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We present a three-dimensional model describing the propagation of elastic waves in a soil sub-
strate supporting an array of cylindrical beams experiencing flexural and compressional resonances.
The resulting surface waves are of two types. In the sagittal plane, hybridized Rayleigh waves can
propagate except within bandgaps resulting from a complex interplay between flexural and com-
pressional resonances. We exhibit a wave decoupled from the hybridized Rayleigh wave which is the
elastic analogue of electromagnetic spoof plasmon polaritons. This wave with displacements per-
pendicular to the sagittal plane is sensitive only to flexural resonances. Similar, yet quantitatively
different, physics is demonstrated in a two-dimensional setting involving resonances of plates.

Surface elastic waves can propagate in a soil substrate
supporting a periodic array of resonating elements. This
has been chiefly demonstrated in the GHz regime with
resonant pillars of typically 1/10 micrometer scale [1-1].
Considering meter length scale the frequency range falls
in the spectrum of seismic waves and in this context, an
array of beams on a soil substrate is the canonic idealized
configuration used in seismology to illustrate the problem
of 7site-city interaction” [5]. From a theoretical point of
view, most of the models encapsulate the behavior of
the resonators with a single or multi-degree of freedom
system, resulting in effective boundary conditions of the
Robin type for the soil on its own [6—8]. On the basis
of these models new devices of seismic metasurfaces have
been shown to efficiently shield Rayleigh [9-14] and Love
[15-17] waves. In most cases, only the compressional
resonances of the resonators were considered. In a recent
work, the case of flexural resonances of beams has been
considered [18]. However, the study does not address the
configuration of beams in perfect contact with the soil
and merely considers motions in the sagittal plane due
to flexural resonances.

In this Letter we consider this realistic configuration
and we propose a model able to account for both fle-
xural and compressional resonances in three dimensions,
see Figure 1. In the sagittal plane, hybridized Rayleigh
waves are found whose dispersion results from a complex
interplay between both types of resonances; in particular
two Rayleigh waves can coexist at the same frequency. In
addition, a surface wave with displacements perpendic-
ular to the sagittal plane appears to be the elastic ana-
log of spoof plasmon polaritons (SPPs) in electromag-
netism [19] with a dispersion governed by the flexural
resonances only. The two-dimensional case of an array
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FIG. 1:  Soil substrate supporting an array of beams with
flexural and compressional resonances. Hybridized Rayleigh
waves with motions in the sagittal plane (blue arrows show
the displacements in the sagittal plan) and out-of-plane elastic
SPPs (green arrows).

of parallel plates can be modelled almost identically and
unveils important quantitative differences with the three-
dimensional case.

We denote (p,, E,, 1,) the mass density, Young’s modu-
lus and the Poisson ratio of the beams; (ps, As, ) are the
mass density and the two Lamé’s coeflicients of the elas-
tic soil substrate. When slender beams are considered,
meaning that their radius r, is much smaller than their
height h,, a reduction of model from three dimensions
to one (vertical) dimension is possible and this results in



the well-known equations
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where U,, a = z,y, are the horizontal displacements in
the region of the beams and U, the vertical displacement,
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see e.g. [13, 18]. In (1), the wavenumbers k = (ﬁﬁ%)
and K = w g—: are associated with flexural and com-

pressional resonances respectively. These equations have
to be supplied with boundary conditions at the top of
the beams and at their junction with the soil substrate.
In the actual problem stress-free boundary condition ap-
ply at the top of the beams and the continuity of the
displacements and of the normal stresses applies at the
beam/soil interface. In the reduced model, this leads to
clamped-free effective boundary conditions namely

at 2 =0: Uy = Uq, 8&207 U, = u,,
0z
r2 93U, ou,
Ozao = _aEbe 923 5 Ozz = 0Eb B P
at 2= h 82Ua_33Ua_ 8U2_0
T 922 T 928 T 9

(2)
where (uq,u,) are the displacements in the soil,
(024, 022) the associated normal stress and 6 the cross-
sectional area ratio of beam or plate in the unit cell of
horizontal extent a, see Table I. It is worth noting that
such conditions can be either postulated as in [18] or de-
rived using asymptotic analysis combined with homoge-
nization [16, 17,

The conditions of prescribed displacements and zero
rotation at z = 0 together with the conditions of free ro-
tation and free horizontal displacements at z = h, make
it possible to set the problem in the beams as two decou-
pled linear problems on U, and U, with respect to uq|.—g
and u.|,—o respectively. Denoting wo the characteristic
flexural frequency and e the coupling parameter

O_Shb ph7 -

where 6 and S are given in table I (beams), we introduce
the dimensionless frequency Q = w/wy = (khy,)?.

puE
Pstis’

3)

slenderness S
3D (beams) S =2hy /1

2D (plates) |S = 1/3(1 — v2)hy /1y,

TABLE I: Slenderness S and filling fraction € for beams and
plates (with a the array spacing) entering in (3) resulting in
the same modelling (4).

filling fraction 6

0 = 7ri/a®

0=2r,/a

From (1)-(2), boundary conditions of the Robin’s type
are found for the substrate on its own

Oxa(®,0) = pskre fo(Q) up(x,0), a=uzy

(4)
Uzz(x70) = /J'SkTE fC(Q) UZ(IIJ, 0)7

where ky = w/cr (¢r = /ps/ps) and

B sin v/Q cosh vQ + cos v sinh vVQ
fe (@) = va 1 + cosh vVQ cos VQ
fc(2) = Stan (2/S),

)
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being the impedance functions encapsulating the flexural
and compressional resonances of the beams.

We are looking for a surface wave evanescent for z —
—oo and propagating along the interface z = 0 with a
wavevector k = kn (n = nye, +nye,, (e,,e,) being the
unit vectors along x and y, and n2 + ni = 1). The so-
lution is written in terms of the elastic potentials (¢, 1),
such that u = R [V + V x 1], with V -4y = 0. Making
use of the isotropy of the medium, we define

QO(CII,Z) _ _ﬁ eImLz+ik~m7
k

1

k

with B, +a. B, = 0, and where t = —nye, +n,e,. With

B the ratio of the celerities of the Rayleigh wave ¢ and of

the bulk shear wave ¢, we have

(6)

Y(x,2) = - (Byn + Bit + iB.e,) eForstike,

ﬁzi 1_0432527 1_ai:§B27 (7)
where & = ps/(As + 2us). The resulting expressions
of (Ua,u.), (02a,0:.) along with (4) provide two de-
coupled systems, on the displacements (un,u.) (with

Up = NglUy + NyUy and o, = Ny0,. + Nyoy, the as-
sociated stress) and on the out-of-plane displacement
Up = —NyUy + NgUy and oy = —Ny0oy, + g0y, the as-

sociated stress. The displacements (u,,u.) in the sagit-
tal plane correspond to hybridized Rayleigh waves whose
dispersion relation reads

(1 + a%)Q —dara, + C:(8,2) =0,

CE(/Ba Q) = 563 [fCaL + fFaT] + 52/62][ch (aLaT - 1) .
(8)
(where f stands for f(Q2)). The displacement u; perpen-
dicular to the sagittal plane is associated with a surface
wave whose dispersion

1
Bzwa fe(€2) >0, (9)

is the elastic analog of electromagnetic spoof plasmons
[19]. Interestingly, such a wave has been announced in



a similar setting involving Love waves in the presence
of a guiding layer (see Fig. 11 in [16]). As one would
expect for e = 0, the classical Rayleigh waves is recov-
ered, see (8), and the elastic SPP disappears, see (9)
(with & = kr). Next, neglecting the flexural resonances
(fr = 0) produces C. = 33y, fc in agreement with [13].
Eventually, considering the flexural resonances in a fre-
quency range well below the first longitudinal resonance
gives fo(Q2) ~ Q in agreement with [20].

From now on, we set the physical parameters as fol-
lows: Eg = 0.1 GPa, ps = 103 kg.m™3 and F, = 10E;,
py = 10ps; vs = v, = 0.3 (hence & ~ 0.28). Next,
r, = 0.25 m and a = 1 m and we consider h, = 30,
15 and 6 m. The resulting parameters entering in (3)
and (4) are given in Table IT according to Table I.

hy, = 30 m 15 m 6 m
wo=0.04rad.s™! | wo =0.17rad.s™! | wo=1.1rads™!
3D| £=1.310"7 €=2610"2 €=6.610"2
S =240 S =120 S =48
wo = 0.05 rad.s™' | wo = 0.21 rad.s™! | wo = 1.33 rad.s™!
2D|  £=3.810"7 e=811072 € =20.310"7
S =210 S =102 S =40

TABLE II: Reference frequency wo (€ = w/wp) and dimen-
sionless coupling parameter ¢ and slenderness S entering in
(4)-(5) for beams (3D) and plates (2D), see Table 1.

We report in figure 2 the dispersion relations () of
the hybridized Rayleigh waves (blue lines) for decreas-
ing beam heights h, while keeping constant the range
2 € (0,200). This allows to keep the first 6 flexural reso-
nances at constant values 2 = 3.5, 22.0, 61.8, 75.3, 120.9
and 199.8 corresponding to (1 + cos VQ cosh \/ﬁ) = 0.
Within this interval, the dimensionless compressional fre-

quencies Q. = w&' ,n=20,1,---, decrease linearly

&(2714’1)71’ i
V oo 2hp 1

crease (but more slowly than the flexural resonance fre-
quencies). For a large slenderness h, = 30 m, the first
longitudinal resonance is sent to Q ~ 377 (wes = 16.5
Hz) hence fo(Q) ~ Q in (8). In this case, it is easy to
see that the (n + 1)*™ branch , n = 1,---, of hybridized
Rayleigh wave appears (for 5 = 1) before the n** branch
has reached its asymptote (for 8 = 0). The salient con-
sequence is that the branches n and (n + 1) coexist be-
low the n** flexural resonance frequency. Decreasing the
slenderness with h, = 15 m and 6 m leads to the ap-
pearance of the first compressional resonance frequency
at Qe = 188.5 (we = 33.1 Hz) and Q¢ = 75.4 (we = 82.8
Hz). In these cases, relatively small bandgaps (light blue
regions ) are opened within the large bandgap dictated
by the compressional resonance on its own (light red re-
gions), revealing the interplay between the two types of
resonances. Incidentally, as it is the rule, these intrin-
sic bandgaps (independent of the array spacing a) can

with A, while their frequencies we =

beams

160

Q

FIG. 2: Dispersion of the hybridized Rayleigh wave for 3D
beams — dimensionless velocity ¢/cr versus Q = w/wg (blue
lines). Dashed red lines show the dispersion produced by the
compressional resonances on their own (fr = 0). For h, = 30
m, there is no bandgap and two branches b,, and b,,+1 coexist
in a frequency range just below the n'® flexural resonance.
For hy, = 15 m a bandgap is opened by periodicity (light
blue region in the Brillouin zone) and at h, = 6 m the two
intrinsic bandgaps (light blue region outside of the Brillouin
zone, independent of a) are slightly enlarged by periodicity.

be enlarged by periodicity which imposes 8 > (%) Q
(k < m/a) as seen for h, = 6 m; also, bandgaps solely due
to periodicity can be opened as can be seen for h, = 15
m near 2 = 180. Eventually, in figure 3 we report the
dispersion relation of the elastic SPPs, from (9), for h, =
6 m. As their electromagnetic counterparts, these waves
have bandgaps dictated by the condition fiz > 0 hence
the bandgap positions and thicknesses are independent
of the coupling € and of the slenderness S. As previously

1 T T T
beams
ol & | 1
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FIG. 3: Dispersion of elastic SPPs, from (9) with out-of-

plane motion for A, = 6 m. Intrinsic band-gaps are opened
due to flexural resonances (light green regions outside of the
Brillouin zone) which are enlarged by periodicity (light green
regions inside the Brillouin zone).



said, similar waves with out-of-plane displacements have
been reported in the presence of a guiding layer [16], and
they are recovered here in the absence of any guiding
layer.

We now restrict ourselves on to a two-dimensional set-
ting involving arrays of plates. As one would expect, the
coupling of plates with the soil is higher than that of
beams for the same thickness 2r, and the same height h,
(see table IT); the slenderness S on the contrary is slightly
lower which is also expected since plates have a higher
flexural rigidity than beams, and this is translated in an
effective lower slenderness, see table I. Accordingly, the
relative positions of the compressional and flexural reso-
nances change and we shall see that this strongly affects
the dispersion of the hybridized Rayleigh waves. We pro-
vide in this case a numerical validation of the dispersion
curves by means of diverging reflection coefficients com-
puted below the sound line & < k; using a multimodal
method [21]. Results are shown in figure 4. The overall
agreement is good for h, = 30 and 15 m although the
condition of zero group velocity at the boundary of the
Brillouin zone (vertical slope g—g = o0) produces more
or less pronounced shifts of the branches to lower fre-
quencies [22]. For h, = 6 m, the agreement is good up
to © ~ 50 which can be partially attributed to other
resonances and in particular that of an edge mode for
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FIG. 4: Dispersion of the hybridized Rayleigh wave for 2D
plates — The dispersion relations are obtained numerically in
the actual problems by means of the divergence of the reflec-
tion coefficient (in logarithmic color scale with maxima in red,
arbitrary scales have been used). Dashed blue lines show the
dispersion from (8), red vertical arrows for h, = 15 m and 6
m indicate the occurence of compressional resonances.

\/ Bewh, =2.32 (2 =91) [23].

The ellipticity x of surface waves of the Rayleigh type
(or H/V for horizontal to vertical ratio) characterizes
the displacements at the soil surface, namely x = a/b for
displacement at z = 0 of the form u,, = acos(k - x — wt),
u, = bsin(k - ¢ — wt) and it is an important indicator of
the ground motion. From (8), it reads

2000 — (14 02)
B2ay, + eBfr(apar — 1)’
(10)
whose variations versus () are reported in figure 5 for
h, = 15 m (in the case of beams and plates). In the re-
ported cases, the branches b,,, n =1 to 5, are below the
first compressional resonance. Making use of (10) along
with (8), these branches have 3 typical points: (i) the
starting point (8 = 1) for which x = ¢ fc which increases
whenn =1,---,5 increases as f¢ does; (ii) the frequency
at which the wave motion transitions from prograde to
retrograde with x = 0 when f; — oo and this is con-
sistent with (4) which predicts w,, = 0 at the flexural
resonances, (iii) the ending point for 5 — 0 resulting in
X = —1/¢ for any branch. Next the branch bg appears
just before the longitudinal resonance where fo — oo
imposes u, = 0. It results high values of x in the neigh-
borhood of the singularity and it is worth noting that
this affects a branch which is dictated by the interplay
of flexural and compressional resonances (this branch is
missed if flexural motions are disregarded). For compari-
son, we have computed numerically the displacements at

_ QTBZ + EﬂfC(aLaT - 1)
20,00 — (1 + a2)
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FIG. 5: Ellipticity x of the hybridized Rayleigh waves versus
Q for beams (upper panel) and for plates — Blue lines show x
from (10), dashed red lines neglecting the flexion (fr = 0 in
(10)). Insets show the deformations in the plates atop the soil
in a single cell, computed numerically and the corresponding
ellipticity Xnum (S€e main text).



the free surface and in the plates for Q = 13 (bs), = 50
(coexistence of bz and by), 2 = 94 (coexistence of by
and bs), Q@ =122 (bs) and ©Q = 156 (bg). Results, in the
insets of figure 5, show the deformations in the plates
and the corresponding ellipticity X.... The agreement
with (10) is qualitative which is partly attributable to
the existence of boundary layers at the junction between
the plates and the soil. However they confirm the main
trends of the model, in particular it is noticeable that the
motions in the plates are dominantly horizontal even for
very low ellipticity.

Beams and plates atop a soil substrate impact propa-
gation of seismic waves in a richer way than their acous-

tic counterparts. This is due to a complex interplay be-
tween the compressional and longitudinal resonances and
to their associated spectra. In particular, (i) the disper-
sion of hybridized Rayleigh waves shows a important part
of the spectrum associated with celerities larger than that
of the classical Rayleigh waves; (ii) These waves are as-
sociated with prograde or retrograde motion at the soil
interface with large variations of the ellipticity; (iii) The
existence of an out-of-plane surface wave, with infinite
ellipticity on its own, sheds new light on the analysis of
the displacement components in particular on records of
the ambient noise for which the horizontal displacement
is the sum of the two contributions [24, 25].
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