P. Berest, Stockage souterrain des gaz et hydrocarbures : des perspectives pour la transition énergétique, Encyclopédie de l'Environnement, 2019.

O. Kruck, F. Crotogino, R. Prelicz, and T. Rudolph, Assessment of the potential, the actors and relevant business cases for large scale and seasonal storage of renewable electricity by hydrogen underground storage in Europe, 2013.

I. Søreide and C. H. Whitson, Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2 S with pure water and NaCI brine, Fluid Phase Equilibria, vol.77, pp.217-240, 1992.

D. Koschel, J. Coxam, L. Rodier, and V. Majer, Enthalpy and solubility data of CO 2 in water and NaCl (aq) at conditions of interest for geological sequestration, Fluid phase equilibria, vol.247, pp.107-120, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00263577

K. Tödheide and E. Franck, Das Zweiphasengebiet und die kritische Kurve im System KohlendioxidWasser bis zu Drucken von 3500 bar, Zeitschrift für Physikalische Chemie, vol.37, pp.387-401, 1963.

S. Takenouchi and G. C. Kennedy, The binary system H 2 O-CO 2 at high temperatures and pressures, American Journal of Science, vol.262, pp.1055-1074, 1964.

W. Yan, S. Huang, and E. H. Stenby, Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density, International Journal of Greenhouse Gas Control, vol.5, pp.1460-1477, 2011.

S. Hou, G. C. Maitland, and J. M. Trusler, Phase equilibria of (CO2+ H2O+ NaCl) and (CO2+ H2O+ KCl): Measurements and modeling, The Journal of Supercritical Fluids, vol.78, pp.78-88, 2013.

H. Zhao, M. V. Fedkin, R. M. Dilmore, and S. N. Lvov, Carbon dioxide solubility in aqueous solutions of sodium chloride at geological conditions: Experimental results at 323.15, 373.15, and 423.15 K and 150bar and modeling up to 573.15 K and, Geochimica et Cosmochimica Acta, vol.149, pp.165-189, 2000.

K. Gilbert, P. C. Bennett, W. Wolfe, T. Zhang, and K. D. Romanak, CO 2 solubility in aqueous solutions containing Na+, Ca 2+, Cl?, SO 4 2? and HCO 3-: The effects of electrostricted water and ion hydration thermodynamics, Applied Geochemistry, vol.67, pp.59-67, 2016.

H. Guo, Y. Huang, Y. Chen, and Q. Zhou, Quantitative Raman Spectroscopic Measurements of CO2 Solubility in NaCl Solution from (273.15 to 473.15) K at p=(10.0, 20.0, 30.0, and 40.0) MPa, Journal of Chemical & Engineering Data, pp.466-474, 2015.

H. Messa-e-,-o-contamine, J. P. Cé-ac, E. C. Serin, and . Gaucher, Experimental Measurement of CO2 Solubility in Aqueous NaCl Solution at Temperature from 323.15 to 423.15 K and Pressure of up to 20 MPa, Journal of Chemical & Engineering Data, pp.3573-3584, 2016.

J. Corvisier, Modeling water-gas-rock interactions using CHESS/HYTEC, Goldschmidt Conference, 2013.

J. Corvisier, A. Bonvalot, V. Lagneau, P. Chiquet, S. Renard et al., Impact of co-injected gases on CO2 storage sites: Geochemical modeling of experimental results, Energy Procedia, vol.37, pp.3699-3710, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00762623

Z. Duan, R. Sun, C. Zhu, and I. Chou, An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl?, and SO42?, Marine Chemistry, vol.98, pp.131-139, 2006.

E. E. Ahmar, B. Creton, A. Valtz, C. Coquelet, V. Lachet et al., Thermodynamic study of binary systems containing sulphur dioxide: Measurements and molecular modelling, Fluid Phase Equilibria, vol.304, pp.21-34, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00585205

D. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam, vol.15, p.59, 1976.

M. Petitfrere, L. Patacchini, and R. De-loubens, Three-phase EoS-based Reservoir Simulation with Salinity Dependent Phase-equilibrium Calculations, ECMOR XV-15th European Conference on the Mathematics of Oil Recovery, 2016.

G. M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, and D. P. Tassios, An equation of state for associating fluids, Industrial & engineering chemistry research, vol.35, pp.4310-4318, 1996.

G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical engineering science, vol.27, pp.1197-1203, 1972.

M. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics, Journal of statistical physics, vol.35, pp.19-34, 1984.

D. B. Robinson and D. Peng, The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs, Gas Processors Association, 1978.

M. Hajiw, A. Chapoy, and C. Coquelet, Hydrocarbons -water phase equilibria using the CPA equation of state with a group contribution method, The Canadian Journal of Chemical Engineering, vol.93, pp.432-442, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01112045

T. Wang, E. E. Ahmar, C. Coquelet, and G. M. Kontogeorgis, Improvement of the PR-CPA equation of state for modelling of acid gases solubilities in aqueous alkanolamine solutions, Fluid Phase Equilibria, vol.471, pp.74-87, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01796684

T. Wang, P. Guittard, C. Coquelet, E. E. Ahmar, O. Baudouin et al., Improvement of the PR-CPA equation of state for modelling of acid gases solubilities in aqueous alkanolamine solutions, Fluid Phase Equilibria, vol.471, pp.126-127, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01796684

C. Held, T. Reschke, S. Mohammad, A. Luza, and G. Sadowski, ePC-SAFT revised, vol.92, pp.2884-2897, 2014.

K. B-mari-o-mogensen, G. Thomsen, and . Kontogeorgis, An electrolyte C A equation of state for mixed solvent electrolytes, AIChE Journal, pp.2933-2950, 2015.

D. K. Eriksen, G. Lazarou, A. Galindo, G. Jackson, C. S. Adjiman et al., Development of intermolecular potential models for electrolyte solutions using an electrolyte SAFT-VR Mie equation of state, Molecular Physics, vol.114, pp.2724-2749, 2016.

S. Ahmed, N. Ferrando, J. De-hemptinne, J. Simonin, O. Bernard et al., Modeling of mixed-solvent electrolyte systems, Fluid Phase Equilibria, vol.459, pp.138-157, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847015

R. Inchekel, J. De-hemptinne, and W. Fürst, The simultaneous representation of dielectric constant, volume and activity coefficients using an electrolyte equation of state, Fluid Phase Equilibria, vol.271, pp.19-27, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01212204

G. B-mari-o-mogensen, K. Kontogeorgis, and . Thomsen, Comparison of the e ye-H c el and the Mean Spherical Approximation Theories for Electrolyte Solutions, Industrial & Engineering Chemistry Research, vol.51, pp.5353-5363, 2012.

L. Blum, Mean spherical model for asymmetric electrolytes: I. Method of solution, Molecular Physics, vol.30, pp.1529-1535, 1975.

M. Born, Volumen und hydratationswärme der ionen, Zeitschrift für Physik, vol.1, pp.45-48, 1920.

A. Anderko and K. S. Pitzer, Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K, Geochimica et Cosmochimica Acta, vol.57, pp.1657-1680, 1993.

D. Tong, J. M. Trusler, and D. Vega-maza, Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa, Journal of Chemical & Engineering Data, vol.58, pp.2116-2124, 2013.

W. H. Press, FORTRAN Numerical Recipes: Numerical recipes in FORTRAN 90: the art of parallel scientific computing, 1996.

S. H. Huang and M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Industrial & Engineering Chemistry Research, vol.29, pp.2284-2294, 1990.

W. Wagner and A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, Journal of physical and chemical reference data, vol.31, pp.387-535, 2002.

N. Hubert, Y. Gabes, J. Bourdet, and L. Schuffenecker, Vapor pressure measurements with a nonisothermal static method between 293.15 and 363.15 K for electrolyte solutions. Application to the H2O+ NaCl system, Journal of Chemical and Engineering Data, vol.40, pp.891-894, 1995.

J. L. Haas, Thermodynamics properties of the coexisting phases and thermochemical properties of the NaCl component in boiling NaCl solutions, US, Geol. Surv., Bull, p.1421, 1976.

W. J. Hamer and Y. Wu, Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25° C, Journal of Physical and Chemical Reference Data, vol.1, pp.1047-1100, 1972.

J. A. Rard and D. G. Archer, Isopiestic Investigation of the Osmotic and Activity Coefficients of Aqueous NaBr and the Solubility of NaBr. cntdot. 2H2O (cr) at 298.15 K: Thermodynamic Properties of the NaBr+ H2O System over Wide Ranges of Temperature and Pressure, Journal of Chemical and Engineering Data, vol.40, pp.170-185, 1995.

J. Llmari-partanen and P. O. Minkkinen, Thermodynamic Activity Quantities in Aqueous Sodium and otassium Chloride Solutions at 298 5 ? up to a Molality of 2 0 mol g, Acta Chemica Scandinavica, vol.47, pp.768-776, 1993.

R. A. Robinson and R. H. Stokes, Tables of osmotic and activity coefficients of electrolytes in aqueous solution at 25 C, Transactions of the Faraday Society, vol.45, pp.612-624, 1949.

H. F. Gibbard, G. Scatchard, R. A. Rousseau, and J. L. Creek, Liquid-vapor equilibrium of aqueous sodium chloride, from 298 to 373. deg. K and from 1 to 6 mol kg-1, and related properties, Journal of Chemical and Engineering Data, vol.19, pp.281-288, 1974.

K. S. Pitzer, J. C. Peiper, and R. Busey, Thermodynamic properties of aqueous sodium chloride solutions, Journal of Physical and Chemical Reference Data, vol.13, pp.1-102, 1984.

K. S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, The Journal of Physical Chemistry, vol.77, pp.268-277, 1973.

K. S. Pitzer, Ion interaction approach: theory and data correlation, vol.2, pp.75-153, 1991.

J. N. Brønsted, Studies on solubility. IV. The principle of the specific interaction of ions, Journal of the American Chemical Society, vol.44, pp.877-898, 1922.

G. Scatchard, Concentrated Solutions of Strong Electrolytes, Chemical Reviews, vol.19, pp.309-327, 1936.

E. Guggenheim and J. Turgeon, Specific interaction of ions, Transactions of the Faraday Society, vol.51, pp.747-761, 1955.

P. Debye and E. Hückel, De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes, Physikalische Zeitschrift, vol.24, pp.185-206, 1923.

I. Grenthe, I. Puigdomenech, and B. Allard, Modelling in aquatic chemistry, 1997.

M. Hajiw, J. Corvisier, E. E. Ahmar, and C. Coquelet, Impact of impurities on CO 2 storage in saline aquifers: Modelling of gases solubility in water, International Journal of Greenhouse Gas Control, vol.68, pp.247-255, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01678837

A. C. Schneider, C. Pasel, M. Luckas, K. G. Schmidt, and J. Herbell, Determination of hydrogen single ion activity coefficients in aqueous HCl solutions at 25 C, Journal of solution chemistry, vol.33, pp.257-273, 2004.

H. Sakaida and T. Kakiuchi, Determination of single-ion activities of H+ and Cl-in aqueous hydrochloric acid solutions by use of an ionic liquid salt bridge, The Journal of Physical Chemistry B, vol.115, pp.13222-13226, 2011.

M. K. Khoshkbarchi and J. H. Vera, Measurement and correlation of ion activity in aqueous single electrolyte solutions, AIChE journal, vol.42, pp.249-258, 1996.

R. Wiebe and V. Gaddy, The solubility in water of carbon dioxide at 50, 75 and 100, at pressures to 700 atmospheres, Journal of the American Chemical Society, pp.315-318, 1939.

S. Hou, G. C. Maitland, and J. M. Trusler, Measurement and modeling of the phase behavior of the (carbon dioxide+ water) mixture at temperatures from 298.15 K to 448.15 K, The Journal of Supercritical Fluids, vol.73, pp.87-96, 2013.

A. Bamberger, G. Sieder, and G. Maurer, High-pressure (vapor+ liquid) equilibrium in binary mixtures of (carbon dioxide+ water or acetic acid) at temperatures from 313 to 353 K, The Journal of Supercritical Fluids, vol.17, pp.97-110, 2000.

R. Dohrn, A. Bünz, F. Devlieghere, and D. Thelen, Experimental measurements of phase equilibria for ternary and quaternary systems of glucose, water, CO2 and ethanol with a novel apparatus, Fluid Phase Equilibria, vol.83, pp.149-158, 1993.

P. Ahmadi and A. Chapoy, CO2 solubility in formation water under sequestration conditions, Fluid Phase Equilibria, vol.463, pp.80-90, 2018.

J. Briones, J. Mullins, M. Thies, and B. Kim, Ternary phase equilibria for acetic acid-water mixtures with supercritical carbon dioxide, Fluid Phase Equilibria, vol.36, pp.235-246, 1987.

A. D. King and C. Coan, Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase, Journal of the American Chemical Society, vol.93, pp.1857-1862, 1971.

K. Jackson, L. E. Bowman, and J. L. Fulton, Water solubility measurements in supercritical fluids and high-pressure liquids using near-infrared spectroscopy, Analytical Chemistry, vol.67, pp.2368-2372, 1995.

E. G-m-ller, G. Bender, and . Maurer, as ampf-l ssig eitsgleichgewicht des ternären Systems Ammonia -Kohlendioxid-Wasser ei hohen Wassergehalten im Bereich zwischen 373 und 473 Kelvin, Berichte der Bunsengesellschaft für physikalische Chemie, vol.92, pp.148-160, 1988.

A. Valtz, A. Chapoy, C. Coquelet, P. Paricaud, and D. Richon, Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2 K, Fluid phase equilibria, vol.226, pp.333-344, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01153444

M. King, A. Mubarak, J. Kim, and T. Bott, The mutual solubilities of water with supercritical and liquid carbon dioxides, The Journal of Supercritical Fluids, vol.5, pp.296-302, 1992.

T. Nakayama, H. Sagara, K. Arai, and S. Saito, High pressure liquid liquid equilibria for the system of water, ethanol and 1, 1-difluoroethane at 323.2 K, Fluid Phase Equilibria, vol.38, pp.109-127, 1987.

P. Gillespie and G. Wilson, GPA Research Report RR-48, Gas Processors Association, 1982.

H. Greenwood and H. Barnes, SECTION 17: BINARY MIXTURES OF VOLATILE COMPONENTS, vol.97, pp.385-400, 1966.

R. Wiebe and V. Gaddy, Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres, Journal of the American Chemical Society, vol.63, pp.475-477, 1941.

P. Van-konynenburg and R. Scott, Critical lines and phase equilibria in binary van der Waals mixtures, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.298, pp.495-540, 1980.

B. Rumpf, H. Nicolaisen, C. Öcal, and G. Maurer, Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation, Journal of solution chemistry, vol.23, pp.431-448, 1994.

J. J. Mackenzie, Ueber die Absorption der Gase durch Salzlösungen, Annalen der Physik, vol.237, pp.438-451, 1877.

M. Setschenow, Action de l'acide car onique sur les solutions dessels a acides forts Etude absortiometrique, Ann. Chim. Phys, vol.25, pp.226-270, 1892.

K. A. Kobe and J. S. Williams, Confining liquids for gas analysis: solubility of carbon dioxide in salt solutions, Industrial & Engineering Chemistry Analytical Edition, vol.7, pp.37-38, 1935.

A. E. Markham and K. A. Kobe, The solubility of carbon dioxide and nitrous oxide in aqueous salt solutions, Journal of the American Chemical Society, vol.63, pp.449-454, 1941.

H. S. Harned and R. Davis, The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50, Journal of the American Chemical Society, vol.65, pp.2030-2037, 1943.

W. Rosenthal, thesis, 1954.

A. Ellis and R. Golding, The solubility of carbon dioxide above 100 degrees C in water and in sodium chloride solutions, American Journal of Science, vol.261, pp.47-60, 1963.

S. Y. Yeh and R. E. Peterson, Solubility of carbon dioxide, krypton, and xenon in aqueous solution, Journal of pharmaceutical sciences, vol.53, pp.822-824, 1964.

S. Takenouchi and G. C. Kennedy, The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures, American journal of science, vol.263, pp.445-454, 1965.

K. Onda, E. Sada, T. Kobayashi, S. Kito, and K. Ito, Salting-out parameters of gas solubility in aqueous salt solutions, Journal of Chemical Engineering of Japan, vol.3, pp.18-24, 1970.

Y. H. Li and T. F. Tsui, The solubility of CO2 in water and sea water, Journal of Geophysical research, vol.76, pp.4203-4207, 1971.

S. Malinin and N. Savelyeva, Experimental investigations of CO2 solubility in NaCl and CaCl2 solutions at temperature of 25, 50 and 75 Degrees and elevated CO2 pressure, Geochem. Int, vol.9, p.643, 1972.

S. Malinin and N. Kurovskaya, Solubility of CO2 in chloride solutions at elevated temperatures and CO2 pressures, Geochem. Int, vol.12, pp.199-201, 1975.

A. Yasunishi and F. Yoshida, Solubility of carbon dioxide in aqueous electrolyte solutions, Journal of Chemical and Engineering Data, vol.24, pp.11-14, 1979.

S. Drummond, Boiling and mixing of hydrothermal fluids: Effects on mineral deposition, 1981.

G. Burmakina, L. Efanov, M. Shnet, C. Some, Z. Sucrose et al., , vol.56, pp.1159-1161, 1982.

S. Cramer, Solubility of methane, carbon dioxide, vol.300

. /c,-in and . Bureau-of-mines, , 1982.

M. Gehrig, H. Lentz, and E. Franck, The system water-carbon dioxide-sodium chloride to 773 K and 300 MPa, Berichte der Bunsengesellschaft für physikalische Chemie, vol.90, pp.525-533, 1986.

J. A. Nighswander, N. Kalogerakis, and A. K. Mehrotra, Solubilities of carbon dioxide in water and 1 wt.% sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200. degree. C, Journal of Chemical and Engineering Data, vol.34, pp.355-360, 1989.

S. He and J. W. Morse, The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C, Geochimica et Cosmochimica Acta, vol.57, pp.3533-3554, 1993.

G. Vazquez, F. Chenlo, and G. Pereira, CO2 DIFFUSIVITY IN NACL AND CUSO4 AQUEOUS-SOLUTIONS, pp.369-374, 1994.

G. Vázquez, F. Chenlo, G. Pereira, J. Peaguda, S. Nacl et al., , pp.324-328, 1994.

D. Zheng, T. Guo, and H. Knapp, Experimental and modeling studies on the solubility of CO2, CHC1F2, CHF3, C2H2F4 and C2H4F2 in water and aqueous NaCl solutions under low pressures, Fluid Phase Equilibria, vol.129, pp.197-209, 1997.

J. Kiepe, S. Horstmann, K. Fischer, and J. Gmehling, Experimental determination and prediction of gas solubility data for CO2+ H2O mixtures containing NaCl or KCl at temperatures between 313 and 393 K and pressures up to 10 MPa, Industrial & Engineering Chemistry Research, vol.41, pp.4393-4398, 2002.

S. Bando, F. Takemura, M. Nishio, E. Hihara, and M. Akai, Solubility of CO2 in aqueous solutions of NaCl at (30 to 60) C and (10 to 20) MPa, Journal of Chemical & Engineering Data, vol.48, pp.576-579, 2003.

. G-erren-no, G. Ons, M. Ferrari, and . Poletto, Experimental measurements and thermodynamic modeling of CO2 solubility at high pressure in model apple juices, Industrial & Engineering Chemistry Research, vol.49, pp.2992-3000, 2010.

Y. Liu, M. Hou, G. Yang, and B. Han, Solubility of CO2 in aqueous solutions of NaCl, KCl, CaCl2 and their mixed salts at different temperatures and pressures, The Journal of supercritical fluids, vol.56, pp.125-129, 2011.

J. Rosenqvist, A. D. Kilpatrick, and B. W. Yardley, Solubility of carbon dioxide in aqueous fluids and mineral suspensions at 294 K and subcritical pressures, Applied geochemistry, pp.1610-1614, 2012.

V. Savary, G. Berger, M. Dubois, J. Lacharpagne, A. Pages et al., The solubility of CO2+ H2S mixtures in water and 2 M NaCl at 120° C and pressures up to 35 MPa, International Journal of Greenhouse Gas Control, vol.10, pp.123-133, 2012.

C. Langlais, Impacts géochimiques de la présence d'oxygène sur les saumures en conditions de stockage géologique de CO2 : caractérisation de solubilités, 2013.

P. J. Carvalho, L. M. Pereira, N. P. Gonçalves, A. J. Queimada, and J. A. Coutinho, Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state, Fluid Phase Equilibria, vol.388, pp.100-106, 2015.

E. Mohammadian, H. Hamidi, M. Asadullah, A. Azdarpour, S. Motamedi et al., Measurement of CO2 solubility in NaCl brine solutions at different temperatures and pressures using the potentiometric titration method, Journal of Chemical & Engineering Data, vol.60, pp.2042-2049, 2015.

R. Jacob and B. Z. Saylor, CO2 solubility in multi-component brines containing NaCl, KCl, CaCl2 and MgCl2 at 297 K and 1-14 MPa, Chemical Geology, vol.424, pp.86-95, 2016.

B. Liborio, Dissolution du dioxyde de carbone dans des solutions aqueuses d'électrolyte dans le contexte du stockage géologique : approche thermodynamique, 2017.

M. L. Michelsen, The isothermal flash problem. Part II. Phase-split calculation, Fluid phase equilibria, vol.9, pp.21-40, 1982.

G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci, vol.27, pp.1197-1203, 1972.

M. Michelsen and J. Mollerup, Thermodynamic models: fundamentals & computational aspects, 2004.

X. Courtial, N. Ferrando, J. De-hemptinne, and P. Mougin, Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications, Geochimica et Cosmochimica Acta, vol.142, pp.1-14, 2014.

W. Fürst and H. Renon, Representation of excess properties of electrolyte solutions using a new equation of state, AIChE Journal, vol.39, pp.335-343, 1993.

G. M. Kontogeorgis and G. K. Folas, Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories, 2009.

G. K. Folas, J. Gabrielsen, M. L. Michelsen, E. H. Stenby, and G. M. Kontogeorgis, Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems, Ind. Eng. Chem. Res, vol.44, pp.3823-3833, 2005.

F. X. Ball, H. Planche, W. Fürst, and H. Renon, Representation of deviation from ideality in concentrated aqueous solutions of electrolytes using a mean spherical approximation molecular model, AIChE journal, pp.1233-1240, 1985.
URL : https://hal.archives-ouvertes.fr/hal-01212232

J. A. Myers, S. I. Sandler, and R. H. Wood, An equation of state for electrolyte solutions covering wide ranges of temperature, pressure, and composition, Industrial & engineering chemistry research, vol.41, pp.3282-3297, 2002.

J. Simonin, O. Bernard, and L. Blum, Real ionic solutions in the mean spherical approximation. 3. Osmotic and activity coefficients for associating electrolytes in the primitive model, The Journal of Physical Chemistry B, vol.102, pp.4411-4417, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00162536

M. Uematsu and E. Frank, Static dielectric constant of water and steam, Journal of Physical and Chemical Reference Data, vol.9, pp.1291-1306, 1980.