S. Engelbrecht, Minimum Principles in Motor Control, J Math Psychol, vol.45, issue.3, pp.497-542, 2001.

E. Todorov, Optimality principles in sensorimotor control, Nat Neurosci, vol.7, issue.9, pp.907-915, 2004.

K. Friston, What is optimal about motor control?, Neuron, vol.72, pp.488-498, 2011.

B. Berret, I. Delis, J. Gaveau, and F. Jean, Optimality and Modularity in Human Movement: From Optimal Control to Muscle Synergies, pp.105-133, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01744832

T. Flash and N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model, J Neurosci, vol.5, issue.7, pp.1688-1703, 1985.

Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model, Biol Cybern, vol.61, issue.2, pp.89-101, 1989.

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, Evidence for composite cost functions in arm move-630 ment planning: an inverse optimal control approach, PLoS Comput Biol, vol.7, issue.10, p.1002183, 2011.

B. Berret and F. Jean, Why Don't We Move Slower? The Value of Time in the Neural Control of Action, J Neurosci, vol.36, issue.4, pp.1056-1070, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263658

E. Todorov and M. I. Jordan, Optimal feedback control as a theory of motor coordination, Nat Neurosci, vol.635, issue.11, pp.1226-1235, 2002.

E. Todorov, Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system, Neural Comput, vol.17, issue.5, pp.1084-1108, 2005.

J. Diedrichsen, R. Shadmehr, and R. B. Ivry, The coordination of movement: optimal feedback control and beyond, Trends Cogn Sci, 2009.

R. J. Van-beers, P. Haggard, and D. M. Wolpert, The role of execution noise in movement variability, J Neurophysiol, vol.91, issue.2, pp.1050-1063, 2004.

A. A. Faisal, L. Selen, and D. M. Wolpert, Noise in the nervous system, Nat Rev Neurosci, vol.9, issue.4, pp.292-303, 2008.

M. L. Latash, Muscle coactivation: definitions, mechanisms, and functions, J Neurophysiol, vol.645, pp.88-104, 2018.

G. Demenÿ, Du rôle mécanique des muscles antagonistes dans les actes de locomotion, Archives de Physiologie, vol.5, issue.2, p.747, 1890.

E. Burdet, R. Osu, D. W. Franklin, T. E. Milner, and M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance, Nature, vol.414, issue.6862, pp.446-449, 2001.

P. L. Gribble, L. I. Mullin, N. Cothros, and A. Mattar, Role of cocontraction in arm movement accuracy, J Neurophysiol, vol.89, issue.5, pp.2396-2405, 2003.

D. W. Franklin, R. Osu, E. Burdet, M. Kawato, and T. E. Milner, Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model, J Neurophysiol, vol.655, pp.3270-3282, 2003.

D. R. Humphrey and D. J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles, Adv Neurol, vol.39, pp.347-372, 1983.

G. Joyce, P. Rack, and D. Westbury, The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements, The Journal of physiology, vol.204, issue.2, pp.461-474, 1969.

T. Nichols and J. Houk, Improvement in linearity and regulation of stiffness that results from actions of stretch reflex, J Neurophysiol, vol.39, issue.1, pp.119-142, 1976.

R. R. Carter, P. E. Crago, and P. H. Gorman, Nonlinear stretch reflex interaction during cocontraction, J Neurophysiol, vol.69, issue.3, pp.943-952, 1993.

G. N. Lewis, C. D. Mackinnon, R. Trumbower, and E. J. Perreault, Co-contraction modifies the stretch reflex 665 elicited in muscles shortened by a joint perturbation, Exp Brain Res, vol.207, issue.1-2, pp.39-48, 2010.

J. F. Soechting, J. R. Dufresne, and F. Lacquaniti, Time-varying properties of myotatic response in man during some simple motor tasks, J Neurophysiol, vol.46, pp.1226-1243, 1981.

E. Guigon, P. Baraduc, and M. Desmurget, Computational motor control: redundancy and invariance, J Neurophysiol, vol.97, issue.1, pp.331-347, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00214133

B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis et al., The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements, PLoS Comput Biol, vol.4, issue.10, p.1000194, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00705805

W. Li and E. Todorov, Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system, Int J Control, vol.80, issue.9, pp.1439-1453, 2007.

D. Mitrovic, S. Klanke, R. Osu, M. Kawato, and S. Vijayakumar, A computational model of limb impedance control based on principles of internal model uncertainty, PLoS One, vol.5, p.13601, 2010.

Y. Ueyama and E. Miyashita, Signal-dependent noise induces muscle co-contraction to achieve required movement accuracy: a simulation study with an optimal control, Current Bioinformatics, vol.680, issue.1, pp.16-24, 2013.

D. M. Wolpert and Z. Ghahramani, Computational principles of movement neuroscience, Nat Neurosci, vol.3, pp.1212-1217, 2000.

S. H. Scott, Optimal feedback control and the neural basis of volitional motor control, Nat Rev Neurosci, vol.5, issue.7, pp.532-546, 2004.

S. H. Scott, The computational and neural basis of voluntary motor control and planning, Trends in cognitive sciences, vol.16, pp.541-549, 2012.

J. A. Pruszynski and S. H. Scott, Optimal feedback control and the long-latency stretch response, Exp Brain Res, vol.218, issue.3, pp.341-359, 2012.

R. Osu, E. Burdet, D. W. Franklin, T. E. Milner, and M. Kawato, Different mechanisms involved in adapta-690 tion to stable and unstable dynamics, J Neurophysiol, vol.90, issue.5, pp.3255-3269, 2003.

R. Osu, M. Ki, H. Miyamoto, and M. Kawato, Feedforward impedance control efficiently reduce motor variability, Neurosci Res, vol.65, pp.6-10, 2009.

D. W. Franklin and D. M. Wolpert, Computational mechanisms of sensorimotor control, Neuron, vol.72, issue.3, pp.425-442, 2011.

A. Polit and E. Bizzi, Processes controlling arm movements in monkeys, Science, vol.201, pp.1235-1237, 1978.

A. Polit and E. Bizzi, Characteristics of motor programs underlying arm movements in monkeys, J Neurophysiol, vol.42, pp.183-194, 1979.

E. Bizzi, N. Accornero, W. Chapple, and N. Hogan, Posture control and trajectory formation during 700 arm movement, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.4, pp.2738-2744, 1984.

N. Hogan, Planning and execution of multijoint movements, Can J Physiol Pharmacol, vol.66, pp.508-517, 1988.

C. Ghez, J. Gordon, and M. F. Ghilardi, Impairments of reaching movements in patients without 705 proprioception. II. Effects of visual information on accuracy, J Neurophysiol, vol.73, pp.361-372, 1995.

J. B. Nielsen, Human Spinal Motor Control, Annu Rev Neurosci, vol.39, pp.81-101, 2016.

J. Nielsen and Y. Kagamihara, The regulation of disynaptic reciprocal Ia inhibition during co-710 contraction of antagonistic muscles in man, The Journal of physiology, vol.456, pp.373-391, 1992.

C. Crone and J. Nielsen, Central control of disynaptic reciprocal inhibition in humans, Acta Physiol Scand, vol.152, pp.351-363, 1994.

B. Berret and F. Jean, Efficient computation of optimal open-loop controls for stochastic systems, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02158875

N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles, IEEE Trans Autom Control, vol.29, issue.8, pp.681-690, 1984.

C. M. Harris and D. M. Wolpert, Signal-dependent noise determines motor planning, Nature, vol.394, issue.6695, pp.780-784, 1998.

R. F. Stengel, Optimal Control and Estimation. Dover books on advanced mathematics, 1986.

A. V. Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin et al., Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method, ACM Trans Math Software, vol.37, issue.2, pp.1-39, 2010.

P. S. Maybeck, Stochastic models, estimation, and control, vol.2

M. Katayama and M. Kawato, Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models, Biol Cybern, vol.69, pp.353-362, 1993.

A. G. Feldman, Once more on the equilibrium-point hypothesis (lambda model) for motor control, J Mot Behav, vol.18, issue.1, pp.17-54, 1986.

P. Weiss, I. Hunter, and R. Kearney, Human ankle joint stiffness over the full range of muscle activation 730 levels, J Biomech, vol.21, issue.7, pp.539-544, 1988.

D. J. Bennett, Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements, Exp Brain Res, vol.95, pp.488-498, 1993.

Y. Yamazaki, T. Ohkuwa, H. Itoh, and M. Suzuki, Reciprocal activation and coactivation in antagonistic muscles during rapid goal-directed movements, Brain Res Bull, vol.34, pp.587-593, 1994.

R. A. Scheidt and C. Ghez, Separate adaptive mechanisms for controlling trajectory and final position in reaching, J Neurophysiol, vol.98, pp.3600-3613, 2007.

A. G. Feldman, Functional tuning of the nervous system with control of movement or maintenace of a steady posture, II: Controllable parameters of the muscles, Biophysics, vol.11, pp.565-578, 1966.

C. J. Hasson, O. Gelina, and G. Woo, Neural Control Adaptation to Motor Noise Manipulation. Front 740 Hum Neurosci, vol.10, p.59, 2016.

D. J. Bennett, J. M. Hollerbach, Y. Xu, and I. W. Hunter, Time-varying stiffness of human elbow joint during cyclic voluntary movement, Exp Brain Res, vol.88, pp.433-442, 1992.

M. Suzuki, D. M. Shiller, P. L. Gribble, and D. J. Ostry, Relationship between cocontraction, movement kinematics and phasic muscle activity in single-joint arm movement, Exp Brain Res, vol.140, issue.2, pp.171-745, 2001.

O. Missenard and L. Fernandez, Moving faster while preserving accuracy, Neuroscience, vol.197, pp.233-241, 2011.

C. Wang, Y. Xiao, E. Burdet, J. Gordon, and N. Schweighofer, The duration of reaching movement is longer than predicted by minimum variance, J Neurophysiol, vol.116, issue.5, pp.2342-2345, 2016.

F. Jean and B. Berret, On the duration of human movement: from self-paced to slow/fast reaches up to Fitts's law. In: Geometric and Numerical Foundations of Movements, pp.43-65, 2017.

B. Berret, S. Ivaldi, F. Nori, and G. Sandini, Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback, Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf, pp.4354-4359, 2011.

D. W. Franklin, U. So, M. Kawato, and T. E. Milner, Impedance control balances stability with metabolically costly muscle activation, J Neurophysiol, vol.92, issue.5, pp.3097-3105, 2004.

D. W. Franklin, U. So, E. Burdet, and M. Kawato, Visual feedback is not necessary for the learning of novel dynamics, PLoS One, vol.2, issue.12, p.1336, 2007.

D. W. Franklin, G. Liaw, T. E. Milner, R. Osu, E. Burdet et al., Endpoint stiffness of the arm is 760 directionally tuned to instability in the environment, J Neurosci, vol.27, issue.29, pp.7705-7716, 2007.

L. P. Selen, D. W. Franklin, and D. M. Wolpert, Impedance control reduces instability that arises from motor noise, J Neurosci, vol.29, issue.40, pp.12606-12616, 2009.

E. Guigon, P. Baraduc, and M. Desmurget, Optimality, stochasticity, and variability in motor behavior, J Comput Neurosci, vol.24, issue.1, pp.57-68, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00212327

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, Manifold reaching paradigm: how do we handle target redundancy?, J Neurophysiol, vol.106, issue.4, pp.2086-2102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00761427

J. P. Scholz and G. Schöner, The uncontrolled manifold concept: identifying control variables for a functional task, Exp Brain Res, vol.126, issue.3, pp.289-306, 1999.

T. E. Milner, Adaptation to destabilizing dynamics by means of muscle cocontraction, Exp Brain, vol.770

. Res, , vol.143, pp.406-416, 2002.

D. Liu and E. Todorov, Evidence for the flexible sensorimotor strategies predicted by optimal feedback control, J Neurosci, vol.27, issue.35, pp.9354-9368, 2007.

J. P. Gauthier, B. Berret, and F. Jean, A Biomechanical Inactivation Principle, Proceedings of the Steklov Institute of Mathematics, vol.268, pp.93-116, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00974994

K. P. Tee, E. Burdet, C. M. Chew, and T. E. Milner, A model of force and impedance in human arm movements, Biol Cybern, vol.90, issue.5, pp.368-375, 2004.

V. Yadav and R. L. Sainburg, Motor lateralization is characterized by a serial hybrid control scheme, Neuroscience, vol.196, pp.153-167, 2011.

O. Missenard, D. Mottet, and S. Perrey, The role of cocontraction in the impairment of movement 780 accuracy with fatigue, Exp Brain Res, vol.185, issue.1, pp.151-156, 2008.

Y. Ueyama and E. Miyashita, Optimal feedback control for predicting dynamic stiffness during arm movement, IEEE Trans Ind Electron, vol.61, issue.2, pp.1044-1052, 2013.

Z. Hasan, Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements, Biol Cybern, vol.53, issue.6, pp.373-382, 1986.

, Flash T. The control of hand equilibrium trajectories in multi-joint arm movements, Biol Cybern, vol.57, issue.4-5, pp.257-274, 1987.

P. L. Gribble, D. J. Ostry, V. Sanguineti, and R. Laboissière, Are complex control signals required for human arm movement?, J Neurophysiol, vol.79, issue.3, pp.1409-1424, 1998.

J. A. Pruszynski, I. Kurtzer, T. P. Lillicrap, and S. H. Scott, Temporal evolution of "automatic gain-scaling

, J Neurophysiol, vol.102, issue.2, pp.992-1003, 2009.

P. H. Hammond, Involuntary activity in biceps following the sudden application of velocity to the abducted forearm, The Journal of physiology, vol.127, pp.23-28, 1955.

S. H. Yeo, D. W. Franklin, and D. M. Wolpert, When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing, PLoS Comput Biol, vol.795, p.1005190, 2016.

B. Vanderborght, A. Albu-schaeffer, A. Bicchi, E. Burdet, D. Caldwell et al., Variable impedance actuators: Moving the robots of tomorrow, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp.5454-5455, 2012.