F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys, vol.81, pp.163-234, 2009.

F. Calegari, Advances in attosecond science, J. Phys. B, vol.49, p.62001, 2016.

M. F. Ciappina, Attosecond physics at the nanoscale, Rep. Progr. Phys, vol.80, p.54401, 2017.

D. Umstadter, Relativistic laser-plasma interactions, J. Phys. D, vol.36, pp.151-165, 2003.

G. A. Mourou, T. Tajima, and S. V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys, vol.78, pp.309-371, 2006.

D. Piazza and A. , Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys, vol.84, pp.1177-1228, 2012.

V. Malka, Laser plasma accelerators, Phys. Plasmas, vol.19, p.55501, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01164054

C. Thaury and F. Quéré, High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms, J. Phys. B, vol.43, p.213001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569857

D. Guénot, Relativistic electron beams driven by kHz single-cycle light pulses, Nat. Photonics, vol.11, pp.293-296, 2017.

O. Jahn, Towards intense isolated attosecond pulses from relativistic surface highharmonics, Optica, vol.6, pp.280-287, 2019.

Y. X. Zhang, Intense attosecond pulses from laser-irradiated near-criticaldensity plasmas, Opt. Express, vol.25, pp.29058-29067, 2017.

V. Gruson, 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification, Opt. Express, vol.25, pp.27706-27714, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00651171

D. E. Rivas, Next generation driver for attosecond and laser-plasma physics, Scientific Rep, vol.7, p.5224, 2017.

A. Kessel, Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA, Optica, vol.5, pp.434-442, 2018.

D. Kormin, Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces, Nat. Commun, vol.9, p.4992, 2018.

K. Schmid, Few-cycle laser-driven electron acceleration, Phys. Rev. Lett, vol.102, p.124801, 2009.

S. Hädrich, Energetic sub-2-cycle laser with 216 W average power, Opt. Lett, vol.41, pp.4332-4335, 2016.

M. Nisoli, S. De-silvestri, and O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique, Appl. Phys. Lett, vol.68, pp.2793-2795, 1996.

Y. G. Jeong, Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission, Scientific Rep, vol.8, p.11794, 2018.

A. Baltu?ka, T. Fuji, and T. Kobayashi, Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers, Phys. Rev. Lett, vol.88, p.133901, 2002.

R. Budri?nas, 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate, Opt. Express, vol.25, pp.5797-5806, 2017.

D. M. Farinella, Focusability of laser pulses at petawatt transport intensities in thin-film compression, J. Opt. Soc. Am. B, vol.36, pp.28-32, 2019.

X. L. Zhu, Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 ?m, Phys. Rev. Appl, vol.12, p.54024, 2019.

C. Vozzi, Optimal spectral broadening in hollow-fiber compressor systems, Appl. Phys. B, vol.80, pp.285-289, 2005.

S. Bohman, Generation of 5.0fs, 5.0mJ pulses at 1kHz using hollow-fiber pulse compression, Opt. Lett, vol.35, pp.1887-1889, 2010.

F. Böhle, Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers, Laser Phys. Lett, vol.11, p.95401, 2014.

A. Jullien, Carrier-envelope-phase stable, high-contrast, double chirpedpulse-amplification laser system, Opt. Lett, vol.39, pp.3774-3777, 2014.

G. P. Agrawal, Nonlinear Fiber Optics 5th edn, 2013.

T. Nagy, M. Forster, and P. Simon, Flexible hollow fiber for pulse compressors, Appl. Opt, vol.47, pp.3264-3268, 2008.

T. Nagy, V. Pervak, and P. Simon, Optimal pulse compression in long hollow fibers, Opt. Lett, vol.36, pp.4422-4424, 2011.

A. Suda, Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient, Appl. Phys. Lett, vol.86, p.111116, 2005.

S. Ghimire, High-energy 6.2-fs pulses for attosecond pulse generation, Laser Phys, vol.15, pp.838-842, 2005.

X. W. Chen, Generation of 4.3 fs, 1mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber, Opt. Lett, vol.34, pp.1588-1590, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00528238

A. Malvache, Multi-mJ pulse compression in hollow fibers using circular polarization, Appl. Phys. B, vol.104, pp.5-9, 2011.

M. Miranda, Characterization of broadband few-cycle laser pulses with the d-scan technique, Opt. Express, vol.20, pp.18732-18743, 2012.

B. E. Schmidt, Compression of 1.8 ?m laser pulses to sub two optical cycles with bulk material, Appl. Phys. Lett, vol.96, p.121109, 2010.

A. Suda and T. Takeda, Effects of nonlinear chirp on the self-phase modulation of ultrashort optical pulses, Appl. Sci, vol.2, pp.549-557, 2012.

E. Conejerojarque, Universal route to optimal few-tosingle-cycle pulse generation in hollow-core fiber compressors, Scientific Rep, vol.8, p.2256, 2018.

H. Timmers, Generating high-contrast, near single-cycle waveforms with third-order dispersion compensation, Opt. Lett, vol.42, pp.811-814, 2017.

T. Brabec and F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime, Phys. Rev. Lett, vol.78, pp.3282-3285, 1997.

R. Deiterding, A reliable split-step fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers, J. LightwaveTechnol, vol.31, 2008.

S. Haessler, 1D femtosecond pulse propagation in a medium with dispersion and 3rd-order nonlinearities, GitHub

T. Oksenhendler, Self-referenced spectral interferometry, Appl. Phys. B, vol.99, pp.7-12, 2010.

S. C. Pinault and M. J. Potasek, Frequency broadening by self-phase modulation in optical fibers, J. Opt. Soc. Am. B, vol.2, pp.1318-1319, 1985.

J. Faure, A review of recent progress on laser-plasma acceleration at kHz repetition rate, Plasma Phys. Control. Fusion, vol.61, p.14012, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02057189

D. Gustas, High-charge relativistic electron bunches from a kHz laserplasma accelerator, Phys. Rev. Accel. Beams, vol.21, p.13401, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01704788

A. Pak, Injection and trapping of tunnel-ionized electrons into laserproduced wakes, Phys. Rev. Lett, vol.104, p.25003, 2010.

C. Mcguffey, Ionization induced trapping in a laser wakefield accelerator, Phys. Rev. Lett, vol.104, p.25004, 2010.

A. F. Lifschitz and V. Malka, Optical phase effects in electron wakefield acceleration using few-cycle laser pulses, N. J. Phys, vol.14, p.53045, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01164040

A. Jullien, 10 ?10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation, Opt. Lett, vol.30, pp.920-922, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00526430