Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments - ENSTA Paris - École nationale supérieure de techniques avancées Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

Young Min Shin
  • Fonction : Auteur
A. Green
  • Fonction : Auteur
A.H. Lumpkin
  • Fonction : Auteur
R.M. Thurman-Keup
  • Fonction : Auteur
V. Shiltsev
  • Fonction : Auteur
X. Zhang
  • Fonction : Auteur
D. M. -A. Farinella
  • Fonction : Auteur
P. Taborek
  • Fonction : Auteur
T. Tajima
  • Fonction : Auteur

Résumé

A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1] in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 10 to the power of 20 – 10 to the power of 23 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure – Nuclear Physics (ELI-NP).

Dates et versions

hal-02058599 , version 1 (06-03-2019)

Identifiants

Citer

Young Min Shin, A. Green, A.H. Lumpkin, R.M. Thurman-Keup, V. Shiltsev, et al.. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments. 17th Advanced Accelerator Concepts Workshop, Jul 2016, National Harbor, United States. pp.060009, ⟨10.1063/1.4975876⟩. ⟨hal-02058599⟩
59 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More