Skip to Main content Skip to Navigation
Journal articles

Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam

Abstract : Undulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, divergence and shot-to-shot fluctuations require a specific transport line, to shape the electron beam phase space for achieving ultrashort undulator synchrotron radiation suitable for users and even for achieving FEL amplification. Proof-of-principle LPA based undulator emission, with strong electron focusing or transport, does not yet exhibit the full specific radiation properties. We report on the generation of undulator radiation with an LPA beam based manipulation in a dedicated transport line with versatile properties. After evidencing the specific spatio-spectral signature, we tune the resonant wavelength within 200–300 nm by modification of the electron beam energy and the undulator field. We achieve a wavelength stability of 2.6%. We demonstrate that we can control the spatio-spectral purity and spectral brightness by reducing the energy range inside the chicane. We have also observed the second harmonic emission of the undulator.
Document type :
Journal articles
Complete list of metadata

Cited literature [77 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02440018
Contributor : Inspire Hep Connect in order to contact the contributor
Submitted on : Thursday, August 6, 2020 - 3:54:08 PM
Last modification on : Friday, November 19, 2021 - 5:48:04 PM

File

2019_Ghaith_SciRep.pdf
Publisher files allowed on an open archive

Identifiers

Citation

A. Ghaith, D. Oumbarek, E. Roussel, S. Corde, M. Labat, et al.. Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam. Scientific Reports, Nature Publishing Group, 2019, 9 (1), pp.19020. ⟨10.1038/s41598-019-55209-4⟩. ⟨hal-02440018⟩

Share

Metrics

Record views

504

Files downloads

325