

) on the same spectrogram.

Figure 2: Spectrogram of u for the single-degree-of-freedom sys-
tem with a cubic spring term activated at t = 1s with !

1

=
300m�1/2.s�1/2, initial conditions u0 = 1m, u1 = 1m.

One can notice two phenomena related to the appearance of
the non linear spring (see figure 2): the frequency of oscillation
changes abruptly to an higher value then decreases and harmonic
distortion appears (creation of the third harmonic). Thus, the fre-
quency of non-linear modes varies with the amplitude of vibration
of the spring (stiffness increases with amplitude, which is typical
of springs of hardening type), and the waveform is no longer sinu-
soidal.

2.3. Effect of Collisions

The modeling of collisions with a rigid barrier may be written as
the contact with a stiff unilateral non-linear spring (see figure 3),
of restoring force Fc = d�

du , � = K
c

↵+1

[u]↵+1

+

([16]).
With Kc the stiffness of the interaction, ↵ the non-linear exponent,
and [u]

+

= (u+ |u|)/2 the positive part of u.

u(t)

K0 Kc

M

Figure 3: Damped harmonic oscillator colliding with a barrier of
stiffness Kc.

@2u
@t2

= �!2

0

un � �
0

@u
@t

� H(t� t
0

)
M

d�
du

(8)

We use the following scheme [16]:

�ttu
n = �!2

0

un � 2�
0

�t·u
n �

H[n� t0
k ]

M
�t��

n+

1
2

�t·un
(9)

with:
�n+

1
2 =

1
2

�

�(un+1) + �(un)
�

(10)

It leads to the expression:

F(r) = r + b+
H[n� t0

k ]k2

M(1 + �
0

k)
�(r + a)� �(a)

r
= 0 (11)

Given:
r = un+1 � un�1,
a = un�1

b = (�2un + 2un�1 + !2

0

k2un
0

)/(1 + �
0

k)

This equation can be solved using a Newton-Raphson algo-
rithm at each time step.

We use the approximation �(r+a)��(a)
r ⇡ �0(a) when r < ✏.

Figure 4: Spectrogram of u for the single-degree-of-freedom sys-
tem with a stiff unilateral non-linear spring appearing at t

0

= 1s.
Kc/M = 1.6 ⇤ 1010m�1/2.s�1/2, ↵ = 1.9 initial conditions
u0 = 1m, u1 = 1m.

The response for a unilateral non-linear spring is close to the
classic non-linear spring (see figure 4). We observe a frequency-
varying mode tending to the original mode as the amplitude tends
to zero, and important harmonic distortion as the deformation of
the waveform is abrupt.

To sum up, when a single-degree-of-freedom system collides
with a non-resonant obstacle, it increases the frequency of its mode
of vibration and creates harmonics. The frequency tends to its orig-
inal value and the harmonic distortion disappears as the amplitude
gets closer to zero.

As we switch the single-degree-of-freedom system to the stiff
string, we can expect mode coupling when the descendant modes
and their harmonics cross other modes of the structure, as we ob-
serve this kind of behavior on gongs and cymbals [19].

3. SPRINGS AND COLLISIONS ON A STIFF STRING

In this section, the linear model and the scheme used to synthesize
realistic sounds of a stiff string is presented. Then, we study the
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effects of linear and non-linear springs attached to the string on
the frequency content of the samples in order to introduce how
modes are impacted by perturbations. Finally, the collision model
is implemented, and a description of the resulting morphology is
presented.

3.1. Physical model of the stiff string and numerical scheme

The following partial differential equation describes the behavior
of a stiff string subject to forces. This linear model does not take
into account the variation of tension in the string (no pitch bend-
ing). it is commonly used for simulations and sound synthesis
[20][21][18].

@2u
@t2

= c2
@2u
@x2

�2

@4u
@x4

�2�
0

@u
@t

+2�
1

@3u
@t@x2

+
1
⇢S

X

m

�(x�xm)Fm

(12)
with:

· u(x, t) the transversal motion of the string,

· c =
q

T
⇢S = 404.02m.s�1,

·  =
q

EI
z

⇢S = 1.297m2.s�1,

· �(x) the Dirac function.

The signification and values of the parameters are defined in ta-
ble1.

We can solve the equation using the following explicit finite
difference scheme:

�ttu = c2�xxu� 2�xxxxu� 2�
0

�t·u+ 2�
1

�t��xxu+ Jm.Fm

(13)
The previous equation can be displayed in a matrix form:

¯̄Aūn+1 = � ¯̄Būn � ¯̄Cūn�1 + J̄mFm (14)

with:

· h the grid spacing, chosen at the stability limit,

h =

q

(c2k2
+4�1k+

p
(c2k2

+4�1k)2+162k2
)

2

,

· k the time step interval, k = 1/fs with fs the sampling
frequency,

· �xxu = 1

h2 (u
n
l+1

� 2un
l + un

l�1

),

· un
l the discretized value of u(x, t) at the nth time step, and

the lth step of the string,

· �xxxxu = 1

h4 (u
n
l+2

� 4un
l+1

+ 6un
l � 4un

l�1

+ un
l�2

),

· �t�u = 1

k (u
n
l � un�1

l ),

· ēm = [ 0
1

0
2

0
3

... 0
i
m�1

1
i
m

0
i
m+1

... 0
L

]

· J̄m = ēTm/h

· Fm is the scalar value of the force m.

The boundary conditions are simply supported at the end points
of the domain u(x = {0, L}, t) = 0 ; @2u

@x2 |(x={0,L},t) = 0.
As excitation force, we use a simple model for a plucked string

at x = xex:

Fe(t) =

⇢

Af ⇤ (�cos( ⇡
�t t) + 1) if 0  t < �t

0 else

String:
Diameter � = 1mm
Length L = 0.5m
Density ⇢ = 7800kg.m�3

Young Modulus E = 210GPa
Tension T = 1000N
Damping parameters: �

0

= 0.05rad.s�1

�
1

= 0.002rad.s�1

Sampling:
Sampling frequency fs = 176400Hz
Recording duration trec = 10s
Excitation:
Position xex = L/10
Duration �tex = 1ms
Amplitude Af = 100N
Behavior:
Maximum amplitude Umax = 0.0103m

Resonance frequencies fn = nc
2L

q

1 +
�

⇡n
c

�

2

f
1

= 410.7Hz

Table 1: Parameters used for the simulation

3.2. Spring on a stiff string

To observe the effects of a linear and a non linear spring on a stiff
string, we use the string model presented eq. 12 with a linear and
a cubic spring:

@2u
@t2

= c2
@2u
@x2

� 2

@4u
@x4

� 2�
0

@u
@t

+2�
1

@3u
@t@x2

+ �(x� xs)Fs

(15)
with:

Fs = �!2

0

u(xs, t)� !4

1

u(xs, t)
3 (16)

We use the following scheme (see eq.13 for the stiff string, eq. 7
for the non-linear spring):

�ttu = c2�xxu� 2�xxxxu� 2�
0

�t·u+ 2�
1

�t��xxu+ Js.Fs

(17)
with:

Fs = �!2

0

ui
s

� !4

1

(ui
s

)2µt·ui
s

(18)

ui
s

is the element of the vector ū at the point of application of the
spring on the string (on the node i = is).

We observe a modification of the frequency of several modes of the
string with a pure linear spring at x = L/2. These modifications
remain constant as the signal evolves and follow a specific pattern
(see figure 5): even harmonics remain approximately unchanged
as they have a vibration node located at the application point of the
spring, when odd harmonics get their frequency increased as they
get stiffer around their vibration antinode. The frequency value
of the odd harmonics gets greater with !

0

but never exceed the
next even harmonic, and the increase get lower as the rank of the
harmonic get higher.
The quasi-harmonic string becomes in-harmonic, and those rela-
tively low variations of the frequency content cause a categorical
change of the perception: the system sounds like a linear plate or
a shell.

For the cubic spring at x = L/2, the behavior is consistent with the
previous observations: the even harmonics remain unchanged and
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Figure 5: FFT of the stiff string with a linear spring at x = L/2 for different values of !
0

.

Figure 6: Spectrogram of the stiff string with a cubic spring at
x = L/2 for !

1

= 300m�1/2.s�1/2.

the frequency of the odd harmonics vary over time as the stiffness
decrease with the amplitude (see figure 6).
But other effects caused by non-linearity appear. For !

1

=
300m�1/2.s�1/2, we can observe distinct frequency components
around the original modes of the string, but in a large number
due to harmonic distortion. Those new frequency components get
closer to the original modes as the amplitude decrease over time.
It is the same behavior that we observe on the single-degree-of-
freedom system unless the modes are duplicated.
When the stiffness gets to high values (figure 7), a lot of compo-
nents appear. This produces coupling between modes, resulting
in fast variation of amplitude and frequency of several modes. It
tends to chaotic behavior, creating a noisy-like signal at the begin-
ning of the signal.
The perceived signal sounds like non-linear plates such as cym-
bals.

3.3. Stiff string colliding with a point rigid barrier

Considering the size of the article, we do not model the barrier as
an object with its own dynamic but as a non-linear spring clamped

Figure 7: Spectrogram of the stiff string with a cubic spring at
x = L/2 for !

1

= 1000m�1/2.s�1/2.

to the ground. We control the appearance of the barrier with the
Heaviside function, and we manage to turn on the collision func-
tion when u(xc) < 0 (xc define the location of the barrier). In this
case, the appearance of the obstacle does not create any transient
behavior.
We use the collision model (eq. 8910) with the model of the stiff
string (eq. 12 13).

@2u
@t2

= c2
@2u
@x2

� 2

@4u
@x4

� �
0

@u
@t

+ 2�
1

@3u
@t@x2

+ �(x� xc)Fc

(19)

Fc = �H(t� t
0

)
⇢S

d�
du

|
(x=x

c

,t) (20)

with � = K
↵+1

[ui
c

]↵+1

+

and [u]
+

= u+|u|
2

.

The corresponding scheme is presented bellow:

�ttu = c2�xxu� 2�xxxxu� 2�
0

�t·u+ 2�
1

�t��xxu+ Jc.Fc

(21)
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Figure 8: Spectrogram of the stiff string (u0

l = Amaxsin(⇡ lh
L )) colliding with a point rigid barrier (↵ = 1.6) at x = L/2, from t = 0.5s,

for different values of Kc. From the left: Kc = 5 ⇤ 104N.m�↵ ; Kc = 5 ⇤ 105N.m�↵ ; Kc = 5 ⇤ 107N.m�↵ ; Kc = 5 ⇤ 108N.m�↵.

with:

Fn
c = �

H[n� t0
k ]

M
�t��

n+

1
2

�t·un
, �n+

1
2 =

1
2

�

�(un+1

i
c

) + �(un
i
c

)
�

(22)
ui

c

is the element of the vector ū at the point of application of the
collisions (on the node i = ic).
the finite difference scheme at the local point of the collision (node
ic) gives the following non-linear equation:

F(r) = r(1 + �
0

k) + b+
H[n� t0

k ]k2

⇢Sh
�(r + a)� �(a)

r
= 0

(23)
Given:
r = un+1

i
c

� un�1

i
c

,
a = un�1

i
c

,
b = < ēc , (�2 � c2k2�xx + 2k2�xxxx � 2�

1

k�xx)ū
n >

+ < ēc , (2 + 2�
1

k�xx)ū
n�1 >

We use a Newton-Raphson algorithm to solve the scheme at this
particular point.

4. SIGNAL MORPHOLOGIES DUE TO COLLISIONS ON
STIFF STRINGS

4.1. Simulations and investigations

In order to make it easier to understand how the collisions mod-
ify the frequency response, we study the response of the sys-
tem without excitation force with the following initial condition:
u0

l = Umaxsin(⇡ lh
L ) (see figure 9).

Figure 9: Representation of the initial condition of the transverse
displacement of the string.

Here the string initially vibrates only on its first vibration mode
until it collides with the barrier at t

0

= 0.5s. Then, we can ob-
serve a new distribution of the energy due to the frequency shift

of the mode, harmonic distortion and mode coupling (figure 8). If
we observe the left figure, we distinct clearly a frequency gap as
the obstacle appears and a few harmonics of this mode are gen-
erated. Then, a few other modes of the string are excited due to
mode coupling. This process expands itself as K gets higher. For
a really stiff barrier, very high frequency components are gener-
ated (up to 25kHz for K = 5 ⇤ 108N.m�↵) causing important
losses. Thus, all the components but the even harmonics disappear
quickly, creating a vibration node at the location of the obstacle
(here L/2).
The perceived sound is similar to a natural harmonic played on
a guitar for high values of K. For low values of K, the string
sounds like a bell as the barrier appear, and the frequency shift
bring back the sound to a regular string.

Figure 10: Spectrogram of a plucked stiff string colliding with a
point rigid barrier at x = L/3, from t

0

= 0, 5s, for Kc = 5 ⇤
108N.m�↵, and ↵ = 1, 6.

We study more specifically the cases that sound like a natural har-
monic (K � 1.108) because it is a clearly identified type of inter-
action and we are able to specify a pattern corresponding to this
behavior. The sounds generated for low values of K are peculiar
and it is hard to recognize what is the source of it. We describe
the pattern for the natural harmonic as following: if the considered
mode of the string does not have a vibration node at the exact lo-
cation of the obstacle, its frequency increases of a constant value
(⇠ f

0

/3 for xc = L/2) and a component appears in a symmetric
way below with a lower amplitude. Harmonic distortion and mode
coupling provoke the apparition of higher frequency components
in the whole audible frequency band (and above) corresponding to
other modes of the system {String + Rigid barrier}. These newly
excited modes provoke the apparition of higher frequency compo-
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nents themselves. This chain reaction induces important losses,
and lasts for a short duration after which only the modes with a
vibration node at the location of the obstacle remain.
From a perceptual point of view, the simultaneous presence of
frequency components created by harmonic distortion and modes
of the system create beats, roughness, and noisy-like signal at
high frequency.

This pattern varies with the position of the obstacle. Generally,
modes with a vibration node at the location of the obstacle keep
their frequency unchanged but may undergo some variations of
their amplitude (see the modes multiple of 3 for xc = L/3 on
figure 10). The modifications on the other modes depends on the
ratio between the vibration amplitude and the proximity of the
obstacle.

We introduce the scalar y, the transverse position of the rigid bar-
rier. The expression of � become � = K

c

↵+1

[ui
c

� y]↵+1

+

.

Figure 11: Spectrogram of a plucked stiff string colliding with a
point rigid barrier at (x = L/2;y = 0.065 ⇤U(t

0

= 0.5s)), from
t = 0.5s, for Kc = 5 ⇤ 108N.m�↵, and ↵ = 1.6.

Figure 12: Spectrogram of a plucked stiff string colliding with a
point rigid barrier at (x = L/2;y = 0.99 ⇤ U(t

0

= 0.5s)), from
t
0

= 0.5s, for Kc = 5 ⇤ 108N.m�↵, and ↵ = 1.6.

As y 6= 0, the frequency components get back to the natural vi-
bration modes of the string when the amplitude of ui

c

get below
y. For instance, if y = 0.065U(t

0

) (with U(t
0

) the amplitude of
u at the time of appearance of the obstacle), we observe a short
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Figure 13: Schematic Time-Frequency representation of a plucked
stiff string colliding with a point rigid barrier at (x = L/2).

time of interaction (⇠ 0.1s), then the string gets back to its regular
vibrations with new initial conditions (see figure 11).
In the case of a really light touch (y

0

= 0.99 ⇤ U(t
0

)), the pat-
tern is close to disappear, but we can notice a very short apparition
of new frequency components for t = 0.5s and some slight har-
monic distortion inducing mode coupling due to sparse collisions
for 0.5s < t < 1s (see figure 12).

4.2. Towards a non-linear interaction invariant

Based on the previous considerations, we propose a description of
the morphology of the signal resulting of the collisions between a
stiff string and a stiff barrier. The highly non-linear nature of this
interaction induces complex phenomena such as frequency shift,
harmonic distortion and mode coupling.
Still, it is possible to define a pattern that describes the time-
frequency content of the signal regarding the location and the na-
ture of the obstacle (see figure 13). One can notice two different
interaction phases:

· If the transversal position of the barrier is distincly lower
than the amplitude of vibration of the string, the interaction
is strong. In this case, we observe important modifications
of the modes’ frequency and the generation of new partial
tones due to harmonic distorsion and internal resonances.
The partial tones are clearly distinguishable around the first
modes, but it gets to noisy-like signal above the sixth mode.

· When the amplitude of vibration of the string is close to
the transversal position of the barrier, we get to an other
phase with sparse collisions. Here, we notice some har-
monic distorsion that transfers energy from the first modes
to the following ones, and it creates beats as the string is
slightly inharmonic.

Hence, the transversal position of the obstacle has an influence on
the duration of the strong interaction phase duration. The longi-
tudinal position of the obstacle define which modes are modified.
The material of the obstacle (stiffness and damping) will affect the
energy distribution within the modes as the harmonic distorsion
gets more important with the stiffness of the obstacle. This pattern
is specific to a point rigid barrier, it may be of interest to expand it
to a distributed contact model.
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5. CONCLUSION

In this paper, we aimed at identifying sound morphologies due
to nonlinear interactions between a stiff string and colliding
objects. This is the first step towards the development of synthesis
processes perceptually controlled. For that, we hypothesized that
nonlinear interactions are perceived through morphological sound
invariants. We based our investigations on a physical modeling
of the interaction phenomena to synthesize realistic sounds with
a perfect control of the experimental parameters. This led to an
experimental sound data bank that we analyzed to observe the
morphologies of the computed sounds in order to deduct typical
signal behaviors. Eventually, we defined specific patterns linked to
the nonlinear interaction that may be relevant perceptual cues for
sound recognition. These patterns mainly rely on frequency shifts,
harmonic distorsion and mode coupling that may be responsible
for the perception of roughness occurring during the interaction.

The next step is to model the invariant from a signal point of view
and to design a synthesis process with an intuitive control strategy.
This signal model will be validated through formal listening tests,
and will be possibly extended to more general sound textures.
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