Few-cycle laser wakefield acceleration on solid targets with controlled plasma scale length - Archive ouverte HAL Access content directly
Journal Articles Physics of Plasmas Year : 2019

Few-cycle laser wakefield acceleration on solid targets with controlled plasma scale length

(1) , (1) , (1) , (1) , (1) , (2) , (2) , (1) , (1)
1
2

Abstract

We measure the emission of energetic electrons from the interaction between relativistic-intensity ultrashort laser pulses and a solid density plasma with a tunable density gradient scale length. We detect an electron beam that only appears with few-cycle pulses (<10 fs) and large plasma scale lengths (L > lambda(0)). Numerical simulations, in agreement with the experiments, reveal that these electrons are accelerated by a laser wakefield. Plasma waves are indeed resonantly excited by the few-cycle laser pulses in the near-critical density region of the plasma. Electrons are then injected by ionization into the plasma waves and accelerated to relativistic energies. In this laser wakefield acceleration regime, the plasma waves are rotated by the plasma density gradient, which results in the electrons not being emitted in the same direction as the driving laser pulse.
Not file

Dates and versions

hal-02149608 , version 1 (06-06-2019)

Identifiers

Cite

N. Zaim, F. Böhle, M. Bocoum, A. Vernier, Stefan Haessler, et al.. Few-cycle laser wakefield acceleration on solid targets with controlled plasma scale length. Physics of Plasmas, 2019, 26 (3), pp.033112. ⟨10.1063/1.5084783⟩. ⟨hal-02149608⟩
40 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More