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McKean Feynman-Kac probabilistic representations of

non-linear partial differential equations

LUCAS IZYDORCZYK ∗, NADIA OUDJANE † AND FRANCESCO RUSSO ‡

December 2019

Abstract

This paper presents a partial state of the art about the topic of representation of generalized Fokker-

Planck Partial Differential Equations (PDEs) by solutions of McKean Feynman-Kac Equations (MFKEs)

that generalize the notion of McKean Stochastic Differential Equations (MSDEs). While MSDEs can be

related to non-linear Fokker-Planck PDEs, MFKEs can be related to non-conservative non-linear PDEs.

Motivations come from modeling issues but also from numerical approximation issues in computing the

solution of a PDE, arising for instance in the context of stochastic control. MFKEs also appear naturally in

representing final value problems related to backward Fokker-Planck equations.

Key words and phrases: backward diffusion; McKean stochastic differential equation; probabilistic repre-

sentation of PDEs; time reversed diffusion; HJB equation; Feynman-Kac measures.

2010 AMS-classification: 60H10; 60H30; 60J60; 65C05; 65C35; 35K58.

1 Introduction and motivations

1.1 General considerations

The idea of the present article is to focus on models which have a double macroscopic-microscopic face in

the form of perturbation of a so called Fokker-Planck type equation that we call generalized Fokker-Planck

equation. Our ambition is driven by two main reasons.

1. A modeling reason: the idea is to observe both from a macroscopic-microscopic point of view phenom-

ena arising from physics, biology, chemistry or complex systems.

2. A numerical simulation reason: to provide Monte-Carlo suitable algorithms to approach PDEs.
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The target macroscopic Fokker-Planck equation is






















∂tu = 1
2

d
∑

i,j=1

∂2
ij

(

(σσ⊤)i,j(t, x, u)u
)

− div (b(t, x, u,∇u)u)

+Λ(t, x, u,∇u)u , for t ∈]0, T ] ,
u(0, ·) = u0,

(1.1)

where u0 is a Borel probability measure σ : [0, T ] × Rd × R → Md,p(R), b : [0, T ] × Rd × R → Rd, Λ :

[0, T ] × Rd × R × Rd → R and ∇ denotes the gradient operator. The initial condition in (1.1) means that

for every continuous bounded real function ϕ we have
∫

ϕ(x)u(t, x)dx →
∫

ϕ(x)u0(dx) when t → 0. When

u0 admits a density, we denote it by u0. The unknown function u :]0, T ] × Rd → R is supposed to run in

L1(Rd) considered as a subset of the space of finite Radon measures M(Rd). The idea consists in finding a

probabilistic representation via the solution of a Stochastic Differential Equation (SDE) whose coefficients do

not depend only on time and the position of the particle but also on its probability law. The target microscopic

equation we have in mind is


















Yt = Y0 +
∫ t

0
σ
(

s, Ys, u(s, Ys)
)

dWs +
∫ t

0
b
(

s, Ys, u(s, Ys)
)

ds

Y0 ∼ u0
∫

ϕ(x)u(t, x)dx = E

[

ϕ(Yt) exp
{

∫ t

0

Λ
(

s, Ys, u(s, Ys),∇u(s, Ys)
)

ds
}

]

, for t ∈]0, T ] ,
(1.2)

for any continuous bounded real valued test function ϕ. Sometimes we denominate the third line equation

of (1.2) the linking equation. When Λ = 0, in equation (1.2), the linking equation simply says that u(t, ·)
coincides with the density of the marginal distribution L(Yt). In this specific case, equation (1.2) reduces

to a McKean Stochastic Differential Equation (MSDE), which is in general an SDE whose coefficients, at time

t, depend, not only on (t, Yt), but also on the marginal law L(Yt). With more general functions Λ, the role

of the linking equation is more intricate since the whole history of the process (Ys)0≤s≤t is involved. This

fairly general type of equations will be called McKean Feynman-Kac Equation (MFKE) to emphasize the fact

that u(t, x)dx now corresponds to a non-conservative Feynman-Kac measure.

An interesting feature of MSDEs (so when Λ = 0) is that the law of the process Y can often be char-

acterized as the limiting empirical distribution of a large number of interacting particles, whose dynamics

are described by a coupled system of classical SDEs. When the number of particles grows to infinity, the

particles behave closely to a system of independent copies of Y . This constitutes the so called propagation of

chaos phenomenon, already observed in the literature when the drift and diffusion coefficients are Lipschitz

dependent on the solution marginal law, with respect to the Wasserstein metric, see e.g. [41, 51, 52, 63, 54].

Propagation of chaos is a common phenomenon arising in many physical contexts, see for instance [1]

concerning Nelson stochastic mechanics.

When Λ = 0, equation (1.1) is a non-linear Fokker-Planck equation, it is conservative and it is known

that, under mild assumptions, it describes the dynamics of the marginal probability densities, u(t, ·), of

the process Y . This correspondence between PDE (1.1) with MSDE (1.2) and interacting particles have

extensive interesting applications. In physics, biology or economics, it is a way to relate a microscopic model

involving interacting particles to a macroscopic model involving the dynamics of the underlying density.

Numerically, this correspondence motivates Monte-Carlo approximation schemes for PDEs. In particular,

[19] has contributed to develop stochastic particle methods in the spirit of McKean to provide original

numerical schemes approaching a PDE related to Burgers equation providing also the rate of convergence.

Below we list some situations of particular interest where such correspondence holds.
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1.2 Some motivating examples

Burgers equation

We fix d = p = 1 and let ν > 0 and u0 be a probability density on R. We consider two equivalent specific

cases of (1.1). The first σ ≡ ν, b ≡ 0, Λ(t, x, u, z) = z. The second σ ≡ ν, b(t, x, u) = u
2 ,Λ = 0. Both

instantiations correspond to the the viscid Burgers equation in dimension d = 1, given by
{

∂tu = ν2

2 ∂xxu− u∂xu, (t, x) ∈ [0, T ]× R,

u(0, ·) = u0 .
(1.3)

Generalized Burgers-Huxley equation

We fix d = p = 1 and let ν > 0 and u0 be a probability density on R. We consider the particular

cases of (1.1) where σ ≡ ν, b(t, x, u) = α un

n+1 , Λ(t, x, u) = β(1 − un)(un − γ), with fixed reals α, β, γ and

a non-negative integer n. This instantiation corresponds to a natural extension of Burgers equation called

Generalized Burgers-Huxley equation or Burgers-Fisher equation which is of great importance to represent non-

linear phenomena in various fields such as biology [2, 55], physiology [42] and physics [68]. These equations

have the particular interest to describe the interaction between the reaction mechanisms, convection effect,

and diffusion transport. Those are non-linear and non-conservative PDEs of the form
{

∂tu = ν
2∂xxu− αun∂xu+ βu(1− un)(un − γ), (t, x) ∈ [0, T ]× R,

u(0, ·) = u0.
(1.4)

Fokker-Planck equation with terminal condition

The present example does not properly integrate the framework of (1.1). In terms of application, we are

interested by inverse problems that can be formulated by a PDE with terminal condition






















∂tu = 1
2

d
∑

i,j=1

∂2
ij

(

(σσt)i,j(t, x)u
)

− div (b(t, x)u)

+Λ(t, x)u , for t ∈]0, T [ ,
u(T, ·) = uT,

(1.5)

where uT is a prescribed probability measure. Solving that equation by analytical means constitutes a

delicate task. A probabilistic representation may help for studying well-posedness or providing numerical

schemes.

Backward simulation of diffusions is a subject of active research in various domains of physical sciences

and engineering, as heat conduction [12], material science [60] or hydrology [3]. In particular, hydraulic

inversion is interested in inverting a diffusion phenomenon representing the concentration of a pollutant

to identify the pollution source location when the final concentration profile is observed. The problem is

in general ill-posed because either the solution is not unique or the solution is not stable. For this type

of problem, the existence is ensured by the fact that the observed contaminant has necessarily originated

from some place at a given time (as soon as the model is correct). To correct the lack of well-posedness two

regularization procedures have been proposed in the literature: the first one relies on the notion of quasi-

solution, introduced by Tikhonov [65], the second one on the method of quasi-reversibility, introduced by

Lattes and Lions, [44]. Besides well-posedness, a second crucial issue consists in providing a numerical

approximating scheme to the backward diffusion equation. A probabilistic representation of (1.5) via the

time-reversal of a diffusion could show those issues under a new light.
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The stochastic Fokker-Planck with multiplicative noise

We fix p = d, σ(t, x, u) = Φ(u)Idd , where Φ : R → R and b = Λ ≡ 0. Typical examples are the

case of classical porous media type equation (resp. fast diffusion equation), when Φ(u) = uq, 1 ≤ q (resp.

0 < q < 1). The (singular) case Φ(u) = γH(u− ec), H being the Heavisise function and ec a given threshold

in R, appears in the science of complex systems, more precisely in the so called self-organized criticality, see

e.g. [4, 23, 5].

{

∂tu = γ
2∆(H(u− ec)u)

u(0, ·) = u0.
(1.6)

The phenomenon of self-organized criticality often is described in two scale phases: a fast dynamics (of

avalanch type) described by the PDE (1.6) and a slower motion of sand storming modeled by the addition

of a supplementary stochastic noise Λ(t, x;ω). In that case the target macroscopic equation is
{

∂tu = γ
2∆(H(u − ec)u) + Λ(t, x;ω)u

u(0, ·) = u0,
(1.7)

where Λ(t, x;ω) is a quenched realization of a space-time coloured (ideally white) noise. The SPDE will be

represented by a MSDE in random environment, see Section 6.

1.3 Structure of the paper

In the rest of the paper, to simplify notations, most of the results are stated in the one-dimensional setting.

The generalization to the multi-dimensional case is straightforward.

The paper is organized as follows. Next section presents a brief review of basic situations where Fokker-

Planck equations can be represented by MSDEs which in turn can be represented by interacting particles

systems. Section 3, considers the case of generalized Fokker-Planck equations in the sense of (1.1) with a

non-zero term Λ allowing to take into account non-conservative PDEs including a large class of semi-linear

PDEs. Section 5 highlights the correspondence between MFKEs and MSDEs with jumps which paves the

way to a great variety of numerical approximations schemes for non-linear PDEs. Section 4 is devoted to a

particular inverse problem which consists in modeling backwardly in time the evolution of a Fokker-Planck

equation with a given terminal condition. This problem can be related to a time-reversed SDE which in turn

can be represented by a MSDE. In Section 6 we analyze the well-posedness of generalized Fokker-Planck

equation where the term Λ in (1.1) may involve an exogenous noise resulting in a Stochastic non-linear

PDE. Finally, in Section 7, we consider a stochastic control problem for which the associated Hamilton-

Jacobi-Bellman equation can be represented by a MFKE.

2 McKean representations of non linear Fokker-Planck equations

In this section, we recall some standard situations where a Fokker-Planck PDE can be represented by an

SDE which in turn can be approached by an interacting particles system.
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2.1 Probabilistic representation of linear Fokker-Planck equations

Suppose there exists a solution (Yt)t∈[0,T ] (in law) to the SDE






Yt = Y0 +

∫ t

0

σ(s, Ys)dWs +

∫ t

0

b(s, Ys)ds, t ∈ [0, T ],

Y0 ∼ u0 ,

(2.1)

where W is a real valued Brownian motion on [0, T ] and u0 is a probability measure on R. A direct applica-

tion of Itô formula shows that the marginal probability laws (µ(t, ·) := L(Yt))t∈[0,T ] generate a distributional

solution of the linear Fokker-Planck PDE






∂tµ =
1

2
∂2
xx(σ

2(t, x)µ) − ∂x(b(t, x)µ)

µ(0, dx) = u0(dx).
(2.2)

This naturally suggests a Monte Carlo algorithm to approximate the above linear PDE, consisting in simu-

lating N i.i.d. particles (ξi)i=1,···N with N i.i.d. Brownian motions (W i)i=1,···N i.e.






























ξit = ξi0 +

∫ t

0

σ(s, ξis)dW
i
s +

∫ t

0

b(s, ξis)ds

ξi0 i.i.d. ∼ u0

µN
t =

1

N

N
∑

j=1

δ
ξ
j
t
.

(2.3)

Then the law of large numbers provides the convergence of the empirical approximation µN
t −−−−→

N→∞
µ(t, ·),

the solution of the Fokker-Planck equation (2.2).

2.2 McKean probabilistic representation of non-linear Fokker-Planck equation

We consider the non-linear SDE in the sense of McKean (MSDE)


















Yt = Y0 +

∫ t

0

σ
(

s, Ys, (K ∗ µ)(s, Ys)
)

dWs +

∫ t

0

b
(

s, Ys, (K ∗ µ)(s, Ys)
)

ds

Y0 ∼ u0

µ(t, ·) is the probability law of Yt , t ∈ [0, T ],

(2.4)

whose solution is a couple (Y, µ). Here σ, b are Lipschitz, K : R × R → R denotes a Lipschitz continuous

convolution kernel such that (K ∗ µ)(t, y) :=
∫

K(y, z)µ(t, dz) for any y ∈ R. We emphasize that this type

of regularized dependence of the drift and diffusion coefficients on µ is essentially different (and in general

easier to handle) from a pointwise dependence where the coefficients b or σ may depend on the value of

the marginal density at the current particle position dµ
dx

(s, Ys). This regularized or non-local dependence on

the time-marginals µ(t, ·) is a particular case of the framework when the diffusion and drift coefficients are

Lipschitz with respect to µ(t, ·) according to the the Wasserstein metric.

Again, by Itô formula, given a solution (Y, µ) of (2.4), µ solves the non-local non-linear PDE






∂tµ =
1

2
∂2
xx

(

σ2(t, x,K ∗ µ)µ
)

− ∂x

(

b(t, x,K ∗ µ)µ
)

µ(0, dx) = u0(dx),
(2.5)

in the sense of distributions. In this setting, the well-posedness of (2.4) relies on a fixed point argument in

the space of trajectories under the Wasserstein metric, see e.g. [63], at least in the case when the diffusion

term does not depend on the law. We will denominate this situation as the traditional setting.

5



Deriving a Monte-Carlo approximation scheme from this probabilistic representation already becomes

more tricky since it can no more rely on independent particles but should involve an interacting particles

system as initially proposed in [41, 63]. Consider N interacting particles (ξi,N )i=1,···N with N i.i.d. Brownian

motions (W i), i.e.






























ξi,Nt = ξi,N0 +

∫ t

0

σ
(

s, ξi,Ns , (K ∗ µN
s )(ξi,Ns )

)

dW i
s +

∫ t

0

b
(

s, ξi,Ns , (K ∗ µN
s )(ξi,Ns )

)

ds

ξi,N0 i.i.d. ∼ u0

µN
t =

1

N

N
∑

j=1

δ
ξ
j,N
t

,

(2.6)

with (K ∗ µN
t )(y) = 1

N

∑N
j=1 K(y, ξj,Nt ) . The above system defines a so-called weakly interacting particles

system, as pointed out in [56]. This terminology underlines the fact that any particle interacts with the rest of

the population with a vanishing impact of order 1/N . In this setting, at least when the diffusion coefficient

does not depend ton the law, [63] proves the so called chaos propagation which means that (ξi,Nt )i=1,···N

asymptotically behaves as an i.i.d. sample according to µ(t, ·) as the number of particles N grows to infinity,

where µ is the solution of the regularized non-linear PDE (2.5). This in particular implies the convergence

of the empirical measures µN
t −−−−→

N→∞
µ(t, ·) with the rate C/

√
N inherited from the law of large numbers.

As already announced, the case where the coefficients depend pointwisely on the density law u(t, ·) of

µ(t, ·), t > 0, is far more singular. Indeed the dependence of the coefficients on the law of Y is no more

continuous with respect to the Wasserstein metric. In this context, well-posedness results rely generally

on analytical methods. One important contribution in this direction is reported in [39], where strong ex-

istence and pathwise uniqueness are established when the diffusion coefficient σ and the drift b exhibit

pointwise dependence on u but are assumed to satisfy strong smoothness assumptions together with the

initial condition. In this case, the solution u is a classical solution of the PDE






∂tu =
1

2
∂2
xx

(

σ2(t, x, u(t, x))u
)

− ∂x

(

b(t, x, u(t, x))u
)

u(0, x) = u0(dx),
(2.7)

which is formally derived from (2.5) setting K(x, y) = δ0(x − y). Let us fix Kε being a mollifier (depend-

ing on a window-width parameter ε), such that Kε(x, y) =
1

εd
φ(

x − y

ε
) −−−→

ε→0
δ0(x− dy) . As in (2.6), we

consider the N interacting particles (ξi,N )i=1,···N solving






























ξi,Nt = ξi,N0 +

∫ t

0

σ
(

s, ξi,Ns , uN,ε
s (ξi,Ns )

)

dW i
s +

∫ t

0

b
(

s, ξi,Ns , uN,ε
s (ξi,Ns )

)

ds

ξi,N0 i.i.d. ∼ u0

uN,ε
t =

1

N

N
∑

j=1

Kε(·, ξj,Nt ).

(2.8)

Under the smooth assumptions on b, σ, u0 mentioned before and non-degeneracy of σ, [39] proved the

convergence of the regularized particle approximation uN,ε
t to the solution u of the pointwise non-linear

PDE (2.7) as soon as ε(N) −−−−→
N→∞

0 slowly enough. According to [56], the system (2.8) defines a so-called

moderately interacting particle system with uN,ε
t (x) = 1

Nεd

∑N
j=1 φ(

x−ξ
j,N
t

ε
). Indeed as the window width of

the kernel, ε, goes to zero, the number of particles that significantly impact a single one is of order Nεd

with a strength of interaction of order 1
Nεd

. In contrast, when ε is fixed, we recover the weakly interacting

situation in which case the strength of interaction of each particle is of order 1
N

which is smaller than 1
Nεd

.
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In this case of moderate interaction, the propagation of chaos occurs with a slower rate than C/
√
N and

depends exponentially on the space dimension. [39] constitutes an extension of the weak propagation of

chaos of moderately interacting particles proved in [56] for the limited case of identity diffusion matrix.

The peculiar case where the drift vanishes and the diffusion coefficient σ(u(t, Yt)) has a pointwise de-

pendence on the law density u(t, ·) of Yt has been more particularly studied in [15] for classical porous

media type equations and [17, 8, 14, 13, 7] who obtain well-posedness results for measurable and possibly

singular functions σ. In that case the solution u of the associated PDE (1.1), is understood in the sense of

distributions.

3 McKean Feynman-Kac representations for non-conservative and non-

linear PDEs

The idea of generalizing MSDEs to MFKEs (1.2) was originally introduced in the sequence of papers [46, 45,

47], with an earlier contribution in [10], where Λ(t, x, u,∇u) = ξt(x), ξ being the sample of a Gaussian noise

random field, white in time and regular in space, see Section 6. The goal was to provide some probabilistic

representation for non-conservative non-linear PDEs (1.1) by introducing some exponential weights defin-

ing Feynman-Kac measures instead of probability measures. An interesting aspect of this strategy is that

it is potentially able to represent an extended class of second order non-linear PDEs. One particularity of

MFKE equations is that the probabilistic representation involves the past of the process (via the exponential

weights). In this context, it is worth to quote the recent paper [38] which proposes a probabilistic represen-

tation, which also includes a dependence on the past, in relation with Keller-Segel model with application

to chemiotaxis.

It is important to consider carefully the two major features differentiating the MFKE (1.2) from the

traditional setting of MSDEs. To recover the traditional setting one has to do the following.

1. First, one has to put Λ = 0 in the third line equation of (1.2) Then u(t, ·) is explicitly given by the third

line equation of (1.2) and reduces to the density of the marginal distribution, L(Yt). When Λ 6= 0,

the relation between u(t, ·) and the process Y is more complex. Indeed, not only does Λ embed an

additional non-linearity with respect to u, but it also involves the whole past trajectory (Ys)0≤s≤t of

the process Y .

2. Secondly, one has to replace the pointwise dependence b(s, Ys, u(s, Ys)) in equation (1.2) with a mol-

lified dependence b(s, Ys,
∫

Rd K(Ys − y)u(s, y)dy), where the dependence with respect to u(s, ·) is

Wasserstein continuous. Here K : R → R is a convolution kernel.

One interesting aspect of probabilistic representation (1.2) is that it naturally yields numerical approxi-

mation schemes involving weighted interacting particle systems. More precisely, we consider N interacting

particles (ξi,N )i=1,···N with N i.i.d. Brownian motions (W i)i=1,···N , i.e.


























ξi,Nt = ξi,N0 +
∫ t

0
σ
(

s, ξi,Ns , uN,ε
s (ξi,Ns )

)

dW i
s +

∫ t

0
b
(

s, ξi,Ns , uN,ε
s (ξi,Ns )

)

ds

ξi,N0 i.i.d. ∼ u0

uN,ε
t (ξit) =

N
∑

j=1

ωj,N
t Kε(ξi,Nt − ξj,Nt ) ,

(3.1)
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where the mollifier Kε is such that Kε(x) = 1
εd
φ(x

ε
) −−−→

ε→0
δ0 and the weights ωj,N

t for j = 1, · · · , N verify

ωj,N
t := exp

{
∫ t

0

Λ
(

r, ξj,Nr , uε,N
r (ξj,Nr ),∇uε,N

r (ξj,Nr )
)

dr

}

= ωj,N
s exp

{
∫ t

s

Λ
(

r, ξj,Nr , uε,N
r (ξj,Nr ),∇uε,N

r (ξj,Nr )
)

dr

}

.

[48, 47] consider the case of pointwise semilinear PDEs of the form
{

∂tu = 1
2∂

2
xx(σ

2(t, x)u)− ∂xb(t, x)u) + Λ(t, x, u,∇u)u

u(0, x) = u0(x),
(3.2)

for which the target probabilistic representation is


















Yt = Y0 +
∫ t

0
σ
(

s, Ys

)

dWs +
∫ t

0
b
(

s, Ys

)

ds

Y0 ∼ u0
∫

ϕ(x)ut(x)dx := E

[

ϕ(Yt) exp
{

∫ t

0

Λ
(

s, Ys, us(Ys),∇us(Ys)
)

ds
}

]

.

(3.3)

We set

Ltf :=
1

2
σ2(t, x)f ′′(x) + b(t, x)f ′(x), t ∈]0, T [, for any f ∈ C2(R). (3.4)

Let us consider the family of Markov transition functions P (s, x0, t, ·) associated with (Lt), see [48]. We

recall that if X is a processs solving the first line of (3.1) with Xs ≡ x0 ∈ R, then
∫

R
P (s, x0, t, x)f(x)dx =

E(f(Xt)), t ≥ s, for every bounded Borel function f : R → R. u : [0, T ]×R→ R will be called mild solution

of (3.2) (related to (Lt)) if for all ϕ ∈ C∞
0 (R), t ∈ [0, T ],

∫

Rd

ϕ(x)u(t, x)dx =

∫

Rd

ϕ(x)

∫

Rd

u0(dx0)P (0, x0, t, dx)

+

∫

[0,t]×Rd

(

∫

Rd

ϕ(x)P (s, x0, t, dx)
)

Λ(s, x0, u(s, x0),∇u(s, x0))u(s, x0)dx0ds.

The following theorem states conditions ensuring equivalence between (3.3) and (3.2) together with the

convergence of the related particle approximation (3.1).

Theorem 3.1. We suppose that σ and b are Lipschitz with linear growth and Λ is bounded.

1. Let u : [0, T ]× R → R ∈ L1([0, T ];W 1,1(Rd). u is a mild solution of PDE (3.2) if and only if u verifies (3.3).

2. Suppose that σ ≥ c > 0 and Λ is uniformly Lipschitz w.r.t. to u and ∇u. There is a unique mild solution in

L1([0, T ];W 1,1(R) ∩ L∞([0, T ]× R) of (3.2), therefore also of (3.3).

3. Under the same assumption of item 2., the particle approximation uN,ε (3.1) converges in L1([0, T ];W 1,1(R)

to the solution of (3.2) as N → ∞ and ε(N) → 0 slowly enough.

Item 1. was the object of Theorem 3.5 in [48]. Item 2. (resp. item 3.) was treated in Theorem 3.6 (resp.

Corollary 3.5) in [48].

Remark 3.2. The error induced by the discrete time approximation of the particle system was evaluated in [47].

[49] considers the case where b is replaced by b + b1 where b is only supposed bounded Borel, without

regularity assumption on the space variable. In particular they treat the pointwise semilinear PDEs of the

form
{

∂tu = 1
2∂

2
xx(σ

2(t, x)u)− ∂x

(

(

b(t, x) + b1(t, x, u)
)

u
)

+ Λ(t, x, u)u

u(0, x) = u0(x),
(3.5)
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for which the target probabilistic representation is



















Yt = Y0 +
∫ t

0
σ(s, Ys)dWs +

∫ t

0

[

b(s, Ys) + b1

(

s, Ys, u(s, Ys)
)

]

ds

Y0 ∼ u0
∫

ϕ(x)ut(x)dx := E

[

ϕ(Yt) exp
{

∫ t

0

Λ
(

s, Ys, us(Ys)
)

ds
}

]

.

(3.6)

The following theorem states conditions ensuring equivalence between (3.6) and (3.5) together with well-

posedness conditions for both equations.

Theorem 3.3. We formulate the following assumptions.

1. The PDE in the sense of distributions ∂u = L∗
tut admits as unique solution u ≡ 0, where Lt was defined in

(3.4).

2. b is bounded measurable and σ is continuous σ ≥ c > 0 for some constant c > 0.

3. b1,Λ : [0, T ]× R× R → R is uniformly bounded, Lipschitz with respect to the third argument.

4. The family of Markov transition functions associated with (Lt), are of the formP (s, x0, t, dx) = p(s, x0, t, x)dx,,

i.e. they admit measurable densities p.

5. The first order partial derivatives of the map x0 7→ p(s, x0, t, x) exist in the distributional sense.

6. For almost all 0 ≤ s < t ≤ T and x0, x ∈ R there are constants Cu, cu > 0 such that

p(s, x0, t, x) ≤ Cuq(s, x0, t, x) and |∂x0
p(s, x0, t, x)| ≤ Cu

1√
t− s

q(s, x0, t, x) , (3.7)

where q(s, x0, t, x) :=
(

cu(t−s)
π

)
1

2

e−cu
|x−x0|2

t−s is a Gaussian probability density.

The following results hold.

1. Let u ∈ (L1∩L∞)([0, T ]×R). u is a solution of PDE (3.5) in the sense of distributions if and only if u verifies

(3.6) for a solution Y in the sense of probability laws.

2. There is a unique solution u ∈ (L1 ∩ L∞)([0, T ]× R) in the sense of distributions of PDE (3.5) (and therefore

of (3.6)).

The result 1. (resp. result 2.) was the object of Theorem 12. (resp. Proposition 16., Theorems 13., 22.) of

[49].

Remark 3.4. Under more restrictive assumptions on b, item 3. of Theorem 13. in [49] states the well-posedness of

(3.6)) in the sense of strong existence and pathwise uniqueness.

[46] and [45] studied a mollified version of (1.1), whose probabilistic representation falls into the Wasser-

stein continuous traditional setting mentioned above. Following the spirit of [63], a fixed point argument

was carried out in the general case in [46] to prove well-posedness of



















Yt = Y0 +
∫ t

0 σ
(

s, Ys,K ∗ us(Ys)
)

dWs +
∫ t

0 b
(

s, Ys,K ∗ us(Ys)
)

ds

Y0 ∼ u0

(K ∗ ut)(x) := E

[

K(x− Yt) exp
{

∫ t

0

Λ
(

s, Ys,K ∗ us(Ys)
)

ds
}

]

,

(3.8)
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where K : R → R is a mollified kernel. We remark that if (Y, u) is a solution of (3.8), then u is a solution (in

the sense of distribution) of
{

∂tu = 1
2∂

2
xx(σ

2(t, x,K ∗ u)u)− ∂x(b(t, x,K ∗ u)u) + Λ(t, x,K ∗ u)u
u(0, x) = u0(x).

(3.9)

Remark 3.5. 1. Existence and uniqueness results (in the strong sense and in the sense of probability laws) for the

MFKE (3.8) are established under various technical assumptions, see [45].

2. Chaos propagation for the interacting particle system (3.1) providing an approximation to the regularized

PDE (3.9), as N → ∞ (for fixed K), [46].

4 McKean representation of a Fokker-Planck equation with terminal

condition

Let us consider the PDE with terminal condition (1.5) and Λ = 0.














∂tu = 1
2

d
∑

i,j=1

∂2
ij

(

(σσt)i,j(t, x)u
)

− div (b(t, x)u)

u(T, dx) = uT(dx),

(4.1)

where uT is a given Borel probability measure. In the present section we assume the following.

Assumption 1. Suppose that (4.1) admits uniqueness, i.e. that there is at most one solution of (4.1).

Remark 4.1. Different classes of sufficient conditions for that are provided in [37].

A natural representation of (4.1) is the following MSDE, where β is a Brownian motion.


















Yt = ξ −
∫ t

0

b̃ (s, Ys; vs) ds+

∫ t

0

σ (T − s, Ys) dβs, t ∈ [0, T ]
∫

Rd vt(x)ϕ(x)dx = E(ϕ(Yt)), t ∈ [0, T ]

ξ ∼ uT,

(4.2)

where b̃(s, y; vs) = (b̃1(s, y; vs), . . . , b̃
d(s, y; vs)) is defined as

b̃ (s, y; vs) :=

[

divy
(

σσt
j. (T − s, y) vs (y)

)

vs (y)

]

j∈[[1,d]]

− b (T − s, y) . (4.3)

For d = 1 previous expression gives

b̃(s, y; vs) :=

(

σ2(T − s, ·)vs
)′

vs
(y)− b (T − s, y) . (4.4)

Remark 4.2. (4.2) is in particular fulfilled if Y is the time reversal process X̂t := XT−t of a diffusion satisfying the

SDE






Xt = X0 +

∫ t

0

b(s,Xs)ds+ σ(s,Xs)dWs, t ∈ [0, T ]

X0 ∼ u0 ∈ P(R).

(4.5)
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This happens under locally Lipschitz conditions on σ and b and minimal regularity conditions on the law density pt

of Xt. Indeed in [34], the authors prove that

X̂t = XT +

∫ t

0

b̃
(

s, X̂s; pT−s

)

ds+

∫ t

0

σ
(

T − s, X̂s

)

dβs, t ∈ [0, T ], (4.6)

where b̃ is defined in (4.3) and pt is the density of Xt. We emphasize that the main difference between (4.2) and (4.6)

is that in the first equation the solution is a couple (Y, v), in the second one, a solution is just Y , p being exogeneously

defined by (4.5).

We observe now that a solution (Y, v) of (4.2) provides a solution u of (4.1). This justifies indeed the

terminology of probabilistic representation.

Proposition 4.3. 1. Let (Y, v) be a solution of (4.2). Then u(t, ·) := v(T − t, ·), t ∈ [0, T ]), is a solution of (4.1)

with terminal value uT.

2. If (4.1) admits at most one solution, then there is at most one v such that (Y, v) solves (4.2).

Proof. In order to avoid technicalities which complicate the task of the reader we express the proof for

d = 1. We prove 1. since 2. is an immediate consequence of 1.

Let φ ∈ C∞ (R) with compact support and t ∈ [0, T ]. Itô formula gives

E [φ (YT−t)]−
∫

Rd

φ (y)uT (dy) =

∫ T−t

0

E

[

b̃ (s, Ys; vs)φ
′ (Ys) +

1

2

(

σ2 (T − s, Ys)φ
′′ (Ys)

)

]

ds.

Fixing s ∈ [0, T ], we have

E

[

b̃(s, Ys; vs)φ
′(Ys)

]

=

∫

R

(σ2(T − s, ·)vs)′(y)φ′(y)dy −
∫

R

b(T − s, y)φ′(y)vs(y)dy

= −
∫

R

(σ2)(T − s, y)φ′′(y)vs(y)dy −
∫

R

b(T − s, y), φ′(y)vs(y)dy.

Hence, we have the identity

E [φ (YT−t)] =

∫

R

φ (y)uT (dy)−
∫ T−t

0

∫

R

LT−sφ (y) vs (y) dyds.

Applying the change of variable t 7→ T − t, we finally obtain the identity

∫

R

φ (y) vT−t (y) dy =

∫

R

φ (y)uT (dy)−
∫ T

t

∫

Rd

Lsφ (y) vT−s (y)dyds.

This means that t 7→ ut is a solution of (1.2) with terminal value uT.

Remark 4.4. Precise discussions on existence and uniqueness of (4.2) are provided in [37]. In particular we have the

following.

1. There is at most one solution (in law) (Y, v) of (4.2) such that v is locally bounded in [0, T [×Rd.

2. There is at most one strong solution (Y, v) of (4.2) such that v is locally Lipschitz in [0, T [×Rd.

Item 1. is a consequence of Theorem 10.1.3 of [62]. Item 2. is a consequence of usual pathwise uniqueness arguments

for SDEs.
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5 Probabilistic representation with jumps for non-conservative PDEs

In this section, we outline the link between non-conservative PDEs and non-linear jump diffusions. This

kind of representation was emphasized in [27, 24] to design interacting jump particles systems to approxi-

mate time-dependent Feynman-Kac measures. For simplicity, we present this correspondence in the simple

case of the non-conservative linear PDE (1.1) when the coefficients do not depend on the solution, see (1.1).

However, the same ideas could be extended to the non-linear case where the coefficients σ, b,Λ may depend

on the PDE solution.

Let us consider the SDE
{

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

X0 ∼ u0,
(5.1)

where W is a one-dimensional Brownian motion. Assume that (5.1) admits a (weak) solution. Let Λ be a

bounded and negative function defined on [0, T ]×R. For any t ∈ [0, T ], we define the measure, γ(t, ·) such

that for any real-valued Borel measurable test function ϕ

∫

γ(t, dx)ϕ(x) = E

[

ϕ(Xt) exp

(
∫ t

0

Λ(s,Xs)ds

)]

. (5.2)

We recall that by Section 3 we know that γ is a solution (in the distributional sense) of the linear and non-

conservative PDE
{

∂tγ = 1
2∂

2
xx(σ

2(t, x)γ)− ∂x(b(t, x)γ) + Λ(t, x)γ

γ(0, ·) = u0.
(5.3)

Remark 5.1. If uniqueness of distributional solutions of (5.3) holds, then γ defined by (5.1,5.2) is the unique solution

of (5.3).

Let γ(t, ·) be a solution of (5.2) which for each t is a positive measure. We introduce the family of

probability measures (η(t, ·))t∈[0,T ], obtained by normalizing γ(t, ·), such that for any real valued bounded

and measurable test function ϕ we have
∫

η(t, dx)ϕ(x) :=

∫

γ(t, dx)ϕ(x)
∫

γ(t, dx)
. (5.4)

By simple differentiation of the above ratio and using the fact that γ satisfies (5.3), we obtain that η is a

solution in the distributional sense of the integro-differential PDE

{

∂tη = 1
2∂xx(σ

2(t, x)η) − ∂x(b(t, x)η) +
(

Λ(t, x)−
∫

η(t, dx)Λ(t, x)
)

η

η0 = u0 .
(5.5)

Besides one can express γ(t, ·) as a function of (η(s, ·))s∈[0,t]. Indeed, since γ solves the linear PDE (5.3) then

in particular approaching the constant test function 1, yields

∂t

∫

γ(t, dx) =

∫

γ(t, dx)Λ(t, x) =

∫

γ(t, dx)

∫

η(t, dx)Λ(t, x) ,

which gives
∫

γ(t, dx) = exp
(

∫ t

0

∫

η(s, dx)Λ(s, x)ds
)

. Then by definition (5.4) of η,

γ(t, ·) =
(

∫

γ(t, dx)
)

η(t, ·) = exp

(
∫ t

0

∫

η(s, dx)Λ(s, x)ds

)

η(t, ·) . (5.6)
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We already know that for any solution γ of (5.3) one can build a solution η to (5.5) according to relation (5.4).

Conversely, for any solution η of (5.5), by similar manipulations one can build a solution γ of (5.3) according

to (5.6). Hence well-posedness of (5.3) is equivalent to well-posedness of (5.5).

We propose now an alternative probabilistic representation to (5.1) and (5.2) of (5.3). Let us introduce

the non-linear jump diffusion Y (if it exists), which evolves between two jumps according to the diffusion

dynamics (5.1) and jumps at exponential times with intensity −Λt(Yt) ≥ 0 to a new point independent of

the current position and distributed according to the current law, L(Yt). More specifically, we consider a

process Y solution of the following non-linear (in the sense of McKean) SDE with jumps











dYt = b(t, Yt−)dt+ σ(t, Yt−)dWt +
∫

R
x1|x|>1Jt(µt− , Yt− , dx)dt+

∫

R
x1|x|≤1(Jt − J̄t)(µt− , Yt− , dx)dt

Y0 ∼ u0

µt− = L(Yt−) ,

(5.7)

where J denotes the jump measure and J̄ is the associated predictable compensator such that for any

probability measure ν on R

J̄t(ν, y, d(y
′ − y)) = −Λt(y)ν(dy

′) , for any y , y′ ∈ R .

Note that well-posedness analysis of the above equation constitutes a difficult task. In particular, [40] ana-

lyzes well-posedeness and particle approximations of some types of non-linear jump diffusions. However,

contrarily to (5.7), the nonlinearity considered in [40] is concentrated on the diffusion matrix (assumed to

be Lipschitz in the time-marginals of the process w.r.t. Wasserstein metric) and does not involve the jump

measure which is assumed to be given.

Assume that MSKE (5.7) admits a weak solution. By application of Itô formula, we observe that the

marginals of Y are distributional solutions of (5.5). Indeed, for any real valued test function in C∞
0 (R)

E[ϕ(Yt)] = E[ϕ(Y0)]

+

∫ t

0

E

[

b(s, Ys−)ϕ
′(Ys−) +

1

2
σ2(s, Ys−)ϕ

′′(Ys− )

]

ds

+

∫ t

0

E

[
∫

ϕ(Ys− + x)J̄s(µs− , Ys− , dx)

]

ds

−
∫ t

0

E
[

ϕ(Ys−)J̄s(µs− , Ys− ,R)
]

ds . (5.8)

Conclusion 5.2. Suppose that (5.3) admits a unique distributional solution γ; let η defined by (5.4). Suppose the

existence of a (weak) solution X (resp. Y ) of (5.1) (resp. (5.7)).

1. η is the unique solution (in the sense of distributions) of (5.5). Moreover
∫

R
ϕ(x)η(t, dx) = E[ϕ(Yt)], t ≥ 0.

2. We obtain the following identities for γ and η:

∫

γ(t, dx)ϕ(x) = E
[

ϕ(Xt) exp

(
∫ t

0

Λ(s,Xs)ds

)

]

= exp

(
∫ t

0

∫

η(s, dx)Λ(s, x)ds

)

ηt(ϕ)

= exp

(
∫ t

0

E[Λ(s, Ys)]ds

)

E[ϕ(Yt)]. (5.9)
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Using the above identities allows to design discrete time interacting particles systems with geometric

interacting jump processes. In particular, in [26] the authors provide non asymptotic bias and variance

theorems w.r.t. the time step and the size of the system, allowing to numerically approximate the time-

dependent family of Feynman-Kac measures γ.

6 McKean SDEs in random environment

6.1 The (S)PDE and the basic idea

Let (Ω,F , (Ft),P) be a filtered probability space. We consider a progressively measurable random field

(ξ(t, x)). We want to discuss probabilistic representations of
{

∂tu = 1
2∆(β(u)) + ∂tξ(t, x)u(t, x) , with β(u) = σ2(u)u.

u(0, ·) = u0.
(6.1)

Suppose for a moment that ξ has random realizations which are smooth in time so that

∂tξ(t, x) = Λ(t, x;ω). (6.2)

Under some regularity assumptions on Λ, (6.1) can be observed as a randomization of a particular case of

the PDE (1.1). For each random realization ω ∈ Ω, the natural (double) probabilistic representation is



















Yt = Y0 +
∫ t

0 σ
(

u(s, Ys)
)

dWs

Y0 ∼ u0
∫

ϕ(x)u(t, x)dx = Eω

[

ϕ(Yt) exp
{

∫ t

0

Λ
(

s, Ys;ω)
)

ds
}

]

, for t ∈ [0, T ],

(6.3)

where Eω denotes the expectation with frozen ω. However the assumption (6.2) is not realistic and we are

interested in ∂tξ being a white noise in time. Let N ∈ N∗. Let B1, . . . , BN be N independent (Ft)-Brownian

motions, e1, . . . , eN be functions in C2
b (R). In particular they are H−1-multiplier, i.e. the maps ϕ → ϕei are

continuous in H−1.

We define the random field ξ(t, x) =
∑N

i=0 e
i(x)Bi

t , where B0
t ≡ t and we consider the SPDE (6.1) in the

sense of distributions, i.e.
∫

R

ϕ(x)u(t, x)dx =

∫

R

ϕ(x)u0(dx) +
1

2

∫ t

0

∫

R

ϕ′′(x)σ2(u(s, x))dsdx +

∫ t

0

∫

R

ϕ(x)u(s, x)ξ(ds, x)dx, (6.4)

where the latter stochastic integral is intended in the Itô sense.

6.2 Well-posedness of the SPDE

The theorem below contains results taken from [9, 61].

Theorem 6.1. Suppose that β is Lipschitz.

• Suppose that u0 ∈ L2(R). There is a solution to equation (6.1).

• Assume further that β is non-degenerate, i.e. β(r) ≥ ar2, r ∈ R, where a > 0. Then, there is a solution u to

(6.1) for any probability u0(dx) (even in H−1(R)).
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• There is at most one solution in the class of random fields u such that
∫

[0,T ]×R
u2(t, x)dtdx < ∞ a.s.

Remark 6.2. • Previous result extends to the case of an infinite number of modes ei and for d ≥ 1.

• We remark that the ∂tξ(t, x) is a coloured noise (in space). The case of space-time white noise seems very difficult

to treat.

6.3 McKean equation in random environment

Given a local martingale M , E(M) denotes the Doléans exponential of M i.e. exp(Mt − 1
2 [M ]t), t ≥ 0. We

say that a filtered probability space (Ω0,G, (Gt), Q) is a suitable enlarged space of (Ω,F , (Ft), P ), if the

following holds.

1. There is a measurable space (Ω1,H) with Ω0 = Ω × Ω1, G = F ⊗ H and a random kernel (ω,H) 7→
Qω(H) defined on Ω × H → [0, 1] such that the probability Q on (Ω0,G) is defined by dQ(ω, ω1) =

dP(ω)Qω(ω1).

2. The processes B1, . . . , BN are (Gt)- Brownian motions where Gt = Ft ∨H.

Definition 6.3. We say that the non-linear doubly-stochastic diffusion











Yt = Y0 +
∫ t

0
Φ(u(s, Ys))dWs,

∫

ϕ(x)u(t, x)dx = EQω (

ϕ(Yt(ω, ·))Et
(∫

0 ξ(ds, Ys)(ω, ·)
))

,

ξ − Law(Y0) = u0(dx),

(6.5)

admits weak existence on (Ω,F , (Ft),P) if there is a suitably enlarged probability space (Ω0,G, (Gt),Q) an (Gt)-

Brownian motion W such that (6.5) is verified. The couple (Y, u) will be called weak solution of (6.5).

Remark 6.4. • We remark that the second line in (6.5) represents a sort of ξ-marginal weighted law of Yt.

• Let (Y, u) be a solution to (6.5). Then u is a solution to (6.1).

• Such representation allows to show that u(t, x) ≥ 0, dPdtdx a.e. and, at least if e0 = 0, E
(∫

R
u(t, x)dx

)

= 1,

so that the conservativity is maintained at the expectation level.

Definition 6.5. Let two measurable random fields ui : Ω × [0, T ] × R → R, i = 1, 2 on (Ω,F ,P, (Ft)), and Y i,

on a suitable extended probability space (Ωi
0,Gi, (Gi

t),Q
i), i = 1, 2, such that (Y i, ui) are (weak) solutions of (6.5)

on (Ω,F , (Ft),P). If we always have that (Y 1, B1, . . . , BN ) and (Y 2, B1, . . . , BN ) have the same law, then we say

that (6.5) admits weak uniqueness (on (Ω,F , (Ft),P)).

Theorem 6.6. Under the assumption of Theorem 6.1 equation (6.5) admits (weak) existence and uniqueness on

(Ω,F , (Ft),P).

7 McKean representation of stochastic control problems

7.1 Stochastic control problems and non-linear Partial Differential Equations

Let us briefly recall the link between stochastic control and non-linear PDEs given by the Hamilton-Jacobi-

Bellman (HJB) equation. We refer for instance to [66, 59, 30] for more details. Consider a state process
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(Xt0,x,α
s )t0≤s≤T on [t0, T ]× Rd solution to the controlled SDE

{

dXt0,x,α
s = b

(

s,Xt0,x,α
s , α(s,Xt0,x,α

s )
)

ds+ σ
(

s,Xt0,x,α
s , α(s,Xt0,x,α

s )
)

dWs

Xt0,x,α
t0

= x ,
(7.1)

where W denotes the Brownian motion on [t0, T ]×Rd, and α(s,Xt0,x,α
s ) represents Markovian control in the

sense that the control at time t is supposed here to depend on t and on the current value of the state process:

α ∈ At0,T :=
{

α : (t, x) ∈ [t0, T ]× Rd 7→ α(t, x) ∈ A ⊂ Rk
}

, (7.2)

A being a subset of Rk. For a given initial time and state (t0, x) ∈ [0, T ]×Rd, we are interested in maximizing,

over the Markovian controls α ∈ At0,T , the criteria

J(t0, x, α) := E

[

g(Xt0,x,α
T ) +

∫ T

t0

f
(

s,Xt0,x,α
s , α(s,Xt0,x,α

s )
)

ds

]

. (7.3)

In the above criteria, the function f is called the running gain whereas g is called the terminal gain.

Remark 7.1. At first glance, the set of control processes of the form αt = α(t,Xt) defined in (7.2) may appear too

restrictive compared to a larger set of non-anticipative controls (αt) which may depend on all the past history of the

state process (Xt). However, in the framework of Markov control problems (for which the state process (Xt0,x,a
t ) is

Markov, as soon as the control is fixed to a deterministic value αt = a ∈ A, for all t ∈ [t0, T ]), it is well-known that

the optimal control process (αt) lies in the set of Markovian controls verifying αt = α(t,Xt). Hence, considering

controls of the particular form (7.2) is done here without loss of generality.

To tackle this finite horizon stochastic control problem, the usual approach consists in introducing the

associated value (or Bellman) function v : [t0, T ]× Rd → R representing the maximum gain one can expect,

starting from time t at state x, i.e.

v(t, x) := sup
α∈At,T

J(t, x, α) , for t ∈ [t0, T ] . (7.4)

Note that the terminal condition is known, which fixes v(T, x) = g(x), whereas the initial condition v(t0, x)

corresponds to the solution of the original minimization problem. The value function is then proved to

verify the Dynamic Programming Principle (DPP) which consists in the backward induction

v(t, x) = sup
α∈At,τ

E
[

∫ τ

t

f(s,Xt,x,α
s , α(s,Xt,x,α

s ))ds+ v(τ,Xt,x,α
τ )

]

, for any stopping time τ ∈]t, T ] . (7.5)

Under continuity assumptions on b, σ, f , g, using DPP together with Itô formula allows to characterize v as

a viscosity solution of the HJB equation
{

v(T, x) = g(x)

∂tv(t, x) +H(t, x,∇v(t, x),∇2v(t, x)) = 0 ,
(7.6)

where ∇ and ∇2 denote the gradient and the Hessian operators and the so-called, Hamiltonian, H denotes

the real valued function defined on [0, T ] × Rd × Rd × Sd (Sd denoting the set of symmetric matrices in

Rd×d), such that

H(t, x, δ, γ) := sup
a∈A

{

f(t, x, a) + b(t, x, a)⊤δ(t, x) +
1

2
Tr[σσ′(t, x, a)γ(t, x)]

}

. (7.7)
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Note that (7.6) is a non-linear PDE because of the nonlinearity in the Hamiltonian induced by the supremum

operator. Besides, assuming that, for all (t, x) ∈ [t0, T ]× Rd, the supremum in (7.7) is attained at a unique

maximizer, then the optimal control α∗ is directly obtained as a function of the Bellman funtion and its

derivatives, i.e.

α∗(t, x) = argmax
a∈A

{

f(t, x, a) + b(t, x, a)⊤∇v(t, x) +
1

2
Tr[σσ⊤(t, x, a)∇2v(t, x)]

}

. (7.8)

Except in some very concrete cases such as the Linear Quadratic Gaussian (LQG) setting (where the states

dynamics involve an affine drift with Gaussian noise and the cost is quadratic both w.r.t. the control and the

state), there is no explicit solution to stochastic control problems. To numerically approximate the solution

of equation (7.6), several approaches have been proposed, mainly differing in the way the value function v

is interpreted. Indeed, as pointed out, v can be viewed either as the solution to the control problem (7.4), or

as a (viscosity) solution of the non-linear PDE (7.6).

1. When v is defined as the solution to the control problem (7.4), a natural approach consists in dis-

cretizing the time continuous control problem and apply the time discrete Dynamic Programming

Principle [16]. Then the problem consists in maximizing over the controls, backwardly in time, the

conditional expectation of the value function related to (7.5). The maximization at time step tk can be

done via a parametrization of the control x 7→ αθ
tk
(x) via a parameter θ so that parametric optimiza-

tion methods such as the stochastic gradient algorithm could be applied to maximize the expectation

over θ. It remains to approximate the conditional expectations by numerical methods such as PDE,

Fourier, Monte Carlo, Quantization or lattice methods. . . A great variety of numerical approximation

schemes have been developed in the specific Bermudan option valuation test-bed [22, 50, 6, 67, 25, 21].

Alternatively, one can use Markov chain approximation method [43] which consists in a time-space

discretization designed to obtain a proper Markov chain.

2. In the second approach we recall that v is viewed as the solution of (7.6). The problem amounts then to

discretize a non-linear PDE. Then one can rely on numerical analysis methods (e.g. finite differences,

or finite elements) and use monotone approximation schemes in the sense of Barles and Sougani-

dis [11] to build converging approximation schemes, e.g. [18, 32]. This type of approach is in general

limited to state space dimension lower than 4. To tackle higher dimensional problems, one approach

consists in converting the PDE into a probabilistic setting in order to apply Monte Carlo types algo-

rithms. To that end, various kinds of probabilistic representations of non-linear PDEs are available.

Forward Backward Stochastic Differential Equations (FBSDE) were introduced in [58] as probabilistic

representations of semi-linear PDEs. Then various types of numerical schemes for FBSDE have been

developed. They mainly differ in the approach of evaluating conditional expectations: [20] (resp. [33],

[28, 57]) use kernel (resp. regression, quantization) methods. Recently, important progresses have

been done performing machine learning techniques, see e.g. [29, 36]. Branching processes [53, 35] can

also provide probabilistic representations of semi-linear PDEs via Feynman-Kac formula. Non-linear

SDEs in the sense of McKean [52] are another approach that constitutes the subject of the present

paper.

3. Other approaches take advantage of both interpretations see for instance [31] and in [64].
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7.2 McKean type representation in a toy control problem example

In order to illustrate the application of MFKEs to control problems, we consider a simple example corre-

sponding to an inventory problem, for which the Hamiltonian maximization (7.7),(7.8) is explicit. The state

(Xt)t∈[t0,T ] denotes the stock level evolving randomly with a control of the drift α:










dXt0,x,α
t = −α(t,Xt0,x,α

t )dt+ σdWt

J(t0, x, α) = sup
α∈At0,T

E

[

g(Xt0,x,α
T )−

∫ T

t0

[

(

α(t,Xt0,x,α
t )−Dt

)2
+ h(Xt0,x,α

t )
]

dt
]

.

Bound constraints on the storage level are implicitly forced by the penalization h. A target terminal level is

indicated by the terminal gain g, supposed here to be Lebesgue integrable. The objective is then to follow

a deterministic target profile (Dt)t∈[0,T ], on a given finite horizon [t0, T ]. When the admissible set in which

the controls take their values A = R, one can explicitly derive the optimal control as a function of the value

function derivative

α∗(t, ·) = Dt +
1

2
(∂xv)(t, ·) ,

which yields the following HJB equation

∂tv +
1

4
(∂xv)

2 +Dt∂xv +
σ2

2
∂xxv − h = 0 .

Reversing the time, (with t0 = 0) gives (t, x) 7→ u(t, x) := v(T − t, x) solution of
{

∂tu = 1
4 (∂xu)

2 + σ2

2 ∂xxu+Dt∂xu− h,

u(0, x) = g(x).
(7.9)

We recover the framework of (1.1), with Λ(t, x, y, z) = 1
4
|z|2

y
− h(x)

y
and b(t, x, y) = −Dt. Consequently the

Bellman function v can be represented via






















Yt = Y0 + σWt −
∫ t

0 Dsds

Y0 ∼ g(x)dx∫
R
g(y)dy

∫

ϕ(x)v(t, x)dx =
(∫

R
g(y)dy

)

E

[

ϕ(YT−t) exp
{

∫ T

t
Λ
(

s, YT−s, v(s, YT−s),∇v(s, YT−s)
)

ds
}]

,

for t ∈ [0, T ].

(7.10)
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