M. Annunziato and A. Borzì, A Fokker-Planck control framework for multidimensional stochastic processes, J Comput Appl Math, vol.237, issue.1, pp.487-507, 2013.

M. Athans, The role and use of the stochastic linear-quadratic-gaussian problem in control system design, IEEE Trans Autom Control, vol.16, issue.6, pp.529-552, 1971.

J. J. Beaman, Non-linear quadratic gaussian control', Int J Control, vol.39, issue.2, pp.343-361, 1984.

B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis et al., The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements, PLoS Comput Biol, vol.4, issue.10, p.1000194, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00705805

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, Evidence for composite cost functions in arm movement planning: an inverse optimal control approach, PLoS Comput Biol, vol.7, issue.10, p.1002183, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00704789

B. Berret, G. Sandini, and F. Nori, Design principles for muscle-like variable impedance actuators with noise rejection property via co-contraction, IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS2012, 2012.

B. Berret, I. Yung, and F. Nori, Open-loop stochastic optimal control of a passive noise-rejection variable stiffness actuator: Application to unstable tasks, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp.3029-3034, 2013.

B. Berret, J. Ioannis-delis, F. Gaveau, and . Jean, Optimality and Modularity in Human Movement: From Optimal Control to Muscle Synergies, pp.105-133, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01744832

B. Berret, S. Ivaldi, F. Nori, and G. Sandini, Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback, Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf'. pp, pp.4354-4359, 2011.

A. E. Bryson and Y. C. Ho, Applied Optimal Control, 1969.

E. Burdet, R. Osu, D. W. Franklin, T. E. Milner, and M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance, Nature, vol.414, issue.6862, pp.446-449, 2001.

S. H. Crandall, A half-century of stochastic equivalent linearization'. Structural Control and Health Monitoring, vol.13, pp.27-40, 2006.

I. Elishakoff, H. Stephen, and . Crandall, Sixty years of stochastic linearization technique, Meccanica, vol.52, issue.1, pp.299-305, 2017.

A. Fahim, N. Touzi, and X. Warin, A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab, vol.21, issue.4, pp.1322-1364, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00367103

A. A. Faisal, L. P. Selen, and D. M. Wolpert, Noise in the nervous system, Nat Rev Neurosci, vol.9, issue.4, pp.292-303, 2008.

M. Falcone and R. Ferretti, Semi-Lagrangian approximation schemes for linear and HamiltonJacobi equations, Society for Industrial and Applied Mathematics (SIAM), 2014.
URL : https://hal.archives-ouvertes.fr/hal-00916055

L. Fiorio, F. Romano, A. Parmiggiani, B. Berret, G. Metta et al., Design and Control of a Passive Noise Rejecting Variable Stiffness Actuator, pp.235-262, 2019.

T. Flash and N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model, J Neurosci, vol.5, issue.7, pp.1688-1703, 1985.

W. Fleming and R. W. Rishel, Deterministic and stochastic optimal control. Applications of mathematics, 1975.

D. W. Franklin, R. Osu, E. Burdet, M. Kawato, and T. E. Milner, Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model, J Neurophysiol, vol.90, pp.3270-3282, 2003.

C. Ghez, M. Gordon, and . Ghilardi, Impairments of reaching movements in patients without proprioception. ii. effects of visual information on accuracy, J Neurophysiol, vol.73, pp.361-372, 1995.

K. R. Ghusinga, M. Soltani, A. Lamperski, S. V. Dhople, and A. Singh, Approximate moment dynamics for polynomial and trigonometric stochastic systems, IEEE 56th Annual Conference on Decision and Control, pp.1864-1869, 2017.

P. L. Gribble, L. I. Mullin, N. Cothros, and A. Mattar, Role of cocontraction in arm movement accuracy, J Neurophysiol, vol.89, issue.5, pp.2396-2405, 2003.

F. Gustafsson and G. Hendeby, Some relations between extended and unscented kalman filters, IEEE Trans Signal Process, vol.60, issue.2, pp.545-555, 2012.

C. M. Harris and D. M. Wolpert, Signal-dependent noise determines motor planning, Nature, vol.394, issue.6695, pp.780-784, 1998.

N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles, IEEE Trans Autom Control, vol.29, issue.8, pp.681-690, 1984.

H. J. Kappen, A linear theory for control of non-linear stochastic systems, Phys Rev Lett, vol.95, pp.200-201, 2005.

H. J. Kappen, Path integrals and symmetry breaking for optimal control theory, J Stat Mech: Theory Exp, issue.11, p.11011, 2005.

H. J. Kappen, Optimal control theory and the linear bellman equation, Bayesian Time Series Models, pp.363-387, 2011.

M. Katayama and . Kawato, Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models, Biol Cybern, vol.69, pp.353-362, 1993.

D. E. Kirk, Optimal control theory: An Introduction, 1970.

M. L. Latash, Muscle coactivation: definitions, mechanisms, and functions, J Neurophysiol, vol.120, pp.88-104, 2018.

S. M. Lavalle, Planning algorithms, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01993243

W. Li and E. Todorov, Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system, Int J Control, vol.80, issue.9, pp.1439-1453, 2007.

P. S. Maybeck, Stochastic models, estimation, and control, vol.2, 1982.

D. Q. Mayne, B. James, . Rawlings, V. Christopher, P. Rao et al., Constrained model predictive control: Stability and optimality, Automatica, vol.36, issue.6, pp.789-814, 2000.

S. A. Migliore, E. A. Brown, and S. P. Deweerth, Biologically inspired joint stiffness control, Proc. IEEE Int. Conf. Robotics and Automation, pp.4508-4513, 2005.

A. Palmer and D. Milutinovic, A hamiltonian approach using partial differential equations for openloop stochastic optimal control, Proc. American Control Conf. (ACC)'. pp, pp.2056-2061, 2011.

A. Polit and . Bizzi, Processes controlling arm movements in monkeys, Science, vol.201, pp.1235-1237, 1978.

A. Polit and . Bizzi, Characteristics of motor programs underlying arm movements in monkeys, J Neurophysiol, vol.42, pp.183-194, 1979.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, 1964.

J. B. Roberts and P. D. Spanos, Random vibration and statistical linearization, vol.1076193, 2003.

S. Särkkä and A. Solin, Applied Stochastic Differential Equations. Institute of Mathematical Statistics Textbooks, 2019.

P. J. Schoemaker, The quest for optimality: A positive heuristic of science, Behav Brain Sci, vol.14, issue.2, pp.205-220, 1991.

S. H. Scott, The computational and neural basis of voluntary motor control and planning, Trends in cognitive sciences, vol.16, pp.541-549, 2012.

L. Socha, Linearization methods for stochastic dynamic systems, Lecture Notes in Physics, vol.730, 2008.

R. Stengel, Optimal Control and Estimation. Dover books on advanced mathematics, 1986.

E. Theodorou, J. Buchli, and S. Schaal, A generalized path integral control approach to reinforcement learning'. journal of machine learning research, vol.11, pp.3137-3181, 2010.

E. Theodorou, Y. Tassa, and E. Todorov, Stochastic differential dynamic programming, Proceedings of the 2010 American Control Conference'. IEEE, pp.1125-1132, 2010.

E. Todorov, Optimality principles in sensorimotor control, Nat Neurosci, vol.7, issue.9, pp.907-915, 2004.

E. Todorov, Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system, Neural Comput, vol.17, issue.5, pp.1084-1108, 2005.

E. Todorov, Efficient computation of optimal actions, Proc Natl Acad Sci U S A, vol.106, issue.28, pp.11478-11483, 2009.

E. Todorov and W. Li, A generalized iterative lqg method for locally-optimal feedback control of constrained nonlinear stochastic systems, American Control Conference, vol.1, pp.300-306, 2005.

E. Trélat, Contrôle optimal : Théorie & applications, 2008.

R. J. Van-beers, P. Haggard, and D. M. Wolpert, The role of execution noise in movement variability, J Neurophysiol, vol.91, issue.2, pp.1050-1063, 2004.

B. Vanderborght, A. Albu-schaeffer, A. Bicchi, E. Burdet, D. Caldwell et al., Variable impedance actuators: Moving the robots of tomorrow, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp.5454-5455, 2012.

S. F. Wojtkiewicz, B. F. Spencer, and L. A. Bergman, New insights on the application of moment closure methods to nonlinear stochastic systems, IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, pp.479-488, 1996.

J. Yong, Y. Xun, and . Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. 1 edn, 1999.