Resonant Faraday effect using high-order harmonics for the investigation of ultrafast demagnetization
Abstract
During the past few years high-order harmonic generation (HHG) has opened up the field of ultrafast spectroscopy to an ever larger community by providing a table-top and affordable femtosecond extreme ultraviolet (EUV) and soft-x-ray source. In particular, the field of femtomagnetism has largely benefited from the development of these sources. However, the use of x-ray magnetic circular dichroism (XMCD) as a probe of magnetization, the most versatile and reliable one, has been constrained by the lack of polarization control at HHG sources, so studies have relied on more specific magneto-optical effects. Even the recent developments on the generation of elliptically polarized harmonics have only resulted in a few time-resolved experiments relying on this powerful technique since they add complexity to already-difficult measurements. In this article we show how to easily probe magnetization dynamics with linearly polarized EUV or soft-x-ray light with a versatility similar to XMCD by exploiting the Faraday effect. Static and time-resolved measurements of the Faraday effect are presented around the Co M edges. Using simple theoretical considerations, we show how to retrieve the samples magnetization dynamics from the Faraday rotation and ellipticity transients. Ultrafast demagnetization dynamics of a few nanometers in Co-based samples are measured with this method in out-of-plane as well as in-plane magnetization configurations, showing its great potential for the study of femtomagnetism.
Fichier principal
2019-Alves-Resonant Faraday effect using high-order harmonics for the investigation of ultrafast demagntetization.pdf (1.25 Mo)
Télécharger le fichier
Origin : Files produced by the author(s)
Loading...