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Semidefinite programming relaxations through quadratic
reformulation for box-constrained polynomial optimization

problems

Sourour Elloumi1, Amélie Lambert2 and Arnaud Lazare1∗†

Abstract

In this paper we introduce new semidefinite pro-
gramming relaxations to box-constrained polynomial
optimization programs (P). For this, we first reformu-
late (P) into a quadratic program. More precisely, we
recursively reduce the degree of (P) to two by substitut-
ing the product of two variables by a new one. We ob-
tain a quadratically constrained quadratic program. We
build a first immediate SDP relaxation in the dimension
of the total number of variables. We then strengthen the
SDP relaxation by use of valid constraints that follow
from the quadratization. We finally show the tightness
of our relaxations through several experiments on box
polynomial instances.

1. Introduction

In this paper, we consider the box-constrained
polynomial optimization problem that can be stated as
follows:

(P)


min f (x) =

m

∑
p=1

cp ∏
i∈Mp

xi

s.t.
xi ∈ [0,1], i ∈ I

where I = {1, ..,n}, f is an n−variable polynomial of
degree d and m is the number of monomials. For a
monomial p, Mp ⊂ I is a multiset containing the in-
dexes of the variables involved in p. It follows that
d = maxp |Mp|. Here, we suppose that each variable
xi is in the interval [0,1], but variables in any [`i,ui] in-

∗1 UMA-ENSTA, 828 Boulevard des
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terval can be transformed into [0,1] by a simple variable
change.

(P) is a general model that allows to formulate
many important problems in optimization. It is an
N P-hard problem [11] in general and very difficult
to solve in practice. Classical methods that are able
to solve (P) to optimality are branch-and-bound algo-
rithms based on convex relaxations. The most classical
relaxation consists in the complete linearization of (P),
but quadratic convex relaxation can also be used. For in-
stance, the well known α−branch-and-bound [2] com-
putes convex underestimators of nonlinear functions by
perturbing the diagonal of the Hessian matrix of the ob-
jective function. Several implementations of these al-
gorithms are available, see for instance Baron [17],
Antigone [16], SCIP [1] or Couenne [5]. In [8, 15],
the authors use separable or convex underestimator to
approximate a given polynomial. Another approach
proposed in [4] handles binary unconstrained polyno-
mial problems. It consists in building a quadratic equiv-
alent formulation to (P) where the objective function
is still non-convex. The obtained reformulation is then
solved by the solver Cplex [13], which is possible
since they consider problems with only binary vari-
ables. The idea of quadratization is also used for contin-
uous variables in [9] in order to deduce linear program-
ming relaxations. Several other approaches are based
on semidefinite programming. Among these, we cite
the exact method in [14] that can find an optimal solu-
tion thanks to a hierarchy of SDP relaxations and refer
the reader to seminal surveys such as [3].

In this paper, we propose two families of SDP re-
laxation of (P). To this end, we first reformulate (P)
into an equivalent quadratic problem (QPε). As in [4],
we call it a quadratization. For an instance of (P),
several quadratizations are possible and we formalize
valid quadratizations in our context. We further build
a compact semidefinite relaxation of (QPε) that follows
immediately from the quadratization used. Then, we
strengthen this compact relaxation. For this, we in-



troduce new valid constraints, which come from the
quadratization step. We add these constraints to the
compact SDP relaxation. Obviously, the bound associ-
ated to this last relaxation is stronger, but unfortunately
harder to solve. To solve it efficiently, we develop a sub-
gradient algorithm within a Lagrangian duality frame-
work following the ideas of [6].

The outline of our paper is the following. In Sec-
tion 2, we focus on the quadratization step. In Section
3 and 4, we present our compact semidefinite relaxation
and its strengthened version. In Section 5, we present
experiments where we compare the quality of the lower
bound obtained by the branch-and-bound of the solver
SCIP [1] after one hour of CPU time with our two re-
laxations. We make our tests on polynomial instances
inspired from [8]. Section 6 draws some conclusions
and axes for future research.

2. Quadratic reformulation of (P)

In this section, we present how we build equivalent
quadratic formulations to (P). The basic idea is to re-
duce the degree of f to 2. For this, in each monomial of
degree 3 or greater, we simply recursively replace each
product of two variables by an additional variable.

More formally, we define the set of indices of the
additional variables J = {n+ 1, ..,N}, where N is the
total number of initial and additional variables. We also
define the subsets εi for the initial or additional variable
i as follows:

Definition 1. For all i ∈ I∪ J, we define εi as the set of
indices of the variables whose product is equal to xi:

• If i ∈ I, i.e. xi is an initial variable, then we set
εi = {i}

• If i ∈ J, i.e. xi is an additional variable, then there
exist ( j,k) ∈ (I∪J)2 such that xi replaces x jxk and
we set εi = ε j ∪ εk

Using these sets, we define a valid quadratization
as a reformulation with N variables where any mono-
mial of degree at least 3 is replaced by the product of
two variables.

Definition 2. The sets J = {n+ 1, ..,N} and {εi, i ∈
I∪ J} define a valid quadratization with N variables if,
for any monomial p of degree greater than or equal to
3 (i.e. |Mp| ≥ 3), there exist ( j,k) ∈ (I ∪ J)2 such that
Mp = ε j ∪ εk and ∏

i∈Mp

xi = x jxk. Then the monomial p

is replaced by a quadratic term.

With this definition of a quadratization, we refor-
mulate (P) as a non-convex quadratically constrained
quadratic program (QPε) with N variables:

(QPε )



ming(x) = ∑
|Mp|≥3

Mp=ε j∪εk

cpx jxk + ∑
|Mp|≤2

cp ∏
i∈Mp

xi

s.t.

xi = x jxk, (i, j,k) ∈ J× (I∪ J)2 : εi = ε j ∪ εk (1)

xi ∈ [0,1], i ∈ I∪ J (2)

By construction, problems (P) and (QPε) are equiva-
lent in the sense that, from any solution of one problem,
one can deduce a solution for the other problem with
the same objective function value. Let us observe that
(QPε) is parameterized by the quadratization defined by
sets ε . Indeed, several valid quadratizations can be ap-
plied to (P), each of them leading to different sets εi.

For the sake of simplicity, g(x) can be rewritten as
g(x) = 〈Q,xxT 〉+ cT x, where Q ∈ SN (the set of N×N
real symmetric matrices), and c ∈ RN .

3. A compact semidefinite programming
relaxation

In this section, we build a semidefinite relaxation
of (QPε). Classically, we linearize the products xxT us-
ing a matrix variable X ∈ SN and we relax the equal-
ity X = xxT as X − xxT � 0. We obtain the following
semidefinite program:

(SDP0
ε )



min < Q,X >+cT x

s.t.

xi = X jk, (i, j,k) ∈ J× (I∪ J)2 : εi = ε j ∪ εk(3)

Xii ≤ xi, i ∈ I∪ J (4)(
1 xT

x X

)
� 0 (5)

x ∈ RN , X ∈ SN (6)

where Constraints (3) and (4) correspond to the lin-
earization of Constraints (1) and (2), respectively. By
Schur’s Lemma, Constraint (5) is equivalent to the re-
laxed constraint X − xxT � 0. It is important to note
that the number N−n of Constraints (3) depends on the
quadratization ε used.

(SDP0
ε ) has a reasonable size of O(N2) variables

and O(N) constraints. In section 5, we evaluate the
quality of the associated bound.



4. An improved semidefinite programming
relaxation

In this section, we build an improved semidefinite
relaxation of (QPε) by strengthening (SDP0

ε ). We start
by introducing valid quadratic equalities and inequali-
ties coming from the quadratization ε .

More formally, for a quadratization characterized
by ε , we introduce the following set of constraints that
is valid when Constraints (1)-(2) are satisfied.

Lemma 1. The following quadratic equalities and in-
equalities are valid over Fε :{

xix j ≤ xi, (i, j) ∈ J× (I∪ J) : ε j ⊂ εi (7)

xix j = xkxl , (i, j,k, l) ∈ (I∪ J)4 : εit ε j = εk t εl (8)

where t is the disjoint union operator.

Proof. Constraints (7) trivially hold since xi ∈ [0,1].
We then prove the validity of the Constraints (8). By
definition we have:

xix j = ∏
i′∈εi

xi′ ∏
j′∈ε j

x j′

= ∏
i′∈εitε j

xi′

= ∏
k′∈εktεl

xk′ since εit ε j = εk t εl

= xkxl

�

In a sense, Constraints (8) can be viewed as con-
straints that break symmetries. Constraints (7) and (8)
are not convex, but since they are quadratic, we can eas-
ily linearize them using the matrix variable X .

Adding these constraints to (SDP0
ε ), we obtain the

following semidefinite relaxation:

(SDP1
ε )



min < Q,X >+cT x

s.t.

(3)(4)(5)(6)

Xi j ≤ xi, (i, j) ∈ J× (I∪ J) : ε j ⊂ εi (9)

Xi j = Xkl , (i, j,k, l) ∈ (I∪ J)4 : εi t ε j = εk t εl (10)

(SDP1
ε ) is larger than (SDP0

ε ). Indeed, it still has
O(N2) variables, but there are O(N4) constraints. Due
to its significant number of constraints (SDP1

ε ) is harder
to solve than (SDP0

ε ). In Section 5, we evaluate the
quality of the associated bound.

Here again, the number N(N−n) of Constraints (9)
depends on the quadratization ε used. As for the num-
ber of Constraints (10), it depends also on the structure
of the instance and can be up to N4.

We end this section with an illustration of our two
relaxations on a small instance.

Example 1

Let us consider the following polynomial optimiza-
tion problem with n = 4 variables and m = 7 monomi-
als.

(Ex)


min f (x) =−0.21x1−0.08x2−0.58x3−0.49x1x4

+0.78x1x3x4−0.54x1x2x4 +0.88x2x3x4

s.t.

x ∈ [0,1]4

The optimal value of (Ex) is −1,32.

Applying the quadratization described in [10], we
introduce 3 additionnal variables and 7 constraints.
We obtain the following equivalent quadratic problem
(Exε) to (Ex) with 7 variables.

(Exε )



ming(x) =−0.21x1−0.08x2−0.58x3−0.49x1x4

+0.78x5x4−0.54x6x4 +0.88x7x4

s.t.

x1x3 = x5

x1x2 = x6

x2x3 = x7

x ∈ [0,1]7

We now build the semidefinite relaxation (Ex0
ε)

which contains 35 variables and 11 constraints. The
optimal value of (Ex0

ε) is −1,37.

(Ex0
ε )



ming(x,X) =−0.21x1−0.08x2−0.58x3−0.49X1,4

+0.78X5,4−0.54X6,4 +0.88X7,4

s.t.

Xii ≤ xi, 1≤ i≤ 7

X1,3 = x5

X1,2 = x6

X2,3 = x7(
1 xT

x X

)
� 0

x ∈ R7, X ∈ S7

We strengthen this first relaxation by adding the
two families of valid constraints (9) and (10) that we
expand in the following. The resulting semidefinite re-
laxation (Ex1

ε) has 35 variables and 23 constraints. The
optimal value of (Ex1

ε) is −1,32 which is also the opti-
mal value of (Ex).



(Ex1
ε )



ming(x,X)

s.t.

Xii ≤ xi, 1≤ i≤ 7

X1,3 = x5

X1,2 = x6

X2,3 = x7

X1,5 ≤ x5 X3,5 ≤ x5

X1,6 ≤ x6 X2,6 ≤ x6

X2,7 ≤ x7 X3,7 ≤ x7

X2,5 = X6,3 X3,6 = X7,1

X2,5 = X7,1 X6,5 = X6,3

X7,6 = X7,1 X7,5 = X7,1(
1 xT

x X

)
� 0

x ∈ R7, X ∈ S7

Although the second relaxation gives the optimal value
of the considered problem, the difference in the optimal
value between the two relaxations is not much signif-
icant for this instance. It is also the case for most of
the small-sized instances. But, as shown in the next sec-
tion, the gap will markedly increase when considering
medium and large-sized instances. �

5. Experimental results

In this section, we evaluate the bound obtained by
our relaxations (SDP0

ε ) and (SDP1
ε ) on randomly gen-

erated instances of degree 4. The number of variables
varies between 10 and 40 and the number of monomi-
als from 10 to 400. These instances are quite sparse as
their density, i.e. the ratio m

n , is between 1 and 10. The
generation process is similar to [8], that is:

• the number of initial variables n is contained in
{10,15,20,25,30,35,40}.

• the number of monomials m is a multiple of n.

• the coefficient of each monomial is uniformly gen-
erated in the interval [−1,1].

• the variables composing each monomial are gen-
erated by randomly choosing an index within
{0,1, ...,n}. Each time the value 0 is generated,
the degree of the monomial decreases by one. An
index can only be chosen once in a monomial.

Concerning the choice of the quadratization for our
experimental results, we used the one described in Al-
gorithm 2 from [10].

Our experiments were carried out on a server with 2
CPU Intel Xeon each of them having 12 cores and 2
threads of 2.5 GHz and 4∗16 GB of RAM using a Linux
operating system.

Used solvers
Relaxations (SDP0

ε ) and (SDP1
ε ) are hard to solve,

and standard semidefinite programming solvers that im-
plement interior point algorithms [7, 18] failed to solve
it. Thus, following the ideas of [6] we develop a sub-
gradient algorithm within a Lagrangian duality frame-
work to solve it. For this, we use the solver csdp [7] to-
gether with the Conic Bundle algorithm [12].

We also use SCIP 5.0.0 [1] with the default pa-
rameters for our comparisons.

Legend of Table 1

• n: number of variables in the polynomial formula-
tion.

• N: number of variables after the quadratization.

• m: number of monomials.

• BKN: is the best known solution value at the end
of the branch-and-cut of SCIP (1 hour).

• LBend : is the lower bound obtained by the branch-
and-cut of SCIP, after 1 hour.

• Gapend : is the final optimality gap at the end of the
branch-and-cut of SCIP, i.e.

Gapend =

∣∣∣∣BKN−LBend

BKN

∣∣∣∣∗100.

• LB: is the lower bound obtained within 20 minutes
of CPU time when solving (SDP0

ε ) and (SDP1
ε ).

• Gap: is the relative gap between BKN and LB for
(SDP0

ε ) and (SDP1
ε ), i.e.

Gap =

∣∣∣∣BKN−LB
BKN

∣∣∣∣∗100.

We present in Table 1 a comparison of the lower
bounds obtained by (SDP0

ε ) and (SDP1
ε ) after 20 min-

utes of CPU time, with the final lower bound obtained
by the solver SCIP after one hour of CPU time. As ex-
pected, we observe that the gap obtained with the relax-
ation (SDP1

ε ) is significantly smaller than the gap ob-
tained with (SDP0

ε ). Indeed, out of the 70 considered
instances, (SDP0

ε ) has an average gap of 64% whereas
(SDP1

ε ) has an average gap of 33%. This shows the im-
portance of the valid constraints added to (SDP1

ε ) that
exploit both the quadratization used, and the structure of
the instances. Comparing the gaps obtained by (SDP1

ε )
to those obtained by the solver SCIP, we observe that
SCIP is not able to provide better lower bounds than
our relaxation on 21 instances even after one hour of
branch-and-bound. The average gap for SCIP is about
27% over all the instances. In fact, SCIP is able to close
the gap within one hour of CPU time for the smaller in-
stances, but its gap significantly increases on medium



sized instances and dense instances. On the contrary,
the gap obtained with (SDP1

ε ) is more stable to the in-
crease of n.

6. Conclusion and future work

We introduced two SDP relaxations based on a
quadratization and we prove their practical interest.
Future work consists in embedding these relaxations
within a branch-and-bound or a branch-and-cut frame-
work in order to compute an optimal solution. Another
interesting aspect is to study the influence of the quadra-
tization on the quality and the computational efficiency
of the SDP relaxation. This is the topic of an ongoing
work.
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Instance SCIP SDP0
ε SDP1

ε

n N m BKN LBend Gapend LB Gap LB Gap
10 17 10 -2,07 -2,07 0 -2,14 3,34 -2,13 3,19
10 26 20 -2,28 -2,28 0 -2,79 22,01 -2,68 17,20
10 25 30 -3,38 -3,38 0 -5,37 58,94 -4,74 40,38
10 34 40 -5,25 -5,25 0 -6,49 23,63 -5,76 9,70
10 36 50 -5,43 -5,43 0 -7,16 31,76 -6,31 16,03
10 38 60 -3,54 -3,54 0 -6,34 78,84 -4,65 31,29
10 46 70 -3,75 -3,75 0 -7,38 97,08 -4,88 30,20
10 39 80 -5,51 -5,51 0 -7,99 45,09 -5,97 8,46
10 44 90 -4,39 -4,39 0 -8,26 88,25 -5,33 21,53
10 50 100 -6,36 -6,36 0 -9,84 54,85 -6,73 5,82
15 29 15 -1,54 -1,54 0 -2,06 33,84 -1,98 28,90
15 33 30 -3,57 -3,57 0 -4,40 23,28 -3,87 8,43
15 59 45 -4,89 -4,89 0 -6,18 26,43 -5,58 14,04
15 64 60 -5,43 -5,43 0 -8,36 53,94 -7,09 30,64
15 75 75 -12,20 -12,20 0 -14,43 18,29 -12,80 4,88
15 77 90 -9,33 -9,33 0 -12,67 35,82 -10,44 11,93
15 85 105 -9,34 -9,34 0 -14,58 56,07 -11,17 19,53
15 85 120 -10,65 -10,65 0 -16,47 54,61 -12,05 13,13
15 87 135 -7,85 -7,85 0 -14,98 90,92 -10,56 34,57
15 98 150 -7,53 -9,31 23,65 -18,03 139,50 -11,13 47,78
20 27 20 -3,92 -3,92 0 -3,95 0,86 -3,98 1,46
20 73 40 -5,18 -5,18 0 -7,64 47,42 -6,80 31,23
20 95 60 -7,82 -7,82 0 -12,26 56,71 -10,57 35,15
20 101 80 -8,48 -8,48 0 -13,54 59,73 -10,73 26,63
20 116 100 -12,77 -12,77 0 -16,85 32,01 -14,47 13,35
20 115 120 -9,41 -10,64 13,11 -17,33 84,14 -13,43 42,76
20 138 140 -11,57 -12,54 8,44 -20,63 78,34 -15,27 32,04
20 139 160 -10,38 -13,28 27,97 -20,39 96,42 -13,91 34,04
20 143 180 -14,22 -19,82 39,35 -26,66 87,47 -19,09 34,27
20 157 200 -12,53 -16,37 30,64 -24,24 93,47 -16,44 31,19
25 51 25 -4,37 -4,37 0 -5,11 17,00 -4,99 14,35
25 79 50 -8,81 -8,81 0 -10,50 19,14 -9,77 10,92
25 118 75 -8,73 -8,73 0 -13,18 51,03 -11,50 31,82
25 147 100 -12,02 -12,02 0 -17,22 43,20 -14,15 17,73
25 165 125 -15,28 -17,92 17,28 -24,17 58,18 -19,62 28,42
25 165 150 -12,20 -14,16 16,04 -20,86 70,99 -16,01 31,22
25 197 175 -16,24 -22,98 41,50 -28,78 77,22 -22,24 36,96
25 188 200 -18,28 -28,22 54,36 -32,02 75,18 -24,62 34,67
25 217 225 -19,03 -28,81 51,38 -34,06 78,95 -25,45 33,72
25 213 250 -12,54 -25,50 103,33 -30,82 145,76 -21,13 68,49
30 43 30 -6,65 -6,65 0 -6,82 2,53 -6,73 1,09
30 103 60 -9,38 -9,38 0 -13,33 42,09 -12,19 29,93
30 150 90 -12,27 -12,27 0 -17,88 45,75 -16,09 31,14
30 181 120 -9,25 -13,04 40,96 -19,46 110,41 -15,86 71,47
30 216 150 -12,98 -16,35 25,99 -22,58 73,96 -18,35 41,40
30 237 180 -12,74 -22,31 75,11 -26,14 105,14 -20,69 62,37
30 260 210 -20,39 -31,54 54,68 -36,75 80,22 -28,47 39,62
30 266 240 -20,32 -35,89 76,60 -40,24 98,01 -30,04 47,81
30 274 270 -17,44 -35,58 104,04 -39,40 125,92 -28,23 61,87
30 292 300 -15,38 -38,68 151,52 -42,09 173,69 -28,30 84,00
35 59 35 -6,12 -6,12 0 -6,51 6,28 -6,49 6,05
35 130 70 -10,29 -10,29 0 -13,93 35,38 -13,33 29,52
35 182 105 -15,97 -15,97 0 -21,13 32,28 -19,28 20,73
35 220 140 -15,36 -20,68 34,64 -25,41 65,42 -22,21 44,62
35 252 175 -15,76 -22,67 43,83 -28,59 81,39 -23,83 51,21
35 275 210 -20,81 -27,07 30,09 -31,29 50,35 -26,71 28,38
35 304 245 -22,83 -36,02 57,80 -39,64 73,63 -32,09 40,55
35 344 280 -29,01 -47,36 63,26 -48,13 65,90 -39,39 35,77
35 347 315 -27,09 -46,81 72,80 -48,66 79,61 -38,42 41,84
35 369 350 -34,13 -55,09 61,41 -57,00 67,01 -45,27 32,63
40 85 40 -4,22 -4,22 0 -5,00 18,32 -4,86 15,04
40 139 80 -9,50 -9,50 0 -11,98 26,05 -11,61 22,15
40 215 120 -11,19 -13,28 18,70 -18,23 62,93 -16,38 46,34
40 272 160 -19,26 -22,46 16,59 -27,07 40,54 -23,98 24,50
40 300 200 -23,04 -34,49 49,69 -38,22 65,89 -33,09 43,61
40 327 240 -22,25 -37,66 69,25 -40,37 81,42 -34,44 54,80
40 375 280 -22,29 -38,30 71,81 -41,20 84,85 -33,80 51,62
40 397 320 -26,01 -51,03 96,21 -51,72 98,85 -44,38 70,63
40 436 360 -25,29 -54,27 114,60 -53,90 113,14 -47,40 87,43
40 454 400 -24,68 -62,84 154,61 -61,88 150,72 -53,97 118,68

Table 1: Comparison of the bounds of SDP0
ε and SDP1

ε with upper and lower bounds obtained by the branch-and-cut
of SCIP in one hour of CPU time. Each line represents one instance.
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