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Abstract

In this paper we address the identification of defects by the Linear Sam-
pling Method in half-waveguides which are related to each other by junctions.
Firstly a waveguide which is characterized by an abrupt change of properties is
considered, secondly the more difficult case of several half-waveguides related
to each other by a junction of complex geometry. Our approach is illustrated
by some two-dimensional numerical experiments.

1 Introduction

This article deals with the identification of defects in junctions of waveguides. It is
well-known that defects such as cracks often occur in weld bead of metallic pipes,
which can be seen as junctions of waveguides. This explains why it is necessary to
adapt Non Destructive Testing procedures to that kind of configuration. Assume
that several emitters produce incident waves and that several receivers measure
the corresponding scattered waves. The obtained set of data is called multistatic
data, which contains a lot of information on the defects. The method that we wish
to use in order to exploit this information is the Linear Sampling Method, which
was first introduced in [I] and has proved its efficiency in many situations since
that time (see for example [2]). The Linear Sampling Method consists in testing
if some point z of a sampling grid is such that an analytically known test function
depending on z belongs to the range of an integral operator, the kernel of which



exactly consists of our multistatic data. If it is the case, this means that z does
belong to the defects. By testing all the points z of the grid, the LSM hence provides
the indicator function of the defects, in other words an image of the defects. The
LSM has a very interesting feature: its formulation does not depend on the number
and nature of the defects. In practice, one has to solve, for each point z, a small
system called the near-field equation. Such near-field equation is ill-posed and hence
has to be regularized. In [3], the authors introduced a modal formulation of the
LSM in the case of homogeneous waveguides. Such formulation takes advantage of
the specific geometry of the waveguide to propose a physical way of regularizing the
problem. It consists in decomposing both the incident and the scattered waves on
the guided modes, which are either propagating or evanescent, and in considering
the sole propagating modes in the inversion, the evanescent ones being neglected.
Such clear decomposition is specific to waveguides. This procedure was used in many
kinds of waveguides in the frequency domain, for example elastic waveguides [4, [5]
or periodic waveguides [6]. A multi-frequency extension of the modal formulation
of the Linear Sampling Method was done in [7], as an alternative choice to the full-
time domain LSM used in [8]. Note that in [J], our method was successfully tested
in the presence of real data coming from an ultrasonic NDT experiment on a steel
plate. We here mention several other works based on sampling-type methods in
acoustic waveguides [10} 111 12} [I3] 14 15] and electromagnetic waveguides [16], [17].

The modal formulation in the case of homogeneous waveguides is easy to derive
because the fundamental solution, which can be seen as a particular incident wave,
has a simple expression in terms of the guided modes. This feature does not hold any
more for the fundamental solution of a domain consisting of several half-waveguides
linked to each other by a junction, that is why such a domain requires a specific
treatment and justifies the present article. The main ingredients which enable us
to apply the Linear Sampling Method for that complex geometry are the so-called
reference fields, which are the scattering responses of the guided modes due to the
sole junction in the absence of defects, and the reciprocity property satisfied by the
fundamental solution in the whole domain, in the absence of the defects as well.
These two ingredients allow us to easily compute the test function for all sampling
point z, in the sense that such computation does not require a Finite Element
computation for each z.

Having in mind the complicated problem of a junction of several waveguides,
in this article we proceed step by step and propose the following organization. In
section 2, we introduce the case of a waveguide characterized by an abrupt change
of properties, more precisely a jump of the refractive index and of the transverse
section. In section 3, we add a junction of complex geometry between our two
half-waveguides. We extend this situation to the quite general case of a junction
of complex geometry between several half-waveguides in section 4. Section 5 is
dedicated to some numerical experiments in 2D which illustrate the feasibility of
imaging junctions of waveguides. Section 6 consists of a short conclusion presenting
possible extensions.



Wo

Ts

T3

Figure 1: Waveguide with an abrupt change of properties

2 A waveguide with an abrupt change of proper-
ties

2.1 The guided modes

Let us consider the union W of two half-waveguides which have the same unbounded
direction and which are in contact, the first one (the left one) of generic transverse
section S, the second one (the right one) of generic transverse section S, with
S~ S # @ In order to simplify the presentation, we assume that either S ¢ S
or S © S. Here, S is either an interval of R or a smooth connected bounded
domain of R?, so that W is either a 2D or a 3D waveguide. Let us introduce the
transverse sections %o = S x {0} and Yo =5 x {0}, which separate the waveguide
W into the left half-waveguide Wy = S x (—0,0) and the right half-waveguide
Wy = S x (0,40). We also denote by W (resp. W) the straight waveguide of
section S (resp. S). We denote (zg,z3) the coordinates of a generic point z of W,
where x g is the coordinate in the transverse section S and x3 is the coordinate along
the unbounded direction of the waveguide. The acoustic field u in the waveguide
W satisfies the standard Helmholtz equation

Au + E*n?u = 0,

where k is the wave number and 7 is the refractive index, which is piecewise constant,
namely there exists a constant n > 0 such that

{1 it zeW,

n(z) = (1)

i if oz e W
In what follows, we will denote x = k and & = nk. Our waveguide W is then

characterized by an abrupt change of material and transverse section at x3 = 0 (see
Figure . Let us introduce the solutions of the Neumann eigenvalue problem for



the transverse Laplacian A in S, that is
—A160=X60 in S @)
0y, 0 =0 on 09,

where v, is the outward normal on 0S. It is well-known that the eigenvalues A,
n € N, form an increasing sequence of positive reals such that \,, — 400, while
the corresponding eigenfunctions 6#,,, n € N, may be chosen such that they form a
complete orthonormal basis of L2(.S). By replacing the section S by S, we similarly
define the eigenvalues and eigenfunctions (5\n7 én), n € N. Let us set, for all n € N,

K2 — X\, if KZ—=X\, >0
(3)
7

A — K2 i K2—=)\, <0

and let us define the 3, similarly with replaced by & and A, replaced by . We
assume that none of the §,, and none of the §,, do vanish. Let us denote P (resp.
P) in N such that for n = 0,...,P —1 (resp. n = 0,..., P — 1) the number 3,
(resp. Bn) is purely real. Let us introduce the solutions u and @ to the problems

24=0 in 2%

Au+k*u=0 in w A+ & )
d,i=0 on OW,

du=0 on oW,

which in addition are products of a function of z5 and of a function of z3. Here, v
is the outward normal on oW or dW. It is easy to check that these solutions are
given, for n € N, by

t

respectively, and are referred to as the guided modes in W and W in what follows.
It is important to note that for n = 0,..., P — 1, the guided mode g (resp. g;)
is propagating from the left to the right (resp. the right to the left), while for
n = P,..., 400, the guided mode g} (resp. g, ) is evanescent from the left to the
right (resp. the right to the left). The same remark applies to the §i.

(z) = eXPn®39, (xg) for x = (zg,23)€W

(x) = eiiBn‘”?’én(xS) for == (xg,z3)eW,

S S

2.2 The reference fields

We now need to introduce the so-called reference fields u,, and a, for all n € N. Let
us denote 9:{,0 the extension of g in Wy by 0 in Wy and Gn.o the extension of g,

in Wy by 0 in W, that is
g:{ (,CC) if xze Wy 0 if ze )
- and g, (z)=A<_ ) -
g, (@) if xeWs.
We consider the following problems: find u,, and @, in H} (W) such that

Au, + E*n?u, =0 in w
Oyu, =0 on ow (5)

Up — 9:{,0 is outgoing



and
Ay, + k*n?t, =0 in w

0yln =0 on ow (6)

Up — Jp o IS outgoing.
In problems and @7 the fields u,, and 4,, can be viewed as total fields, the fields
9;,0 and g,  as incident fields, while the fields u,, — g,to and u, — g, o are scattered
fields. The last line of the two systems and @ is a radiation condition which
applies to the scattered fields. We say that the scattered field w is outgoing if there

exist two sequences (G, )men and (by,)men of complex numbers and some R > 0
such that

w(z) = Z am e~ B30, (2g) for x = (zg,z3)€ W, x3 < —R
meN

w(z) = Z b eiB’"“HNm(xS) for x = (zg,x3)€ Wy, x3 > R.

meN

(7)

Let us define the Dirichlet-To-Neumann maps 7' on ¥_g = S x {—R} and T on
Yr =S5 x {R}, with

T:HY?(S_g) —» H (S p)

hw—Th= Z iﬂm(h,em)Lzr(S)om (8)
meN
and - . -
T:H'?(Sg) —> H '?(Sp)
iL — T;L = ZBm(iL, ém)LQ(S’)ém, (9)
meN

where H'/2(2_g) denotes the dual space of H'/2(X_g) and H~/2(Xp) the dual
space of H'/?(Xg). We recall here that if S is a bounded domain of R? (d = 1,2),
H'2(S) is the set of restrictions on S of functions in H'/2(R%), while H~1/2(S)
coincides with the set of distributions in H~'/2(R?) which are supported in S. It is
well-known that the radiation condition is equivalent to

—Ogywls_p = T(wls_,) and du,uls, = T(wls,). (10)

Let us denote Wzéz the bounded domain W between the sections ¥_pg and by r, I ’1’;{
the boundary of W between the sections ¥_g and ¥g.

Proposition 1. For all n € N, the systems (@ and @ have both a unique solution
in HL (W).

loc

Proof. We only address system , the second one would be treated similarly.
Problem () is equivalent to: find u,, € H*(W}) such that
Au, + k*n*u, =0 in W}é
opu, =0 on e
’ N (1)
—Opytin = Ty — 2iBngt on Y g

Ogsn =Tu, on Xg.



Here, we have used the fact that 9:{,0 = g, on X_g, that g:{p =0 on X and

ar39$WE_R +'TKQ;WE—R) = 2iﬂng;|E—R'

An equivalent weak formulation to is: find u, € HY (W) such that for all
ve HI(WY),
a(un,v) = £(v), (12)

where

Tuvds — J Tuv ds (13)
Sk

a(u,v) = be (Vu - VT — k*n*ut) da — J
R

Y R

and

L(v) = — Jz 2iB,9. v ds. (14)

Here the integrals on the transverse sections have the meaning of duality pairing
between H~2(X_g) and HY?(X_g) or between H~'/2(Xg) and HY/?(XR). By
introducing the sesquilinear forms b and ¢ such that a = b + ¢, with b and ¢ defined
by

b(u,v) = JW}%(VU - VU + uv) de — f

Tuvds — J Tuvds,
S_gr Sk

c(u,v) = —J (1 + k*n*)uv de,
Wh
we notice that

Re {b(u,u)} = be (|Vu|? + |ul?) dz

+Z\/ —n‘u@ L2(3|+Z\/ ‘ 5‘

= ”UHHl(W}gy

This implies that the weak problem is of Fredholm type, hence uniqueness
implies existence. It remains to prove uniqueness. Let us assume that two functions
in H} (W) satisfy problems . The difference w between these two functions
then simultaneously satisfies the two problems in Wy and Wo, respectively. By
projecting w on the basis (6,,) in Wy and on the basis (6,,) in Wo, we obtain that

w(z) = Z (cng)t (2) + angy, (z)) =t w_(z), €Wy

neN

w(z) = Z (bngyt (z) + dngy, (7)) =t wy(z), z€ Wo.

neN

Since w satisfies the radiation condition, we have ¢,, = 0 and d,, = 0 for all n € N,
so that

w_(zg,x3) = Z ane” P30, (25), wi(rs,r3) = Z bnei/;"“én(mg). (15)

neN neN



Without loss of generality, we assume that S S (as in the figure . Let us de-
note h = w_|s, € HY?(Xy), then a, = (h,0,)r2(s) for all n € N. By continuity
of the trace on ¥, < ¥y, we have h|i0 = w+|io7 hence b,, = (h|§,én)L2(§) for all
n e N. Since dy,w_ = 0 on X\Xg, we have d,,w_|x, € H /2(3g) and denot-
ing E(0z,w4ls,) the extension of dy,wy |, on ¥g by 0, we have E(dz,w4ls,) €
H~12(5) and

Ozsw—|5, = B0z wyl5,)

on Yo, which implies in particular

Ouy w50, W) fr-12(50), 172 (50) = {EOny Wi |53))s W) gr-12(55), 1172550

= Ory Wi |5505 Py ) 1172 (50), 1112 (85)
that is, from ,
D (=iBn)an(On, 1) 2s) = D (180)bn(Bn, hlg) 125,

neN neN

and lastly
9 . .

Z Bn |(h79n)L2(S)| + Z 5n|(h|§a0n)L2(5’)|2 =0.

neN neN
Decomposing the first sum into Z:;g and Z:icp and the second one into Zf;g
and Z:fﬁ, taking the real and the imaginary parts, yields a, = (h,0,)r2(s) = 0
and b, = (h|g, én)LQ(S) = 0 for all n € N. Then w = 0 in W, which completes the
proof. O

Taking inspiration from the mode matching method described in [18], instead of
the weak formulation for u, in H'(WY) we can also derive a weak formulation
for the trace @, := uy|x, in HY?(S).

Proposition 2. Assume that S © S. The function o, is the unique solution to the
weak formulation: find p, € HY?(S) such that for all 1 € HY?(S),

Z Bm(@naom)LQ(S)(waem)H(s) + Z Bm(@n‘éﬁém)L2(§)(¢|§aém)L2(§)

meN meN
=28, (¥, 0n) L2(s)-

Proof. Indeed, there exist two sequences of complex numbers (@, )men and (by, )men
such that
Up— () = gf(x)+ Z amg,(x), xe€Wy
meN
Uny(z) = Z b (), xeWp.
meN
Using that ¢, = uy|s,, we obtain that a,, = (¢n,0m)r2(s) — Oma for all m e N.

Similarly, we have by, = (¢n|g,0m)2g) for all m € N. Hence

azgun7|20 = 22577,071 - Z iﬁm(ﬂpnaem)L%S)ema

mE‘N~ 3 ~ (16)
dtnils, = el )y

meN



That
azgunf|20 = E(a’vsunJr‘iO)

in the space H~/2(%) implies that for all ¢ € HY?(%),

<a$3u7l— |Eo ) w> = <a$3un+ |i‘,07 ¢|i:0>7

which yields the weak formulation of Proposition |2[ in view of . It is easy to
prove that such weak formulation is well-posed by the Lax-Milgram lemma. O

2.3 The fundamental solution

Let us now introduce the fundamental solution of the waveguide W. For y € W, we
consider the problem: find G(-,y) € L2 (W) such that

loc
—(AG(-y) + K*n°G(,,y)) = d, in w
0,G(,y) =0 on ow (17)
G(-,y) 1is outgoing.
For iy € W (resp. W), let us denote by G(-, y) (resp. Q~(,~y)) the fundamental solution

of the straight and homogeneous waveguide W (resp. W) with wave number # (resp.
k). It is well-known that G(-,y) and G(-,y) are given by

1 )
g(l‘,y) = - Z ﬁemnus_yﬂen(xS)en(yS)7 ($,y) €W x W7
neN n

~ 1 = ~ ~ - -
g(xay) = - Z ﬁelﬁnlwg’inIen(wS)en(yS)v (Iay) EWxW.
neN 27’5"

For 3y € Wy (resp. in Wy), we also denote Go(-,%) (resp. Go(-,y)) the fields defined
by
Glz,y) if xeW

G ( ) q g.. ( ) 0 if ze Wo
T,y) = - an z,y) =< . -
oy 0 if zeW, YT G(a,y) i e W

We have the following result.

Proposition 3. The problem has a unique solution in LZ (W) which is given
by the following formulas:

o forye Wy andxe W,

G@y) — S g W) (un(@) — g7 (8)  for w5 <ys
} (18)
=Y g () for 3> s,

- Y L @) Jor w3 <y

G@y) = S =G W) @n(@) — G (5)  for w5> s,



where u, and U, are the solutions to problems @ and (@, respectively.

Proof. We only consider the case when y € Wy, that is we prove (18) (the case
Yy € Wy is similar). Without loss of generality, we assume that S < 5. We use
the decomposition G(-,y) = Go(-,y) + G*(-,y), where Gy(-,y) plays the role of an
incident wave while G*(-,y) plays the role of a scattered wave. The field G*(-,y)
satisfies the transmission problem

Ags(’y) + anzgs('ay) =0 in WO U WO
3,G°(,y) =0 on ow
[G°C¢.»)] =G(.y) on S (19)
H@IBQS(-,Q)]] = al3g(7y) on D)
G°(,y) is outgoing.

Here, the notation [-] means the jump from the left to the right. The values of
02,G°(-,y) and 0,,Go(-,y), which have no meaning on ¥\Y, from the right, are
arbitrarily fixed to 0. With this convention, the transmission conditions hold in
H'Y2(2y) and H~/2(%), respectively. By using a similar weak formulation as in
Proposition [1|in the bounded domain W}%, we would prove that problem ([19)) has a
unique solution G*(-,y) such that (G*(-,y)|wy, G° (- ¥) i) € Hine(Wo) x Hyo(Wo).
Then G(-,y) = Go(,y) + G°(-, y) is the solution to problem (L7)). Next, we remark
by using the decomposition u,, = 9;,0 + vy for all n € N, where 9:,0 plays the role
of an incident wave while v} plays the role of a scattered wave, that the field v
satisfies the transmission problem

Av + k*n*vs =0 in Wo u Wy
v, =0 on ow

[vi] =g, on 5o (20)
[0z5v5] = Ozsg, om Yo

vy (+,y) s outgoing,

with the same convention as above concerning the values of 0, v5 and d,,g,f ; from
the right on Zo\io. Since y3 < 0, for z3 = 0 we have

1
g(gjay) = - Z ﬁelﬂn(mﬁyg)'gn(IS)gn(yS)
neN n

1
== =3, W)g' (2).
2 %3,

Comparing systems and , by linearity we obtain that for y € Wy and x € W,

we have
1

G (x,y) = — Z mgﬁ(y)vi($)~
neN
Formula is then obtained considering that for x € Wy we have G(z,y) =
G(z,y) + G°(z,y) and that for x € Wy we have G(z,y) = G°(z,y). It remains to
observe that for y € Wy and x € Wy, in the particular case x3 > y3 we have the



simplification

neN 2Z’Bn
1 1
== 5 I W (@) = . g (1) (un (@) — g7 (2))
neN 22/8” neN QZﬁn ! "
1
== 00 Wun(2),
neN QZ’Bn
which completes the proof. O

2.4 The case of a waveguide of constant section

An important particular case is when the sections of the two half-waveguides do
coincide, that is § = 5, then the fields u,, and 4, that solve the systems and
@ have a closed-form expression.

Proposition 4. If S = S, for all n € N, the solutions to the systems (@ and (@
are given by

577,_877, —

gy () + =g, () for xeWp
() = 4 ﬂn; Bn (21)
Bn f_ngngrt(x) fO’f’ T € WO;
and R
26, _
- gn () for xeW
(o) — B+ B
i)+ SR @) for ae T,

exactly the same way. Let u, be given by the formula (21)), it is straightforward
that u, € HL . (Wo) and u, € HﬁJC(Wo), as well as Au, + k?u, = 0 in W, and
Au, + F2u,, = 0 in Wy. In order to prove that u, € HL (W) and Au, +k*n*u, =0
in W in the sense of distributions, it suffices to prove that the left and right traces

“"‘Eg and Un‘z; coincide, as well as the left and right normal derivatives 0y, un\za

Proof. Let us consider the case of problem , the case of (6) would be addressed

and 813un|23. We have

Bn - Nn 2677,

u'n,|zg (x5) = On(zs) + 5 15, On(xg) = 515 On(xg) = un|23r (zs),
and ~
a$3un‘20’ (wS) = (Zﬂn) (1 - ?Z;é;) ‘gn(ws)

which is the result. The boundary condition d,u, = 0 on JW is satisfied be-
cause it is satisfied by the guided modes. As concerns the radiation condition, it is

10



Figure 2: Obstacles within the waveguide

straightforward that u, — g, ; is proportional to g, (z) = e~ ""*36,,(zs) in Wy and

proportional to g (z) = eiB””SHn(xs) in W, which completes the verification that
u,, satisfies problem . Uniqueness in Proposition |1| completes the proof. O

Remark 1. From Proposition [4], it should be noted that for each incident guided
mode, a single guided mode is reflected and a single guided mode is transmitted.
In the ~expression~ of the field u,, for instance, the complex number R, =
(Brn, — Brn)/(Bn + Brn) is the reflection coefficient while the complex number T,, =
(28,)/(Bn + fBn) is the transmission coefficient related to the guided mode g;F".

It is important to note that if the sections of the two half-waveguides coincide
then the fundamental solution in the waveguide W (that is the solution to problem
(17)) has a closed-form expression, since the fields w,, and @, have a closed-form
one (in view of Proposition [3| and Proposition .

2.5 The Linear Sampling Method

In this paragraph, we essentially adapt the results of [3] to the waveguide in the pres-
ence of an abrupt change of properties. In this view we introduce a generic forward
scattering problem. We assume there exists an obstacle O within the waveguide
W, more precisely O is a smooth and bounded open (not necessarily connected)
domain such that O < W, with Q@ = W\O a connected open domain. For some
y € €, let us consider the problem: find u(-,y) € L2 () such that

loc

—(Au(,y) + K*p*u(-,y)) = 4§, in Q
dyu(-,y) =0 on ow (22)
u(,y) =0 on 00

u(-,y) is outgoing.

By using the decomposition u(-,y) = G(-,y) + u*(-,y), where G(+, y) is the solution
to problem (17), the field u(-,y) can be viewed as a total field, the field G(-,y) as

11



an incident field and «®(-,y) as a scattered field. Note that for some y € 2, the
scattered field u®(-, y) satisfies the problem:

Au®(,y) + E*n*u®(-,y) =0 in Q
ou’(-,y) =0 ow

w(,9)=0 on )
u(y)=f on 00

u®(-,y) is outgoing.

with f = —G(-,y)|s0. We have the following proposition, the proof of which is very
similar to the one of [I9] Theorem 2.2].

Proposition 5. For all y € Q, the problem has a unique solution in Hllcc(Q),
except for at most a countable set of wave numbers k.

The inverse problem is the following. We assume that we know u®(z,y) for all
(z,y) € X and want to retrieve O from those multistatic data. We consider either
of the two following configurations concerning the amount of data, that is >:

e X =%_pUlg: full-scattering data
o3 = >._pr: back-scattering data,

where R is sufficiently large so that the obstacle O lies between the two transverse
sections X_p and Xg.

Remark 2. We note that for y € ¥_g, the identity u®(-,y) = u(-,y) — G(-,y) can
be rewritten

u® (- y) = (u(y) = Go(Hy) — (G(y) — Gol,y)) -

Here, the field u(-,y) — Go(-,y) represents the scattered field of the point source
Go(+,y) due to the presence of both the abrupt change of properties between the two
half-waveguides and the presence of the obstacle O, while the field G(-,y) — Go (-, y)
represents the scattered field of the same point source due to the change of properties
only. In this sense, the data u®(z,y) for all (z,y) € 3 can be viewed as differential
measurements following the terminology introduced in [20].

Adapting the proof of [3, Theorem 1] we establish uniqueness for our inverse
problems in both configurations, that is: if two obstacles are such that the cor-
responding multistatic data coincide, then they coincide. The Linear Sampling
Method is an effective method which enables us to retrieve the obstacle O from the
data u®(x,y), (x,y) € 3, based on the near-field operator:

N :L*() - L*(%)

. R . . . 24
b Nb (V) = [ wehesw, ses
b3
where u*(+,y) is the solution to problem . We will also need the operator
H:L*(%) — HY2(00)
(25)

i (H)(@) = [ Gty dsta), e 0.

The Linear Sampling Method is justified by the following theorem, the proof of
which mimics the one proved in [21].

12



Theorem 2.1. We assume that the exterior problems are well-posed and that
the interior problem: find w e H'(O) such that

Aw+E**w=0 in O
w=0 on d0

has only the trivial solution. Let N and H be the operators defined by and
(@/, respectively.

o If z € O, then for all € > 0 there exists a solution fzs(~,z) € Lz(f]) of the
imequality .
[Nh(-2) — G(, z)||L2(2) <e

such that the function Hh.(-,z) converges in H/2(00) as ¢ — 0.
Furthermore, for a given fized €, the function h.(-, z) satisfies

zl—ig)lO th(’ Z) HLQ(E) =40 and zl—ig‘lO Hflhg(7 Z)HH1/2 (60) = +00.

o If z€ W\O, then every solution h.(-,z) € L2(2) of the inequality
HNﬁa('a z) = G(, z)”[ﬁ(i) Sé€
satisfies

ii_{% |‘h6('72)‘|L2(ﬁ)) =+ and gl_{% HHiLe('vz)HHl/z(aO) = +0.

The Linear Sampling Method consists then, for all z € 4, where ¢ is a sampling
grid of W, in solving a regularized version of the near-field equation N h=G (5 2)|s-
Following [3], we introduce a modal formulation of the Linear Sampling Method:
the principle is to project such near-field equation on the complete basis (0n)nen
of the transverse section X_g and on the complete basis (6,,),en of the transverse
section X . This enables us to propose a “physical regularization” which consists in
replacing the series which result from these projections by the sum of their first P
or P terms. This amounts to keep, among the information contained in the incident
and scattered waves, their propagating parts only, in other words to neglect their

evanescent parts. We need the following proposition.
Lemma 2.2. We have

3

neN 21/6"

1 _
- Z —1,,(z)g,s (y) for ys = R, 3 <R,
neN 226’”

uy (2)g, (y) for ys=—R, x3>—R
us(xay) =

where uy, and 4, are the solutions to problem for f = —uyleo and f = —iy,|s0,
respectively, while u,, and u,, are the solutions to problems (@ and (@, respectively.

Proof. Let us consider the case y3 = —R and z3 > —R, the other case is similar.
From Proposition |3 we have

G(z,y) == Z

neN

1

13



By linearity of problem with respect to the Dirichlet data f, we obtain that

TEEEDY

neN 2 ﬂn

which is the result. O

uy, ()9, (y),

From Lemma[2.2] and from Proposition [3] a straightforward computation shows
that the operator N and the test function G(-,z)|s in the full-scattering case have
the following explicit expressions in the form of series.

Proposition 6. For h = (h,h) € L2(S_g) x L2(Sg), (Nh) € L2(S_g) x L3(ZR)
s given by

an 1571 ~ }
Z Z (216 n)mhn + ——=—(Un )mhn> Om(zs) for ze¥_g
(Nil,) (:C) meN neN n

Z Z ( i Uty + —— ¢t (U ):gjzn> ém(xs) for T €Xp,

meN neN QZﬁn 27’/8"

where we have used the decompositions

and

ub(z) = Y (Un)mbm(xs) (@) = Y (Un)pbm(zs)  for zeI_pg

meN meN
up (@) = D (Un)hOm(@s) g(x) = Y, (Un)hbm(zs)  for welp.
meN meN

Proposition 7. Forxe X _g and z € Wlb%,

—ifn23

- Z 2 (Un, Om) L2(5_ ) 0n(25)0m ()
meN neN 226” *
Glrz)={ = 2 g ) I ()0 (rs)  for e (-R.0)
meN m
'Lﬁﬂz.? ~
- Z Z Un7 )LQ(E_R)Qn(ZS)em(J:S) f07’ Z3 € (OaR)v
meN neN 21 "
for x e ER and z € W}b%,
—ifn23 -
_ Z Z 58, Un, )LQ(ER)Hn(zS)Gm(xS) for z3€(—R,0)

meN neN

6iﬁn 23 - -

Gx,z) =<1 — Z Z — (ﬂn,Hm)L2(iR)0n(ZS)ém(xS)

1 5 = ~ ~
- 2 ——(eWPm(B=23) _ o=iBm(B=22)\g (250, (zs) for z3€(0,R),

where u, and U, are the solutions to problems @ and (@, respectively.

14



We complete Proposition[7] with an alternative and simpler expression of the test
function G(-, z)|s, which is obtained by using the reciprocity relationship satisfied
by the fundamental solution G, that is G(z,y) = G(y,z) for all (z,y) € W x W.

Proposition 8. Forxe X _ g and z € Wlb%,
eiBm R
G(z,z) = —n;N 2Zﬁm Om(zs).
ForzeXg and z € Wlb%,
eiBmR .

G(IE,Z) == ZN QZ'Bm ﬂm(z)vem(IS)'

Here, uy, and u, are the solutions to problems (@ and (@, respectively.

Proof. Let us assume that € ¥_g and z € W}. From the reciprocity relationship,
we have G(z,z) = G(z,x) and from the formula given that z3 > 3, we get

1 ei/@an
G(z,2) = = Y, 57— (@)tm(2) = = Y ———um(2)0n(s).
meN QZﬁm meN QZ’Bm
The case z € ¥ and z € WI% would be addressed the same way. O

Remark 3. It is important to note that:

e in the full-scattering case, it is equivalent to measure u®(z, y) for all (z,y) €
¥Y_ g U Xp and to measure all the projections of the fields u; and @) on the
transverse functions 6,, of ¥_g and on the transverse functlons 9m of ¥ R,
with m,n e N,

e in the back-scattering case, it is equivalent to measure u®(x,y) for all (z,y) €
Y¥_r and to measure all the projections of the fields u on the transverse
functions 6,, of ¥_g, with m,n € N.

By restricting the series to P (section ¥_z) or P (section ) terms in Propo-
sitions |§| and @ in the full-scattering case the near-field equation Nh = G(-,2)|s
boils down to the finite square system

A= A\ (H- D~ (z)

At A+)\a+) T \D*(2))" (26)
where the matrices A~ € CP*P A~ ¢ (CP“E’7 A+ e CP*P and A+ e CP*P are
given by

eiPnR - eiBnR _
Apn = 28, (Un);m A = %Bn (Un>;u o)
A= D A= G
" 2iB,, " m Qzﬁn
where the vectors H~ € CP and H* € CF are given by
H; = h,, H} =h,, (28)
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and where the vectors D~ € CP and D* € C? are given by the following formulas.
For m=0,...,P—1,

P-1 —iBn23
Z e.i(un79m)L2(Z_R)9n(zs)
= 2B
D, (z) = + W(em’"(R“‘“’) — e Bm(Bz3)yg  (24) for z3€(—R,0)
P-1 eians ) B
—=— (T, Om) 12(5_ ) On(25) for z3€(0,R).
n=0 226"
. (29)
For m=0,...,P—1,
S B f(zs) for 2 € (~R,0)
. unvm[ﬂi)’nzs or zze(—n,
=0 2@5,” ( R)
P-1 lﬁ 2
D (z) = ern=s 4 5
m —— (U, O, s 0, (z
ngO 25, ( )Lz(ER) (2s)
+ ﬁ(eiﬁ’”(R_z‘“’) - e_iﬁm(R_Zf‘))ém(zs) for z3€(0,R).
B

(30)
Using Proposition [8] instead of Proposition |7} alternative formulas for D (z) and
Dj (z) are the following. For m =0,...,P —1,

¢ifmR
Di(2) = - 1
n2) = G m(2) (31)
while for m =0,...,P —1,
DA - S (o) 2
Z) = ——=—Umnm(Z).
o= T (32)

We readily see that in the back-scattering case, the near-field equation simply be-

o A"H™ = D (2). (33)

Remark 4. It is interesting to note that in the formulas and , D (z) and
D;(z) only depend on the values of the reference fields w, and i, on the trans-
verse sections Y»_r and by R, S0 that these values could be themselves experimental
data (that is the responses of the waveguide without the obstacle). In contrast, in
the formulas and (32)), D;,(2) and Dy (z) depend on the values of the refer-
ence fields in the whole sampling grid, which means that they cannot be obtained
experimentally, rather numerically.

3 A waveguide with a transition zone
As mentioned in the introduction, in order to image a weld bead, we consider

a transition zone between two half-waveguides. The domain W now consists of
three domains, a left half-waveguide W_r = S x (—o0, —R), a right half-waveguide

16
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Figure 3: A waveguide with a transition zone (the domain By is hatched)

Wg = S x (R, +o0) and a bounded domain Bg in between, the transverse section
Y_r = S x {—R} separating the domains W_gr and Bpg, the transverse section
g = S x {R} separating the domains Br and W. It should be noted (see Figure
that the domain Bp contains a finite part of the half-waveguides Wg, and W_ Ro»
Ro < R. The refractive index 5 € L* (W) is again constant in W_g, and in Wg,,
with 7(z) = 1 for z € W_g, and 7(z) = 7 for 2 € Wg,. This in particular implies
that n(z) = 1 for © € W_g and n(z) = @ for € Wg. For this waveguide W with a
junction, for n € N we can as previously define 9:{,0 as the extension of g/ in W_g
by 0 in Br U Wg and g, as the extension of g, in Wx by 0 in B U W_g. We
now introduce the reference fields u,, and u,, defined by problems and @ for
n € N and the fundamental solution G(-,y) defined by problem forye W. If
the point y belongs to a straight part of the domain W, we have simple expressions
for G(-,y) in terms of the reference fields.

Proposition 9. The fundamental solution G(-,y) has the following properties:
o forye W_g and x € W with v3 > —R,
1

G(x,y) = = Y 570n (Y)un(2),
neN 2Zﬁn
o forye Wg and x € W with x5 < R,
1
G@,y) == D, == 0n ¥)in(2),
295,

where u, and U, are the solutions to problems (@ and (@, respectively.

Proof. The proof is very close to the one of Proposition [3] We only consider the
case when y € W_p and x € W with z3 > —R (the other case is similar). We again
use the decomposition G(-,y) = Go(-,y) + G°(+,y), where Gy(+,y) is the extension
of G(-,y) in W_g by 0 in Bg U Wg. The field G*(-,) satisfies the transmission
problem

AG*(,y) + K*n*G°(-,y) =0 in W_rUBruUWg
0,G°(,y) =0 on oW
[9°C.9)] =G(~y) on Y R
[02,6°(, )] = 62sG(3) on Sh (@)
[G°C;y)] =0 on Sr
[02,G°(,y)] =0 on Sk
G°(-,y) is outgoing.

17



We now use the decomposition u,, = g, + v3 for all n € N. The field v} satisfies
the transmission problem

AvE 4+ E*n?vs =0 in W_ruU Bru Wk
v, =0 on ow
[v7] = g5 on YR
[025v5] = Ozsgy  om g (35)
[s] =0 on Yr
[Oxsvi] =0 on YR
vy (+,y) s outgoing.

Since x3 > y3 we have

1
g x, = n 3
(z,y) %2% ~ () ()

which in view of the systems and implies that

1
G¥(x,y) = — >, =9, (Y)v, (x).
(z,y) ;Nmﬁng (y)vs ()

We complete the proof observing that in BRUWR, we have 9:,0 = 0and Gy(-,y) = 0,
that is u, = v3 and G(-,y) = G5(-, y). H

Remark 5. We note that in contrast with Proposition [3] a closed-form expression
for G(z,y) is not given in Proposition ] for all (z,y) € W x W.

We now introduce an obstacle within the domain W, more precisely in Bg, de-
noting again Q = W\O. Once again we define the solutions u(-,y) and u*(-,y) to
problems (2 D and (23), for all y € Q. We also introduce the operators N and H
defined by (24) and (25). Then Theorem [2.1] Lemma [2.2] and Proposition [6] still
hold (in particular, Lemma 2 2 1s now a consequence of Proposition E[) However,
Proposition [7] is not valid any more. Using again the reciprocity relationship satis-
fied by the fundamental solution G, we get the following proposition, which is the
analogous of Proposition

Proposition 10. For z € ¥_r and z € Bg,

G2 == 3 C () s)
r,z2)=— 5  Unm (2)0n Ts),
meN ZZﬁm
for € £ and z € Bg,
eiBmR .
G(z,z) = — —— Uy, (2)0m (z5),
n;N 2ifm

where u, and U, are the solutions to problems @ and (@, respectively.
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By restricting the series to P or P terms, in the full-scattering case the near-field
equation Nh = G(-, z)|s, now amounts to the finite system

A= A\ (H™\ (D (2

A+t AT H*) ~ \D*(2))’
where the matrices A~ [1_7 At and AT are given by , the vectors H~ and H*
are given by , and the vectors D~ (z) and D*(z) are given by and ,
respectively. In the back-scattering case, the near-field equation Nh = G(-, 2|

reduces to the finite system
ATH™ =D (2).

4 Extension to a junction of several half-waveguides

In the previous section we have addressed the Linear Sampling Method to image
a junction between two half-waveguides. In the present section we wish to extend
such method to a junction of a finite number M of half-waveguides. Since the jus-
tifications are the same as for the case M = 2, we skip them. However we have to
introduce some notations. The union of the junction and all half-waveguides is de-
noted W and is characterized by a refractive index nn € L*(W). Each half-waveguide

Wi, j=0,...,M —1, has a constant section S7 and a constant refractive index
n’. We introduce the eigenvalues and eigenfunctions (A, 67, ),en of the transverse

problem ([2)) associated to the section S7 of half-waveguide W7. Denoting x’ = kn’,
the corresponding wave numbers 3/ are computed following by replacing x by
x7 and A, by M. The junction is a bounded domain B such that

M-1
W =Bu Wi,
=0

Each half-waveguide W7 has its own local set of coordinates x = (xg,z3), where
x3 is oriented from infinity to the junction, so that W7 = S7 x (—o0, —R’). The
support of emitters and receivers, again denoted X, is defined by

M—1
OEN
j=0
where Y7 is the transverse section of the half-waveguide W7 of local coordinate
x3 = —R’. Some of the previous notations are illustrated on ﬁgurefor M = 3. For

j=0,...,M—1and n e N, the guided mode g/ which propagates or exponentially
decreases in the half-waveguide W; from infinity to the junction satisfies

gl (x) = enr2d (xg).

The number of propagating modes in the half-waveguide W; is denoted P(j). To
each of such guided mode g/ we can associate a reference field u/, via problem
, by replacing g;7 by ¢J. Similarly, for any y € W we define the fundamental
solution G(-,y) via problem (17). Let us now assume that there is a Dirichlet
obstacle O to retrieve in the junction B. For all y € W, we introduce the total field
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Figure 4: A junction of three half-waveguides (the domain B is hatched)

u(+,y) which satisfies and the scattered field u®(-,y) which satisfies with
f=-G(,y)s0. For j =0,...,M — 1 and n € N, the solution to the problem
for f = —ul |50 is denoted u’. The near-field equation in the full-scattering case
is: for each z € ¢, which is a sampling grid of B, find h € 3 such that

([ cmioasn) s 6.2

In what follows, the index e refers to the emitter, the index r to the receiver.
The above near-field equation also reads: for r = 0,...,M — 1 and x € X" find
(RO Rt ... AM=1) e 20 x B! x ... x M~ such that

M-—1
> | e @ dst) = 6a2) (36)
=0 €

Let us give some explicit expression of the left-hand side of the near-field equation
(36). By proceeding as in Lemma for y € ¥¢ and x € B, we get

us(m,y) == Z

neN

ciBLRE
2i3¢ uy ()05, (ys),

which by denoting for e,7 =0,...,M —1 and n € N,

uiflsr = > (Um0, and k= > he,05,

meN meN

implies that for r =0,...,M — 1 and x € X",

e
je (@ )h B IPIP IR TFTAS]

e=0 meNneN
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Let us now give an explicit expression of the right-hand side of . For r =

0,...,M —1 and z € X", for all z € 4, using again the reciprocity relationship we
get
eBm "
G(z,2) = G(z,2) = — Z Wu’:ﬂ(z)efn(xs)'
meN m

Finally, if we restrict the series to the number of propagating modes in each half-
waveguide, we obtain the following discrete near-field equation: forr =0,..., M —1,
form=0,...,P(r)—1,

M-1P()=1 ipeRe BB
Ue)he, = r(2). 37
e;) 2 2 (U )b, e U (2) (37)

Remark 6. From the system 7 which corresponds to the full-scattering data,
it is very easy to deduce the one obtained for partial data, that is when emitters
and receivers are located on strictly less than M transverse sections 7.

5 Numerical experiments

5.1 Introduction

In order to show some 2D numerical experiments of the inverse problem, we compute
artificial data by solving the forward scattering problems in a bounded domain
with the help of Dirichlet-to-Neumann operators on each half-waveguide and by
using a Finite Element Method. This enables us to construct the matrices A~
At A= and At defined by and the corresponding matrices in the case of the
extension to a junction of several half-waveguides (see the left-hand side of (37))). In
all the experiments conducted in the sequel, the identification results are presented
for exact data (the data are exactly the scattered fields obtained by the FEM)
and for noisy data. Noisy data are obtained following the method described in [3].
Indeed, let us consider the trace on a transverse section X of a scattered field u*
obtained with the FEM. We compute, with the help of a subdivision of ¥ into a
finite number of intervals, a pointwise Gaussian noise b. The noisy data uj is then
defined on ¥ by

us = u® +ab,
where the real number a > 0 is calibrated in such a way that
lug — u®|L2(s) = 0.1[[u’| 2(s),
which means that our relative amplitude of noise is 10%. For z € ¢, let us denote
AH = D(z) (38)

either the (P + P) x (P + P) full-scattering system or the P x P back-scattering
system for a junction of two half-waveguides. In the case of exact data A, we
exactly solve (38). In the presence of noisy data As, with [|As — A|| < &, where |-||
is a matrix norm, we solve the Tikhonov equation associated with , that is

(A¥As)H + cH = A¥D(2), (39)
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where A} is the adjoint of As and ¢ > 0. Following exactly [22] and as in [3],
for a given point z, the regularization parameter ¢ is uniquely determined as a
function of ¢ according to the Morozov’s discrepancy principle. More precisely, we
compute € by using a singular value decomposition of A5 and a simple dichotomy
method. It remains to construct the right-hand side of , or in the case
of the extension to a junction of several half-waveguides. This is done by using
formulas and (32]), which require to compute the reference fields u, and @,
(they satisfy and (6))) and the corresponding fields in the case of the extension
to a junction of several half-waveguides (see the right-hand side of ) Unless we
consider a straight waveguide (see Proposition , these reference fields have to be
computed numerically by using a FEM. A crucial point is that those reference fields
are independent of z and of the obstacle O. They are hence computed once and for
all, which is important as regards the efficiency of the Linear Sampling Method in
this context. In comparison with the case of a straight and homogeneous waveguide,
the computational cost is increased by the preliminary FEM computations of the
reference fields, in particular if the junction domain is large. In all the pictures
presented hereafter, we show the level sets of the function

0) =108 (7).

where H(z) is the solution to for exact data and the solution to for noisy
data, such solution depending implicitly on z. Here |- | denotes a L? discrete norm.
In view of Theorem (z) is almost —oo unless z € O, which means that the
level sets of ¢ almost characterize the obstacle.

5.2 Waveguide with an abrupt change of refractive index

We consider the particular case of section [2] when the waveguide is straight, that is

S = S, but characterized by an abrupt change of refractive index, that is kK # k.

Here we have h = h = 1, while R = 1. We consider four kinds of obstacle.
1. A square within the left half-waveguide W.
2. A circle within the right half-waveguide Wj.
3. The union of the two previous obstacles.
4. A triangle at the interface of half-waveguides Wy and Wo.

In figure [5] we show the identification result for obstacle 3 and obstacle 4 in the
full-scattering case, with wave number £ = 40 in the left half-waveguide Wy and
% = 60 in the right half-waveguide Wy. The corresponding number of propagating
modes are P = 13 and P = 20, respectively. We observe that the quality of the
images are as good as if the waveguide were homogeneous. Next, in figures [6] [7]
and [8) we present the identification results in the back-scattering case for obstacle
1 (obstacle in the half-waveguide which supports the data), obstacle 2 (obstacle in
the half-waveguide which does not support the data) and obstacle 4 (obstacle at the
interface), respectively. For each of these obstacles, we show the obtained images
when (k, %) = (40,20), (x,k) = (40,40) and (k,%) = (40,60). We can draw two
kinds of conclusion. Firstly, as expected the obstacle is better retrieved when it
is located in the half-waveguide which supports the data because the identification
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Figure 5: Full-scattering, x = 40 (P = 13) and & = 60 (P = 20). Top left: obstacle
3 and exact data. Top right: obstacle 3 and noisy data. Bottom left: obstacle 4
and exact data. Bottom right: obstacle 4 and noisy data.

benefits from the reflected waves by the interface between the two half-waveguides.
Secondly, in the case when the obstacle lies in the half-waveguide which does not
support the data, we observe that the obstacle is not better retrieved if % is larger
than x instead of being equal to k. This could seem paradoxical, in the sense
that the larger is the wave number, the bigger is the number of propagating modes
and hence the better should be the resolution. This can be interpreted, in view of
Proposition EL as follows: the P propagating modes g} in Wy are transmitted in
W in the form of the modes § gr » so that only P propagating modes in Wy among
their total number P > P are excited, the remainder (P — P) are not.

5.3 Waveguide with an abrupt change of section

We now consider the particular case of section[2]when the refractive index is uniform,
that is kK = R, but the waveguide is characterized by an abrupt change of section,
that is S # S. In figure EI, we show the identification result for obstacle 3 in the
full-scattering case, with x = & = 40, but h # h, that is h = 0.65 and h =

The corresponding numbers of propagatmg modes are P = 9 and P = 13. Again
we observe that the quality of the images are as good as if the waveguide were
straight. Now we consider the back-scattering case when the obstacle lies in the
half-waveguide which supports the data (obstacle 1), in the particular case h/ h>1
in figure and h/h < 1 in figure The interpretation of these results is quite
clear. For h = 1, the identification results are better if h = 0.5 than if h = 0.75
(figure [L0)), because the amount of reflected waves at the interface between the two
half-waveguides is larger (at the limit when h tends to 0, our waveguide tends to a
terminating waveguide like in [I3], which can be seen as an ideal situation). On the
contrary, for h = 1, the identification results are better if A = 0.75 than if h = 0.5
(figure , because the number of incident propagating modes in Wy is larger in
the first case. Next we consider the back-scattering case when the obstacle lies in
the half-waveguide which does not support the data (obstacle 2), in the particular
case h/iL > 1 in figure and h/iz < 1 in figure For h = 1, the identification
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Figure 6: Back-scattering for obstacle 1. Top left: x = 40 (P = 13) and & = 20
(P = T7), exact data. Top right: x = 40 and & = 20, noisy data. Middle left:
kK =Fk =40 (P = P = 13), exact data. Middle right: x = & = 40, noisy data.

Bottom left: x = 40 (P = 13) and & = 60 (P = 20), exact data. Bottom right:
k =40 and £ = 60, noisy data.

results are better if » = 0.75 than if 4 = 0.5 (figure , because the amount of
reflected waves increases while the amount of transmitted waves that reach the
obstacle decreases, which deteriorates the quality of the identification. For h = 1,
the identification results are better if h = 0.75 than if h = 0.5 (figure , because
the number of incident propagating modes in W is larger in the first case, and they
are all transmitted in the form of propagating modes in Wy because P > P.

5.4 Junction of three waveguides

To complete the numerical experiments, we present some identification results in
the case of a junction of three half-waveguides presented in section |4 (see figure
E[, which shows the position of the three half-waveguides), the Dirichlet obstacle
being kite-shaped. The thickness of the three half-waveguides W°, W' and W? are
R® =1, h' = 1.2 and h? = 0.9, respectively. The junction is a disk of radius 0.8,
while the three transverse sections X9, ! and ¥? are located at the same distance
RI =3 (j = 0,1,2) of the center of such disk. The refractive index is = 1 in
the whole waveguide, while & = 40, which implies that the number of propagating
modes in each half-waveguide is P(0) = 13, P(1) = 16 and P(2) = 12, respectively.
The figure represents the obstacle which is retrieved when the emitters and
receivers are located on a single transverse section Y7 of a single half-waveguide
W3, for j = 0,1,2. The figure [L5| represents the obstacle which is retrieved on the
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Figure 7: Back-scattering for obstacle 2. Top left: x = 40 (P = 13) and & = 20
(P = 7), exact data. Top right: x = 40 and & = 20, noisy data. Middle left:
Kk =Fk =40 (P = P = 13), exact data. Middle right: x = & = 40, noisy data.

Bottom left: k = 40 (P = 13) and # = 60 (P = 20), exact data. Bottom right:
k =40 and £ = 60, noisy data.

one hand when the emitters and receivers are located on the two transverse sections
0 and ! of the half-waveguides W° and W1, on the other hand when they are
located on all the transverse sections X7 of all half-waveguides W7, for j = 0,1, 2.
Unsurprisingly, with or without noise, the larger is the set of data, the better is the
identification.

6 Conclusions

The numerical results of the previous section seem to prove that a sampling method
such as the Linear Sampling Method can be extended to the case of a junction of
several half-waveguides. Some extensions in several directions could be envisioned.
Firstly, our method could be extended to elasticity, which is necessary in the context
of ultrasonic Non Destructive Testing, as in [9]. Secondly, in the context of NDT,
for obvious reasons emitters and receivers cannot be located on transverse sections,
but only on the boundary of the waveguide. We can cope with this problem by
proceeding as in [7] (acoustics) and in [9] (elasticity), where it is shown that, starting
from boundary data, we can come back to data on transverse sections by inverting
some emission and reception matrices, the distance between the sensors and their
number playing a crucial role in the conditioning of those matrices (see [7]). Lastly,
the present article is restricted to the case of Dirichlet obstacles. The generalization
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Figure 8: Back-scattering for obstacle 4. Top left: x = 40 (P = 13) and & = 20
(P = 7), exact data. Top right: x = 40 and & = 20, noisy data. Middle left:
k =Rk =40 (P = P = 13), exact data. Middle right: x = & = 40, noisy data.
Bottom left: x = 40 (P = 13) and & = 60 (P = 20), exact data. Bottom right:
k =40 and £ = 60, noisy data.
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Figure 9: Full-scattering, obstacle 3, k = & = 40, h = 0.65 (P = 9) and h =

(P = 13). Left: exact data. Right: noisy data.

to other types of obstacles is not an issue, for example Neumann obstacles or cracks,
following [5] for acoustics and [I9] for elasticity.
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Figure 10: Back-scattering for obstacle 1, £ = £ = 30 and h > h. Top left: h =1
(P =10) and h = 0.5 (P = 5), exact data. Top right: » = 1 and h = 0.5, noisy

data. Bottom left: h = 1 (P = 10) and h = 0.75 (P = 8), exact data. Bottom
right: h =1 and h = 0.75, noisy data.
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Figure 11: Back-scattering for obstacle 1, k = & = 30 and h < h. Top left: h = 0.5
(P =5)and h = 1 (P = 10), exact data. Top right: & = 0.5 and h = 1, noisy data.
Bottom left: h = 0.75 (P = 8) and h =1 (P = 10), exact data. Bottom right:
h =0.75 and h = 1, noisy data.
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