
HAL Id: hal-03053520
https://cnrs.hal.science/hal-03053520

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of boundary layer effects due to usual boundary
conditions or geometrical defects in elastic plates under
bending: an improvement of the Love-Kirchhoff model
Andrés Alessandro León Baldelli, Jean-Jacques Marigo, Catherine Pideri

To cite this version:
Andrés Alessandro León Baldelli, Jean-Jacques Marigo, Catherine Pideri. Analysis of boundary layer
effects due to usual boundary conditions or geometrical defects in elastic plates under bending: an
improvement of the Love-Kirchhoff model. Journal of Elasticity, In press, �10.1007/s10659-020-09804-
6�. �hal-03053520�

https://cnrs.hal.science/hal-03053520
https://hal.archives-ouvertes.fr


Journal of Elasticity manuscript No.
(will be inserted by the editor)

Analysis of boundary layer effects due to usual boundary conditions or geometrical
defects in elastic plates under bending: an improvement of the Love-Kirchhoff
model.

Andrés León Baldelli · Jean-Jacques Marigo · Catherine Pideri

version of 26 March 2020

Abstract We propose a model of flexural elastic plates accounting for boundary layer effects due to the most
usual boundary conditions or to geometrical defects, constructed via matched asymptotic expansions. In particular,
considering a rectangular plate clamped at two opposite edges while the other two are free, we derive the effective
boundary conditions or effective transmission conditions that the two first terms of the outer expansion must satisfy.
The new boundary value problems thus obtained are studied and compared with the classical Love-Kirchhoff plate
model. Two examples of application illustrate the results.
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1 Introduction

Motivated by the sake to have access to good approximations of displacement and stress fields without numerically
solving the full three dimensional problem, the (linear) Love-Kirchhoff theory of plates has been progressively
constructed [31], studied, validated [37, 42], and mathematically justified [10, 11] for thin elastic structures in a
small displacement setting. All these approaches take advantage of the presence of the small parameter η, that
is the ratio between the thickness h of the plate and its two other dimensions, to postulate or deduce the orders
of magnitude of the different components of the stress tensor or some kinematic properties of the displacements.
That allows to reduce the problem by one spatial dimension, the reduced problem being posed on the mid-surface
Ω0 (whose unit vectors are e1 and e2) of the 3D structure ΩR. The counterpart is that one obtains a fourth
order boundary value problem in terms of the deflection (that is the displacement in the direction e3) instead of
a second order boundary value problem for the displacements in the full 3D setting. Specifically, in the case of a
homogeneous plate made of an isotropic material and submitted to a system of external forces inducing a pure
bending response, the deflection U is governed by the well known bilaplacian operator

Eh3

12(1− ν2)
∆2U −F = 0 in Ω0, (1)

where E and ν are Young’s modulus and Poisson’s ratio of the material, F the effective normal pressure resulting
from body forces and surface tractions applied to the upper and lower faces. One must add two boundary conditions
at each point of the boundary ∂Ω0 of the mid-plane so that the reduced problem is well-posed, like U = ∂U/∂n = 0
in the case of a clamped boundary. Those “reduced” boundary conditions must be themselves deduced from the
3D problem. It is for example the case for the clamped conditions which can be deduced from the 3D Dirichlet
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condition u = 0 on the lateral boundary of ΩR. On this topic, and on the apparent disagreement between the
order of equation (1) and the number of conditions that may be prescribed on the plate contour as well as on the
interpretation of different types of (natural) boundary conditions that can occur in reduced theories, we refer the
interested reader to the scientific discussion that can be traced back to the first statement of the bending problem
for a plate by Poisson [39] and still is a topic of debate, see, e.g., [44,45] and [19]. Once the mathematical framework
to justify a such asymptotic model by dimension reduction was well established, it was possible to enlarge the
domain of validity of Love-Kirchhoff model, as done in [3] in a dynamical setting, or to justify other models like
the Von Karman model in the large displacement setting, see [10] and references therein.

Thus, the Love-Kirchhoff model can be considered as a good approximation, at first order with respect to
the small parameter, of the response of the 3D structure. However, if one considers the proof of the convergence
result [10], it appears that the convergence holds in the sense of the H1(ΩR) norm for displacements and of the
L2(ΩR) for stresses. That means that real stresses can be locally poorly approximated by the Love-Kirchhoff model.
In particular, this is automatically the case near the boundary where Dirichlet conditions are prescribed, if the
Poisson ratio is not zero. Indeed, in such a case, a singularity occurs at the corner between the lateral boundary
and the upper or lower faces of ΩR. There, stresses are infinite which the Love-Kirchhoff model does not predict.
In those regions, the problem becomes three-dimensional and one must introduce boundary layer correctors. This
is also the case when the plate contains a transverse crack. Specifically, if the 3D structure contains a crack whose
normal vector is in the plane (e1, e2), whose depth in the direction e3 is h/2, and whose length is comparable to
the size of the plate, then the equation governing the deflection remains (1). In the Love-Kirchhoff model, such a
defect is ignored, only cracks through the entire thickness of the plate are considered. A hint in this direction, as
highlighted in [18], is that the model allows a plate to sustain singular shear stresses in the interior of the plate,
owing to a static (though not kinematic) equivalence between smooth and singular loading systems. So, with this
model, not only the singularity of stresses is not accounted for, but it is even impossible to estimate the risk of
crack propagation. The main reason is that the intensity of stresses is strongly perturbed but only locally, like
for Dirichlet boundary conditions. There again, the model must be improved by considering the boundary layer
effects due to the crack. In terms of energy, those corrections are of the order η compared to the leading term given
by the Love-Kirchhoff model (essentially because the depth of the boundary layer is of the order the thickness h).
So, in that sense, the estimate of the energy contained in the boundary layer effects should be the first term to
be considered to improve the plate theory. But, in fact, the majority of the efforts have been devoted to improve
the approximations of stresses in the bulk and not at those boundaries. Indeed, several works following the ideas
elaborated in [36, 41] have had and still have for goal to relax the kinematic constraint on the rotation of the
sections existing in the Love-Kirchhoff model to better approximate the transverse shear stresses σ13 and σ23. This
leads to the so-called Mindlin-Reissner plate theory (with all its variants) [5, 24, 32, 40, 43]. It turns out that, for
thin plates, it leads to a correction in the energy estimate of the order η2, hence at the next order with regards
to boundary layer effects. Indeed, its failure to correctly capture the behaviour near the boundary is apparent in
the slow rate of convergence of the approximate to the full three-dimensional elastic solution, see , e.g., the review
paper [14] and numerical computations in [4] which compare several enriched, or otherwise corrected, reduced
models.

Paradoxically, few efforts have focused on the construction of a theory of plates enriched with boundary layer
effects, at least in a systematic way. Indeed, substantial work has involved studying boundary layers themselves [8,
12,16,21,23,27,30] but not to construct a boundary value problem for the whole plate which includes the information
coming from the boundary layers. And yet, the tools to carry out such a task exist and have already been used in
contexts other than those of the plate theory, like in [1,2,6,7,15,20,25,35] where effective models are constructed
for 3D elastic (homogeneous or composite) bodies containing defects (cracks, voids, inclusions,. . . ) periodically
distributed near a surface. In such situations, the presence of the defects induces boundary layer effects which finally
perturbs the overall fields (at second order in terms of the potential energy). To account for their contribution,
the method of matched asymptotic expansions [17, 26, 28] can be used to have a good approximation of the
fields in the region of the defects (inner expansions) and to obtain effective boundary conditions on, or effective
transmission conditions across, the “surface of defects” for the boundary value problem posed on the whole body
(outer expansions). More recently, the method has been also used in a dynamical context to study the influence
of such surface defects on the propagation of waves in metamaterials [33, 34, 38]. One obtains a so-called effective
boundary value problem whose solution constitutes a good approximation of the real solution up to second order.
This boundary value problem contains effective boundary conditions or effective transmission conditions which can
be of Robin’s or Ventcel’s type [9, 29, 46] with coefficients that are obtained from a few boundary layer problems
posed at the scale of the defects. In all cases, those effective boundary or transmission conditions have an energetic
interpretation. Specifically, it is possible to show that the effective boundary value problem is equivalent to find
the extrema of an effective potential energy which contains surface terms characterising boundary layer effects
due to the defects. However, the coefficients entering in the definition of those surface energies can have any sign,
rendering delicate the mathematical analysis of the effective boundary layer problem, see [15,35].
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In the present paper, an asymptotic procedure is followed in order to construct an effective model of plate
accurate up to the second order and hence improving the Love-Kirchhoff model by including boundary layer
effects. However, since the implementation of the matched asymptotic expansion method coupling dimension
reduction and boundary layers is rather intricate, requiring to consider terms up to the fourth order for the inner
asymptotic expansions of the displacements, its construction is only achieved in a limited setting. Specifically, it is
assumed first that the 3D body is made of an elastic isotropic homogeneous material, then that the geometry of the
defects and the loading of the plate have symmetry properties so that the response corresponds to pure bending
without membrane coupling. Moreover, still for the sake of simplicity of presentation, it is assumed that the body
has straight lateral boundaries and contains a geometrical defect which is straight and unidirectional (i.e. , with
a cylindrical shape). As far as boundary conditions are concerned, we consider here only the cases of clamped
and free boundaries. The study of boundary layer effects associated with other types of boundary conditions (like
simply supported) is left to future works. We claim that the development of the method in this restricted context
is nevertheless sufficient to exhibit the improvements made to the Love-Kirchhoff model. Specifically, the paper is
organised as follows. In Section 2, first are made the main assumptions and set the 3D problem. Then are derived
the equations that the first terms of the outer expansions of the displacement and stress fields (in particular the
deflections U0 and U1, the associated bending moments M0 and M1, and the associated shear forces T 0 and
T 1) must satisfy far from the lateral boundaries and the line of defect. In Section 3 we study the boundary layer
near the clamped sides to obtain the effective kinematic boundary conditions that U0 and U1 must satisfy on
those sides. In Section 4 we study the boundary layer near the free sides to infer the effective static boundary
conditions thatM0,M1, T 0, and T 1 must satisfy on those sides. In Section 5 we study the boundary layer due
to the geometrical defect located near the plane x2 = 0 of the body to derive the effective kinematic and static
transmission conditions that U0, U1,M0,M1, T 0, and T 1 must satisfy across the line of defect. In Section 6 we
study the two boundary value problems thus constructed for U0 and U1. Then these two problems are merged to
propose a single boundary value problem of which is given an energetic interpretation and which could constitute
the prototype of an improved Love-Kirchhoff model. Finally, two examples of application are given in Section 7.

Throughout the paper, Greek indices run from 1 to 2 whereas Latin indices run from 1 to 3. The summation
convention on repeated indices is already assumed. Vectors and second order tensors are indicated by bold face
letters. The inner product is denoted by a dot. In general (but with some exceptions, like ν), material parameters
or effective coefficients are indicated by sans serif letters. As far as the orders of magnitude with respect to the
small parameter η are concerned, we use the following terminology: a term is said of order p, p ∈ R, when it is of
the order of ηp; occasionally a term is said of the first order (resp. second order) when it is of the order of η0 (resp.
η1).

2 Problem setting for a plate without defects

2.1 The three-dimensional problem

We consider a rectangular plate whose reference configuration is the following domain ΩR of R3

ΩR = (−L/2,+L/2)× (−`/2,+`/2)× (−h/2,+h/2).

The geometrical defect will be introduced in Section 5. The plate is made of an elastic isotropic material whose
Young modulus and Poisson ratio are respectively E and ν. The sides x1 = ±L/2 are clamped whereas the sides
x2 = ±`/2 are free. The upper and lower faces x3 = ±h/2 are submitted to the same density of normal surface
forces F: F(x1, x2) = FR(x1, x2)e3. Moreover the plate is submitted to body forces oriented following e3 and whose
density f is assumed to be symmetric with respect to the mid-plane x3 = 0, i.e. ,

f(x) = fR(x)e3 with fR(x1, x2,−x3) = fR(x1, x2,+x3).

The surface and body forces densities are assumed to be smooth functions of the coordinates so that, in a small
displacement setting, the displacement field u and the stress field σ at equilibrium are the unique solution of the
following boundary value problem

(A) in ΩR (B) on x1 = ±L/2 (C) on x2 = ±`/2 (D) on x3 = ±h/2
divσ + fRe3 = 0

Eε(u) = −ν Trσ I + (1 + ν)σ

2ε(u) = ∇u +∇Tu

u = 0 sσe2 = 0 σe3 = FRe3
(2)



4 A. León Baldelli et al.

By virtue of the symmetry of the loading, it is easy to see that the in-plane components uα, α ∈ {1, 2}, of the
displacement are odd functions of x3 whereas the out-of-plane component u3 is an even function of x3:

uα(x1, x2,−x3) = −uα(x1, x2,+x3), u3(x1, x2,−x3) = +u3(x1, x2,+x3).

In the same manner, one obtains that σαβ are odd functions of x3 whereas σα3 are even functions of x3. We will
also use in the sequel the classical resultant quantities like shear forces and bending moments which, by virtue of
the symmetries, are defined as follows

Tα(x1, x2) = 2

∫ h/2

0

σα3(x)dx3, Mαβ(x1, x2) = −2

∫ h/2

0

x3σαβ(x)dx3,

whereas the in-plane resultant forces Nαβ vanish by symmetry: Nαβ(x1, x2) :=
∫ h/2
−h/2 σαβ(x)dx3 = 0.

2.2 Asymptotic assumptions

The plate thickness h is supposed small compared to the two other dimensions L and ` and the ratio η = h/L is a
small dimensionless parameter. After introducing the dimensionless coordinates x̄ = (x1/L, x2/L) and y3 = x3/h,
a material point of the plate is defined by (x̄, y3) and lays in the fix domain Ω = Ω0 × (−1/2,+1/2) where Ω0 is
the dimensionless mid-plane,

Ω0 = (−1/2,+1/2)× (−¯̀/2,+¯̀/2), ¯̀=
`

L
.

Taking L as the reference length, the displacement field u solution of the boundary value problem reads

u(x) = Luη(x̄, y3), (3)

where the dependence on the small parameter η is now explicit. For stresses, we take Eh/L as the reference pressure
so that the stress field at equilibrium σ reads

σ(x) = ηEση(x̄, y3). (4)

In (3) and (4), the new unknown displacement and stress fields uη and ση are dimensionless. The main goal of
the paper is to construct an approximation of the rescaled solution (uη,ση) by using asymptotic expansions with
respect to the small parameter η. For that, the first step consists in defining the order of magnitude of the loading,
i.e. , of body and surface forces fR and FR, with respect to η. The choice of the order is such that the leading term
of the displacement expansion is of order 0. (Moreover, we will see that the stress expansion starts also at order
0 by virtue of the chosen normalization (4).) For that, it turns out that fR must be of order 2 and FR of order 3.
Accordingly, we assume that fR and FR can read as

fR(x) =
η2E

L
f(x̄, y3), FR(x1, x2) = η3EF (x̄), (5)

where the densities f and F are dimensionless fields independent of η. Let us note that, because the problem
is linear, that choice is not really important because it is always possible to be in this situation after a suitable
rescaling of the forces. Finally, the rescaled fields uη and ση are the unique solution of the following boundary value
problem which is posed on the upper half of the rescaled domain, by virtue of the assumed symmetry properties:

Equilibrium equation: η
∂σηαβ
∂x̄β

+
∂σηα3

∂y3
= 0, η

∂ση3β
∂x̄β

+
∂ση33

∂y3
+ η2f = 0;

Constitutive relation: εη = −ν Trση I + (1 + ν)ση;

Compatibility relations: 2εηαβ =
1

η

∂uηα
∂x̄β

+
1

η

∂uηβ
∂x̄α

, 2εηα3 =
1

η

∂uη3
∂x̄α

+
1

η2

∂uηα
∂y3

, εη33 =
1

η2

∂uη3
∂y3

;

Boundary conditions:


uη = 0 on x̄1 = ±1/2,

σηe2 = 0 on x̄2 = ±¯̀/2,

σηe3 = η2Fe3 on y3 = 1/2,

uηα = 0, ση33 = 0 on y3 = 0,

where we use implicit summation over repeated indices. Note that the relations (8) between the strains εη and the
gradient of the displacements are a consequence of the chosen normalizations.
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We also introduce dimensionless shear forces and bending moments and choose their normalization in such a
way that their expansion eventually starts at order 0. Specifically, we set

T (x1, x2) = η3ELT η(x̄), M(x1, x2) = η3EL2Mη(x̄),

which are related to the dimensionless stress field ση by

T ηα (x̄) =
2

η

∫ 1/2

0

σηα3(x̄, y3)dy3, Mη
αβ(x̄) = −2

∫ 1/2

0

y3σ
η
αβ(x̄, y3)dy3. (10)

The equilibrium equations satisfied by the dimensionless shear forces and bending moments are deduced from the
local equilibrium equations (6). Specifically, multiplying the first equation of (6) by y3, integrating with respect
to y3 over (0, 1/2), integrating by parts the term involving the shear stress, and using boundary conditions on
y3 = 1/2 leads to

∂Mη
αβ

∂x̄β
+ T ηα = 0 in Ω0. (11)

Furthermore, integrating the second equation of (6) with respect to y3 over (0, 1/2) and using the boundary
conditions on y3 = 0 and y3 = 1/2 gives

∂T ηα
∂x̄α

+ F0 = 0 in Ω0, (12)

where

F0(x̄) = 2

∫ 1/2

0

f(x̄, y3)dy3 + 2F (x̄).

Inserting the shear force from (11) into (12), we obtain the second order partial differential equation governing the
bending moments

∂2Mη
αβ

∂x̄α∂x̄β
−F0 = 0 in Ω0. (13)

2.3 Asymptotic expansions far from the sides of the plate

2.3.1 Hypothesis on the form of the outer expansions

We suppose that, far from the lateral boundaries of the plate, the displacement uη admits the following asymptotic
expansion with respect to the small parameter η

uη(x̄, y3) = u0(x̄, y3) + ηu1(x̄, y3) + η2u2(x̄, y3) + η3u3(x̄, y3) + · · · , (14)

where the different terms ui of the expansion are to be determined. The intuition behind the expansion above
is to construct a partial sum that approximates the solution u(x) to the system (2)A as well as the boundary
conditions (2)B,C,D, for small η with increasing accuracy as the number of terms in the series increases. By
linearity, the same applies for strains and stresses. Consequently, strains and stresses admit the same type of
asymptotic expansion, except that their expansion starts a priori at order −2 instead of 0. (We will show that they
start in reality at order 0.) Specifically, one has{

εη(x̄, y3) = η−2ε−2(x̄, y3) + η−1ε−1(x̄, y3) + ε0(x̄, y3) + ηε1(x̄, y3) + · · · ,
ση(x̄, y3) = η−2σ−2(x̄, y3) + η−1σ−1(x̄, y3) + σ0(x̄, y3) + ησ1(x̄, y3) + · · · .

Moreover, by (10), shear forces admit an asymptotic expansion which starts at order −3 whereas the asymptotic
expansion of the bending moments starts at order −2{

T η(x̄) = η−3T −3(x̄) + η−2T −2(x̄) + η−1T −1(x̄) + T 0(x̄) + ηT 1(x̄) + · · · ,
Mη(x̄) = η−2M−2(x̄) + η−1M−1(x̄) +M0(x̄) + ηM1(x̄) + · · · .
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2.3.2 Determination of the form of the first terms of the displacements, strains and stresses expansions

Inserting these asymptotic expansions into the equations (6)–(9) of the boundary value problem gives a sequence
of equations at successive orders that we introduce and use below.

(1) Equilibrium equations, constitutive relations and compatibility conditions at order −2. Equilibrium equation (6) at
order −2 gives σ−2

i3,3 = 0 and hence σ−2
i3 does not depend on y3. Since σ−2

i3 vanishes at y3 = 1/2 by (9), one

has σ−2
i3 = 0 everywhere. Then, since ε−2

αβ = 0 by (8), one deduces from (7) that σ−2
αβ = 0 and hence σ−2 = 0.

Consequently, ε−2 = 0 and (8) gives u0
i,3 = 0 and hence u0 does not depend on y3. Since u0

α = 0 on y3 = 0 we

get u0
α = 0 everywhere. Thus, at this step one has obtained

u0(x̄, y3) = U0(x̄)e3, σ−2 = 0, ε−2 = 0, (15)

where the deflection at order 0, U0(x̄), has to be determined.
(2) Equilibrium equations, constitutive relations and compatibility conditions at order −1. Owing to σ−2 = 0, equilib-

rium equations (6) give σ−1
i3,3 = 0. Hence, by virtue of the boundary condition at y3 = 1/2, one deduces that

σ−1
i3 = 0 everywhere. Moreover, ε−1

αβ = 0 by virtue of (8) and u0
α = 0. Then the constitutive relations (7) at

order 0 give σ−1 = 0 and ε−1 = 0. The compatibility conditions (8) give now U0
,α + u1

α,3 = 0 and u1
3,3 = 0.

After integrating these relations, since u1
α = 0 at y3 = 0, one finally obtains at this step

u1(x̄, y3) = −y3U
0
,α(x̄)eα + U1(x̄)e3, σ−1 = 0, ε−1 = 0, (16)

where the deflection at order 1, U1(x̄), has to be determined.
(3) Equilibrium equations, constitutive relations and compatibility conditions at order 0. Because σ−1 = 0, equilibrium

equations (6) give σ0
i3,3 = 0. Hence, by virtue of the boundary condition at y3 = 1/2, one deduces that σ0

i3 = 0

everywhere. Using (8) and (16) leads to ε0αβ = −y3U
0
,αβ . Then the constitutive relations (7) at order 1 give σ0

and ε0 which read as
σ0
αβ(x̄, y3) = − y3

1− ν2

(
ν∆U0(x̄)δαβ + (1− ν)U0

,αβ(x̄)
)
, σ0

α3 = σ0
33 = 0,

ε0αβ(x̄, y3) = −y3U
0
,αβ(x̄), ε0α3 = 0, ε033(x̄, y3) =

νy3

1− ν∆U
0(x̄).

(17)

Inserting these relations into (8) and using the boundary condition u2
α = 0 at y3 = 0 leads to the following

form for the displacements at order 2

u2
α(x̄, y3) = −y3U

1
,α(x̄), u2

3(x̄, y3) = U2(x̄) +
νy2

3

2(1− ν)
∆U0(x̄), (18)

where the deflection at order 2, U2(x̄), has to be determined.
(4) Equilibrium equations, constitutive relations and compatibility conditions at order 1. Using (17), equilibrium equa-

tions (6) give

σ1
α3,3 =

y3

1− ν2
∆U0

,α, σ1
33,3 = 0.

Hence, since σ1
i3 = 0 at y3 = 1/2, one gets σ1

i3 everywhere. Moreover, since ε1αβ is given by (18), the constitutive

relations (7) allow us to obtain both σ1 and ε1. Specifically σ1 reads

σ1
αβ(x̄, y3) = − y3

1− ν2

(
ν∆U1(x̄)δαβ + (1− ν)U1

,αβ(x̄)
)
, σ1

α3(x̄, y3) =
4y2

3 − 1

8(1− ν2)
∆U0

,α(x̄), σ1
33 = 0. (19)

Remark (on the type of equations for un). The first three relevant terms un (n = 1, 2, 3) of the expansion of
displacements allow for a simple mechanical interpretation. Indeed, equation (15) which identifies the components
of the first term u0 descend from symmetry (material and of the loading) and the fact that (rescaled) normal
stresses vanish on the surface. For n = 1, relation (16) is a direct consequence of the fact that (rescaled) shear
strains vanish alongside the associated stresses. On the other hand, for n = 2, nonzero (rescaled) shear strains
and stresses exist and are determined explicitly as a function of y3 and the second derivative of the first nontrivial
displacement u0, playing the role of a datum. Higher order terms (n > 2) exhibit a similar structure albeit with a
datum that is a combination of higher derivatives of lower order modes. As a consequence, the datum entering in
the equation of un for larger and larger n is more and more singular.
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2.3.3 First order plate equations

1. First order shear forces and bending moments, plate equation for U0. Inserting the previous results into (10) shows
that shear forces and bending moments start at order 0: T −3 = T −2 = T −1 = 0 and M−2 = M−1 = 0.
Moreover, inserting expression (17) of σ0

αβ into (10) gives the following constitutive relation between the bending
moments at order 0 and the deflection at order 0

M0
αβ(x̄) = D

(
ν∆U0(x̄)δαβ + (1− ν)U0

,αβ(x̄)
)

with D =
1

12(1− ν2)
. (20)

Then, using (11) at order 0 gives T 0 in terms of U0: T 0
α (x̄) = −D∆U0

,α(x̄). Inserting (20) into (13) taken at order
0 leads to the well-known bilaplacian equation which governs the plate deflection. In terms of dimensionless
quantities it reads here

D∆2U0 −F0 = 0 in Ω0. (21)

Note that U0 is not (everywhere) zero as soon as F0 is not zero, that justifies a posteriori our choice (5) of
the order of magnitude of the external forces. To complete this fourth order partial differential equation one
must give the boundary condition satisfied by U0 on the sides of ∂Ω0. That will be achieved in the next section
where are studied the boundary layers.

2. Shear forces and bending moments at order 1, plate equation for U1. Inserting the expression (19) of σ1
αβ into (10)

gives the constitutive relation between the bending moments and the deflection at order 1:

M1
αβ(x̄) = D

(
ν∆U1(x̄)δαβ + (1− ν)U1

,αβ(x̄)
)
, (22)

which is similar to (20). Then, using (11) at order 1 gives T 1 in terms of U1: T 1
α (x̄) = −D∆U1

,α(x̄). Inserting
(22) into (13) taken at order 1 leads to the bilaplacian equation for the plate deflection U1

D∆2U1 = 0 in Ω0,

to which one must add two boundary conditions on each side. Let us note that U1 like U0 are governed by the
bilaplacian operator in the bulk. The only difference will come from the boundary conditions. A change shall
appear for U2, governed by a different fourth order partial differential equation in the bulk, in conformity with
the Mindlin-Reissner theory. Accordingly, boundary layers effects appear at an order lower than those due to
a weakening of the kinematic constraint on the rotation.

It remains to determine the boundary conditions that the fields U0 and U1 have to satisfy. These boundary
conditions must be deduced from the true three dimensional boundary conditions. If one considers the expansion
of the displacements just obtained, one sees from (15)-(16) that u0 = u1 = 0 at x̄1 = ±1/2 provided that
U0 = U1 = U0

,1 = 0 at x̄1 = ±1/2. But, when ν 6= 0, (18) shows that u2 = 0 only if ∆U0 = 0 at x̄1 = ±1/2,
which is in general impossible. That means that u2 cannot in general satisfy the right boundary conditions and
hence that the previous expansion is not valid in the neighbourhood of x̄1 = ±1/2. A boundary layer is present.
In the same manner, if we consider the expansion of stresses that has been obtained, one sees from (17) that,
at x̄2 = ±1/2, σ0e2 = 0 provided that U0

,12 = νU0
,11 + U0

,22 = 0 and from (19) that σ1e2 = 0 provided that
U1
,12 = νU1

,11 + U1
,22 = ∆U0

,2 = 0. But this latter equality does not hold in general. Hence the proposed expansion
is not valid in the neighbourhood of x̄2 = ±1/2 and a boundary layer is also present. The two next sections are
devoted to the analysis of these boundary layers.

3 Analysis of the boundary layers near the clamped sides of the plate

3.1 Notations

We will only develop the analysis of the boundary layer near the side x̄1 = −1/2, the study of the other side
x̄1 = +1/2 being essentially the same. Throughout this subsection we use the following notations: we set

y1 :=
2x̄1 + 1

2η
,

and hence the pair (y1, y3) represents the small scale coordinates whereas x̄2 is the large scale coordinate.
Specifically, the change of variable above maps the vicinity of the boundary into a strip of length 1/η, un-
bounded from above when η � 1. Consequently, boundary layer problems will be posed on the semi-infinite
strip Y = (0,+∞) × (0,+1/2) of the (y1, y3) plane, whereas x̄2 will only play the role of a parameter varying in
I2 = (−¯̀/2, ¯̀/2). Accordingly, we denote by y the pair (y1, y3) in Y. When v = v(x̄2,y) is a vector field defined in
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I2 × Y, we denote by εy(v) and εx̄(v) the tensor fields whose matrix representations in the basis (e1, e2, e3) are
the following

εy(v) =



∂v1

∂y1

1

2

∂v2

∂y1

1

2

(
∂v3

∂y1
+
∂v1

∂y3

)
1

2

∂v2

∂y1
0

1

2

∂v2

∂y3

1

2

(
∂v3

∂y1
+
∂v1

∂y3

) 1

2

∂v2

∂y3

∂v3

∂y3

 , εx̄(v) =


0

1

2

∂v1

∂x̄2
0

1

2

∂v1

∂x̄2

∂v2

∂x̄2

1

2

∂v3

∂x̄2

0
1

2

∂v3

∂x̄2
0

 . (23)

When τ = τ (x̄2,y) is a symmetric second order tensor field defined in I2 ×Y, we denote by divyτ and divx̄τ the
vectors fields whose representations in the basis (e1, e2, e3) are

divyτ =
(
∂τi1
∂y1

+
∂τi3
∂y3

)
ei, divx̄τ =

∂τi2
∂x̄2

ei. (24)

The following Lemma, characterising a displacement field v whose associated strain field εy(v) vanishes, is of
constant use (its proof is left to the reader).

Lemma 1 If a vector field v is such that εy(v) = 0 in I2 ×Y (in the sense of (23)), then v is necessarily of the form

v(x̄2,y) = V(x̄2) + ω(x̄2)e2 ∧ y.

where ∧ denotes the vector cross-product. Furthermore, for such a v, one has

(i) if v1 = v2 = 0 on y3 = 0 then v is of the form v(x̄2,y) = V (x̄2)e3 + ω(x̄2)e2 ∧ y;

(ii) if v = 0 on y1 = 0 then v = 0 in I2 ×Y.

3.2 Hypothesis on the form of the expansions and statement of the matching conditions

We suppose that, near the side x̄1 = −1/2 of the plate, the displacement uη admits the following asymptotic
expansion with respect to the small parameter η

uη(x̄, y3) = v0(x̄2,y) + ηv1(x̄2,y) + η2v2(x̄2,y) + η3v3(x̄2,y) + · · · , (25)

with x̄2 ∈ I2, y = (y1, y3) ∈ Y and ηy1 = x̄1 + 1/2. In other words, we introduce the small scale variable y1 instead
of x̄1. Consequently, the strains and stresses admit the same type of asymptotic expansion which a priori starts at
order −2 {

εη(x̄, y3) = η−2γ−2(x̄2,y) + η−1γ−1(x̄2,y) + γ0(x̄2,y) + ηγ1(x̄2,y) + η2γ2(x̄2,y) + · · · ,
ση(x̄, y3) = η−2τ−2(x̄2,y) + η−1τ−1(x̄2,y) + τ0(x̄2,y) + ητ1(x̄2,y) + η2τ2(x̄2,y) + · · · .

These expansions must match those introduced in the previous section. Matching conditions are obtained by
requiring that the two expansions are valid in an intermediate zone where x̄1 + 1/2 is small while y1 is large.
Specifically, starting from (14) leads to

uη(x̄, y3) =
∑
i∈N

ηiui(−1/2 + ηy1, x̄2, y3). (26)

Then, assuming that the ui’s can be expanded with respect to x̄1 near x̄1 = −1/2, we write

ui(−1/2 + ηy1, x̄2, y3) = ui(−1/2, x̄2, y3) + ηy1ui,1(−1/2, x̄2, y3) + 1
2
η2y2

1ui,11(−1/2, x̄2, y3) + · · · .

Inserting the above expansion into (26) and comparing with (25) gives the desired matching conditions. We will
only use the first three which read

u0(− 1
2
, x̄2, y3) = limy1→∞ v0(x̄2,y),

u1(− 1
2
, x̄2, y3) = limy1→∞

(
v1(x̄2,y)− y1u0

,1(− 1
2
, x̄2, y3)

)
,

u2(− 1
2
, x̄2, y3) = limy1→∞

(
v2(x̄2,y)− y1u1

,1(− 1
2
, x̄2, y3)− 1

2
y2
1u0

,11(− 1
2
, x̄2, y3)

)
.

(27)

The same type of matching conditions hold for stresses, except that they start at order −2 instead of 0 (and hence
all the indices must be shifted).
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3.3 Obtention of three kinematic boundary conditions from the determination of v0 and v1

Inserting the assumed expansions into (6)–(9) gives for the leading terms the following set of equations


divyτ

−2 = 0 in I2 ×Y,

γ−2 = εy(v0) = −ν Tr τ−2I + (1 + ν)τ−2 in I2 ×Y,

v0 = 0 at y1 = 0, v0
1 = v0

2 = τ−2
33 = 0 at y3 = 0, τ−2e3 = 0 at y3 = 1/2.

Moreover, since σ−2 = 0, the first matching condition for stresses gives τ−2(x̄2,+∞, y3) = 0. Multiplying the
equilibrium equation by v0 and integrating over I2 ×Y leads to

∫
I2×Y

divyτ
−2 · v0dx̄2 dy = 0.

Integrating by parts the integral, using boundary conditions, matching conditions, and (23)-(24) gives

∫
I2×Y

τ−2 · εy(v0)dx̄2 dy = 0.

Then, by the constitutive relations between τ−2 and εy(v0), one can conclude that εy(v0) = 0. Finally, Lemma 1
gives

v0 = 0, τ−2 = 0, γ−2 = 0 in I2 ×Y.

Since v0 = 0, the first matching condition (27) combined with (15) gives the expected boundary condition that
U0 must satisfy on the side x̄1 = −1/2

U0 = 0 at x̄1 = −1/2 . (28)

Considering now the next terms of the expansion, one deduces from (6)–(9) that τ−1 and v1 must satisfy reinsert

label here 
divyτ

−1 = 0 in I2 ×Y,

εy(v1) = −ν Tr τ−1I + (1 + ν)τ−1 in I2 ×Y,

v1 = 0 at y1 = 0, v1
1 = v1

2 = τ−1
33 = 0 at y3 = 0, τ−1e3 = 0 at y3 = 1/2.

Because σ−1 = 0, one can follow the same procedure as for v0 and τ−2 to finally obtain

v1 = 0, τ−1 = 0, γ−1 = 0 in I2 ×Y. (29)

Using (15), (16), (28) and (29), the second matching condition (27) reads

−y3U
0
,1(−1/2, x̄2)e1 + U1(−1/2, x̄2)e3 = lim

y1→+∞

(
− y1U

0
,1(−1/2, x̄2)e3

)
,

and hence is satisfied if and only if U0 and U1 verify the following boundary conditions on the side x̄1 = −1/2

U0
,1 = 0, U1 = 0 at x̄1 = −1/2 . (30)

Therefore we have obtained the two required boundary conditions that U0 must satisfy on the clamped sides (one
can follow the same procedure to obtain the same conditions at x̄1 = +1/2) and these relations are the usual ones
of fixed deflection and rotation. At this stage, we have only obtained the condition of fixed deflection for U1, the
condition on its rotation will be obtained in the next subsections after determining v2.
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3.4 Determination of v2

Using the previous results, one deduces from (6)–(9) that τ0 and v2 must satisfy


divyτ

0 = 0 in I2 ×Y,

εy(v2) = −ν Tr τ0I + (1 + ν)τ0 in I2 ×Y,

v2 = 0 at y1 = 0, v2
1 = v2

2 = τ0
33 = 0 at y3 = 0, τ0e3 = 0 at y3 = 1/2,

(31)

but, because in general σ0 6= 0 by virtue of (17), one cannot conclude as before. Indeed, the matching condition
between σ0 and τ0 reads

lim
y1→+∞

τ0(x̄2,y) = σ0(− 1
2
, x̄2, y3) = − y3

1− ν2
U0
,11(− 1

2
, x̄2)

(
e1 ⊗ e1 + νe2 ⊗ e2

)
, (32)

where we have used (17) and U0
,12 = U0

,22 = 0 at x̄1 = −1/2. Therefore, when U0
,11(−1/2, x̄2) is given, the system

(31) with (32) is a linear problem for v2 posed on I2 ×Y.
By linearity, this problem can be decomposed into two problems: an “out-of-plane problem” for v2

2 and an
“in-plane problem” for (v2

1 , v
2
3). First, using (23) and (24), one deduces from (31) and (32) that v2

2 is given by

∆yv
2
2 = 0 in I2 ×Y,

v2
2 = 0 at y1 = 0 and at y3 = 0,

∂v2
2

∂y3
= 0 at y3 = 1/2,

∂v2
2

∂y1
= 0 at y1 = +∞.

One easily checks that v2
2 = 0 is the unique solution and hence that the problem for v2 is reduced to a plane strain

problem. Using the linearity, v2 and τ0 can be read as

v2(x̄2,y) = U0
,11(− 1

2
, x̄2)

(
V∗(y) + Vc(y)

)
, τ0(x̄2,y) = U0

,11(− 1
2
, x̄2)

(
Σ∗(y) + Σc(y)

)
, (33)

where V∗ and Σ∗ are the following displacement and stress tensor fields defined in Y:

V∗(y) = −y1y3e1 +
(
y2
1

2
+

νy2
3

2(1− ν)

)
e3, Σ∗(y) = − y3

1− ν2

(
e1 ⊗ e1 + νe2 ⊗ e2

)
. (34)

In (33) the displacement field Vc and the stress field Σc have the following form

Vc =

V c1
0
V c3

 , Σc =

Σc11 0 Σc13

0 ν(Σc11 +Σc33) 0
Σc13 0 Σc33

 ,

and are solution of the following plane strain problem posed in Y, called the bending boundary layer problem

at a clamped side:



divyΣc = 0 in Y,

εy(Vc) = −ν Tr ΣcI + (1 + ν)Σc in Y,

Vc = − νy2
3

2(1− ν)
e3 at y1 = 0,

V c1 = Σc33 = 0 at y3 = 0, Σce3 = 0 at y3 = 1/2,

lim
y1→+∞

Σc(y) = 0.

(35)

To obtain (35), one in particular uses divyΣ∗ = 0 and εy(V∗) = −ν Tr Σ∗I+(1+ν)Σ∗. The study of this problem
is made in the next subsection and will give the second boundary condition for U1 (and a first one for U2).
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3.5 Obtention of the second boundary condition for U1 and a first one for U2

By classical arguments one can prove that the bending boundary layer problem (35) admits a unique solution. Let
us first remark that this solution depends only on the Poisson ratio ν and hence can be considered as universal for a
homogeneous plate near a clamped boundary. (However, one should prove that if one considered a curved, instead
of a straight boundary, the problem would not change.) The solution is Vc = 0 and Σc = 0 if and only if ν = 0
by virtue of the boundary condition on y1 = 0. When ν 6= 0, a boundary layer appears because u2 cannot satisfy
the clamped boundary conditions. Because Σc tends to 0 when y1 tends to infinity, so does εy(Vc). Consequently,
since V c1 = 0 on y1 = 0, by virtue of Lemma 1, there exists two constants Kc and Cc (depending only on ν) such
that

lim
y1→+∞

(
Vc(y)− Cce2 ∧ y

)
= Kce3. (36)

In fact, it can be proved that the decay of Vc to a rigid body motion is exponential with respect to y1, but this
proof is outside the scope of the present paper and we simply check it numerically (the computations are made
with a finite element code). One can see the rapid decay in Figure 1 where the graphs of y1 7→ V c1 (y1, y3) and of
y1 7→ V c3 (y1, y3) are plotted for several values of y3 when ν = 1/4. The asymptotic relation above provides the
mechanical interpretation of the coefficients Cc and Kc which can be respectively regarded as the limit values of
displacement and rotation associated to the outer solution, on y1 = 0.

Fig. 1 Graph of V c
1 (left) and V c

3 (right) as a function of y1 for six values of y3, y3 = 0., 0.1, 0.2, 0.3, 0.4, 0.5, when ν = 0.25.
It can be seen that V c

1 tends rapidly, when y1 grows, to a constant which is proportional to y3 whereas V c
3 tends to an affine

function independent of y3. The slope of this asymptotic line is −Cc and its intersection with the axis y1 = 0 is Kc which represent,
respectively, the trace at the boundary of the limit rotation and that of the limit displacement associated to the macroscopic (bulk)
solution.

Accordingly, using (15), (16), (18), (30) and (33), the third matching condition (27) becomes{
−y3U

1
,1(− 1

2
, x̄2, y3) = limy1→∞ V c1 (x̄2,y)U0

,11(− 1
2
, x̄2, y3),

U2(− 1
2
, x̄2, y3) = limy1→∞

(
V c3 (x̄2,y)U0

,11(− 1
2
, x̄2, y3)− y1U

1
,1(− 1

2
, x̄2, y3)

)
.

Then, by virtue of (36), one gets

U1
,1 = −Cc U

0
,11, U2 = Kc U

0
,11 at x̄1 = −1/2 . (37)

The first relation in (37) says that the (normal) rotation satisfied by U1 on a clamped side is proportional to the
normal bending moment M0

11. Indeed, using (20), one gets DU1
,1 = −CcM0

11 at x̄1 = −1/2. Consequently, one has
obtained a boundary condition of Robin’s type where the rotation is proportional to the bending moment and the
constant Cc gives the compliance of the angular spring. Let us show that this coefficient which depends only on
ν is always non negative (vanishing only when ν = 0) by giving an energetic interpretation of it. Specifically, the
following relation holds true:

Cc = 24(1− ν2)

∫
Y

Σc(y) · εy(Vc)(y)dy ≥ 0, (38)
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which means that Cc is given by the elastic energy associated with the boundary layer displacement corrector Vc.
To prove (38), let us first start from the equilibrium equation divyΣc = 0 that one multiplies by Vc + V∗ and
integrates over Y to get ∫

Y

divyΣc · (Vc + V∗) dy = 0.

Integrating by parts the integral leads to ∫
Y

Σc · εy(Vc + V∗) dy = 0,

because all boundary terms vanish by virtue of the exponential decay of Σc when y1 goes to infinity and the
boundary conditions satisfied by Σc, Vc and V∗. Let us now remark that Σc · εy(V∗) = Σ∗ · εy(Vc) by virtue of
the constitutive relations between Σc and εy(Vc), or Σ∗ and εy(V∗). Accordingly, using the expression (34) of
Σc and the properties of Vc at y1 = 0 and at y1 = +∞ allows us to obtain

∫
Y

Σc · εy(Vc)dy = −
∫

Y

Σ∗ · εy(Vc) dy =

∫
Y

y3

1− ν2
V c1,1dy =

∫ 1/2

0

Ccy
2
3

1− ν2
dy3 =

Cc

24(1− ν2)
,

that is the desired result. Such an interpretation does not exist for Kc and, as it can be seen in Figure 2, Kc has
the opposite sign of ν and hence is negative in the usual situations.

Fig. 2 Graphs of the two coefficients Cc and Kc in function of the Poisson ratio ν, they represent the trace of the limit rotation and
the (trace of the) limit displacement which correspond to the outer, macroscopic, bulk solution. Note that Cc is always non-negative
whereas Kc changes sign with ν.

At the opposite side x̄1 = +1/2, one can proceed in the same manner and the boundary conditions read as

U0 = U1 = U0
,1 = 0, DU1

,1 = CcM0
11 at x̄1 = +1/2.

One can summarise the results obtained in the present section by the following proposition:

Proposition 1 On the clamped sides x̄1 = ±1/2 the displacement U0 must satisfy the usual conditions

U0 =
∂U0

∂n
= 0,

where the index n refers to the outer normal n = ±e1.

The displacement U1 must satisfy the following boundary conditions :

U1 = 0, D
∂U1

∂n
= CcM0

nn,

which differ from the usual ones because of the presence of a boundary layer. That requires to solve the bending boundary

layer problem (35) to obtain the positive coefficient Cc.
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4 Study of the boundary layer near the free sides of the plate

4.1 Notations

Here again, it is sufficient to study the boundary layer near one of the two free sides. So, we consider the side
x̄2 = −¯̀/2 and set

y2 =
2x̄2 + ¯̀

2η
. (39)

We use notations similar to those of the previous section except that the directions 1 and 2 are inverted. Specifically,
y = (y2, y3) represents now the small scale coordinates whereas x̄1 is the large scale coordinate. The boundary
layer problems will be posed on the semi-infinite strip Y = (0,+∞) × (0,+1/2) of the (y2, y3) plane and x̄1 will
only play the role of a parameter varying in I1 = (−1/2, 1/2). When v = v(x̄1,y) is a vector field defined in I1×Y,
we now denote by εy(v) and εx̄(v) the tensor fields whose matrix representations in the basis (e1, e2, e3) are

εy(v) =



0
1

2

∂v1

∂y2

1

2

∂v1

∂y3

1

2

∂v1

∂y2

∂v2

∂y2

1

2

(
∂v3

∂y2
+
∂v2

∂y3

)
1

2

∂v1

∂y3

1

2

(
∂v3

∂y2
+
∂v2

∂y3

)
∂v3

∂y3


and εx̄(v) =



∂v1

∂x̄1

1

2

∂v2

∂x̄1

1

2

∂v3

∂x̄1

1

2

∂v2

∂x̄1
0 0

1

2

∂v3

∂x̄1
0 0

 . (40)

When τ = τ (x̄1,y) is a symmetric two tensor field defined in I1 ×Y, we denote by divyτ and divx̄τ the vectors
fields whose representations in the basis (e1, e2, e3) are

divyτ =
(
∂τi2
∂y2

+
∂τi3
∂y3

)
ei, divx̄τ =

∂τi1
∂x̄1

ei.

The lemma that characterises a displacement field v whose associated strain field εy(v) vanishes, reads now

Lemma 2 If a vector field v is such that εy(v) = 0 in I1 ×Y (in the sense of (40)), then v is necessarily of the form

v(x̄1,y) = V(x̄1) + ω(x̄1)e1 ∧ y.

Furthermore, if v1 = v2 = 0 at y3 = 0, then V(x̄1) = V (x̄1)e3.

4.2 Hypothesis on the form of the expansions and matching conditions

We suppose that, near the side x̄2 = −¯̀/2 of the plate, the displacement uη admits the following asymptotic
expansion with respect to the small parameter η:

uη(x̄, y3) = v0(x̄1,y) + ηv1(x̄1,y) + η2v2(x̄1,y) + η3v3(x̄1,y) + · · · , (41)

with x̄1 ∈ I1, y = (y2, y3) ∈ Y and y2 related to x̄2 by (39). Consequently, stresses admit the same type of
asymptotic expansion which a priori starts at order −2,

ση(x̄, y3) = η−2τ−2(x̄1,y) + η−1τ−1(x̄1,y) + τ0(x̄1,y) + ητ1(x̄1,y) + η2τ2(x̄1,y) + · · · .

These expansions must match those introduced in Section 2.3. The first matching conditions read now as
u0(x̄1,−¯̀/2, y3) = limy2→∞ v0(x̄1,y)

u1(x̄1,−¯̀/2, y3) = limy2→∞
(
v1(x̄1,y)− y2u0

,2(x̄1,−¯̀/2, y3)
)

u2(x̄1,−¯̀/2, y3) = limy2→∞
(
v2(x̄1,y)− y2u1

,2(x̄1,−¯̀/2, y3)− 1
2
y2
2u0

,22(x̄1,−¯̀/2, y3)
) (43)

The same type of matching conditions hold for stresses, except that they start at order −2.
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4.3 Determination of v0 and v1

Inserting (41)–(42) into (6)–(9) gives for the leading terms the following set of equations
divyτ

−2 = 0 in I1 ×Y,

εy(v0) = −ν Tr τ−2I + (1 + ν)τ−2 in I1 ×Y,

τ−2e2 = 0 at y2 = 0, v0
1 = v0

2 = τ−2
33 = 0 at y3 = 0, τ−2e3 = 0 at y3 = 1/2.

Moreover, since σ−2 = 0, the first matching condition for stresses gives τ−2(x̄1,+∞, y3) = 0. Multiplying the
equilibrium equation by v0 and integrating over I1 × Y leads to

∫
I1×Y

divyτ
−2 · v0dx̄1 dy = 0. Integrating by

parts the integral, using boundary conditions, and matching conditions for τ−2 gives
∫
I1×Y

τ−2 ·εy(v0)dx̄1 dy = 0.

Then, by the constitutive relations between τ−2 and εy(v0), one can conclude that

τ−2 = 0, εy(v0) = 0 in I1 ×Y.

Therefore, Lemma 2 gives v0 = V 0(x̄1)e3 + ω0(x̄1)e1 ∧ y. Then, using the first matching condition (43) with (15)
gives V 0(x̄1) = U0(x̄1,−¯̀/2), ω0(x̄1) = 0 and finally

v0(x̄1,y) = U0(x̄1,−¯̀/2)e3 in I1 ×Y. (44)

Let us set v∗(x̄1,y) = U0
,1(x̄1,−¯̀/2)y3e1 and remark that εx̄(v0) = εy(v∗). Considering now the next terms of the

expansion, one deduces from (6)–(9) and (44) that τ−1 and v1 must satisfy
divyτ

−1 = 0 in I1 ×Y,

εy(v1 + v∗) = −ν Tr τ−1I + (1 + ν)τ−1 in I1 ×Y,

τ−1e2 = 0 at y2 = 0, v1
1 = v1

2 = τ−1
33 = 0 at y3 = 0, τ−1e3 = 0 at y3 = 1/2.

Since σ−1 = 0 and since v∗ satisfies the boundary condition at y3 = 0, one can follow the same procedure as for
v0 and τ−2 to obtain

∫
I1×Y

τ−1 · εy(v1 + v∗)dx̄1 dy = 0 and hence

εy(v1 + v∗) = 0, τ−1 = 0 in I1 ×Y. (45)

Therefore, by Lemma 2, v1 + v∗ = V 1(x̄1)e3 +ω1(x̄1)e1 ∧y. Then, using (15), (16) and (45), the second matching
condition (43) reads

−y3U
0
,2(x̄1,−¯̀/2)e2 + U1(x̄1,−¯̀/2)e3 = lim

y2→+∞

(
V 1(x̄1)e3 + ω1(x̄1)e1 ∧ y − y2U

0
,2(x̄1,−¯̀/2)e3

)
,

and hence is satisfied if and only if V 1(x̄1) = U1(x̄1,−¯̀/2) and ω1(x̄1) = U0
,2(x̄1,−¯̀/2). Therefore v1 has the

following form

v1(x̄1,y) = −U0
,α(x̄1,−¯̀/2)y3eα +

(
U1(x̄1,−¯̀/2) + y2U

0
,2(x̄1,−¯̀/2)

)
e3. (46)

At this stage, we have not obtained boundary conditions for U0 and U1. The first ones are given by the problem
governing v2 and τ0.

4.4 First boundary condition for U0

Using the previous results, one deduces from (6)–(9) that τ0 and v2 must satisfy
divyτ

0 = 0 in I1 ×Y,

εy(v2) + εx̄(v1) = −ν Tr τ0I + (1 + ν)τ0 in I1 ×Y,

τ0e2 = 0 at y2 = 0, v2
1 = v2

2 = τ0
33 = 0 at y3 = 0, τ0e3 = 0 at y3 = 1/2,

(47)

and the condition at infinity for τ0 which is given by the matching condition between σ0 and τ0, i.e. ,

lim
y2→+∞

τ0(x̄1,y) = σ0(x̄1,−¯̀/2, y3). (48)

Since rigid motions of the form v(x̄1,y) = V (x̄1)e3 + ω(x̄1)e1 ∧ y are still allowed by virtue of Lemma 2, the
loading at infinity given by σ0 must satisfy conditions in order that this problem for v2 and τ0 admits at least
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one solution. Specifically, the e3 component of the resultant force and the e1 component of the resultant moment
of the external forces must vanish. This leads to the following two conditions∫

∂Y

τ0n · e3 ds = 0,

∫
∂Y

(y ∧ τ0n) · e1 ds = 0,

where n denotes the outer normal to Y and s is the arclength along ∂Y. By virtue of the boundary conditions
satisfied by τ0, the first equality is automatically satisfied whereas the second one is reduced to∫ 1/2

0

y3σ
0
22(x̄1,−¯̀/2, y3) dy3 = 0.

To obtain the above equality one assumes that the decay of τ0
23 to 0 is exponential. Comparing with (10), this

condition requires that the normal bending moment M0
22 vanishes

M0
22 = 0 at x̄2 = −¯̀/2 , (49)

a condition that can be also expressed in terms of U0 using (20). Specifically, U0
,22 + νU0

,11 = 0 at x̄2 = −¯̀/2 which
implies that σ0

22 = 0 at x̄2 = −¯̀/2.

4.5 Determination of v2 and τ0

Assuming that the condition (49) is satisfied, the problem (47)-(48) admits a solution which is defined up to an
admissible rigid displacement. This problem can be decomposed into an in-plane problem and an out-of-plane
problem (the plane being the plane (y2, y3) of Y). For the in-plane problem, since all the plane components of
εx̄(v1) and σ0 vanish, it is easy to check that the planar components of τ0 vanish. Hence,

τ0
22 = τ0

23 = τ0
33 = 0, τ0

11(x̄1,y) = −y3U
0
,11(x̄1,−¯̀/2).

The compatibility conditions with the help of the boundary condition at y3 = 0 give the plane components of v2

up to a rigid motion which is fixed by the third matching condition (43). Finally, one getsv
2
2(x̄1,y) = −y3U

1
,2(x̄1,−¯̀/2) + νy2y3U

0
,11(x̄1,−¯̀/2),

v2
3(x̄1,y) = U2(x̄1,−¯̀/2) + y2U

1
,2(x̄1,−¯̀/2) +

ν

2

(
y2
3 − y2

2

)
U0
,11(x̄1,−¯̀/2).

The out-of-plane problem reads

∂τ0
12

∂y2
+
∂τ0

13

∂y3
= 0,

2(1 + ν)τ0
12 =

∂v2
1

∂y2
− y3U

0
,12,

2(1 + ν)τ0
13 =

∂v2
1

∂y3
+ y2U

0
,12 + U1

,1,

in I1 ×Y,



τ0
12 = 0 at y2 = 0,

v2
1 = 0 at y3 = 0,

τ0
13 = 0 at y3 = 1/2,

τ0
12 = − y3

1 + ν
U0
,12 at y2 = +∞,

τ0
13 = 0 at y2 = +∞,

where the values of U0, U1 and their derivatives are taken at (x̄1,−¯̀/2). It admits a unique solution which by
linearity can be written as follows

v2
1(x̄1,y) = −y3U

1
,1(x̄1,−¯̀/2) +

(
Wf(y)− y2y3

)
U0
,12(x̄1,−¯̀/2),

τ0
12(x̄1,y) =

U0
,12(x̄1,−¯̀/2)

2(1 + ν)

(
∂Wf

∂y2
(y)− 2y3

)
,

τ0
13(x̄1,y) =

U0
,12(x̄1,−¯̀/2)

2(1 + ν)

∂Wf

∂y3
(y),

(50)

where Wf is the scalar field solution of the Laplacian problem posed in Y, called the twist boundary layer

problem at a free side, 
∆Wf = 0 in Y,

∂Wf

∂y2
(0, y3) = 2y3, Wf(y2, 0) = 0,

∂Wf

∂y3
(y2, 1/2) = 0,

limy2→+∞Wf(y) = 0.

(51)
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Note that this problem is universal in the sense that it is free from any parameter. A boundary layer appears at
the free sides x̄2 = ±¯̀/2 if U0

,12 is non-zero at those sides because σ0
12 does not satisfy the boundary condition of

vanishing shear. Accordingly, the shear decreases exponentially to zero in the boundary layer. The solution Wf can
be expressed under the form of the following series

Wf(y2, y3) =
∑
n∈N

8(−1)n+1

(2n+ 1)3π3
exp

(
− (2n+ 1)πy2

)
sin(2n+ 1)πy3. (52)

We can see in Figure 3 that the thickness of the boundary layer is about 1–1.5 and hence, by comparison with
Figure 1, larger than that of the bending boundary layer problem (35). Let us note the following property for Wf

which will be useful: ∫ +∞

0

Wf(y2, 1/2)dy2 =

∫
Y

∂Wf

∂y3
(y) dy = − 1

12
. (53)

Indeed, from ∆Wf = 0 and using the boundary conditions satisfied by Wf , one gets

0 = −
∫

Y

y3∆Wfdy =

∫ 1/2

0

y3
∂Wf

∂y2

∣∣∣∣
y2=0

dy3 +

∫
Y

∂Wf

∂y3
dy =

1

12
+

∫
Y

∂Wf

∂y3
dy.

Fig. 3 Wf is a universal twist boundary layer inducing an out-of-plane displacement near the free side which allows to satisfy zero
transverse shear at the boundary. In the graph above, we plot Wf as a function of y2 for five values of y3, y3 = 0.1, 0.2, 0.3, 0.4, 0.5.

4.6 Second boundary condition for U0 and first boundary condition for U1

Using the previous results, one deduces from (6)–(9) that τ1 and v3 must satisfy
divyτ

1 + divx̄τ
0 = 0 in I1 ×Y,

εy(v3) + εx̄(v2) = −ν Tr τ1I + (1 + ν)τ1 in I1 ×Y,

τ1e2 = 0 at y2 = 0, v3
1 = v3

2 = τ1
33 = 0 at y3 = 0, τ1e3 = 0 at y3 = 1/2,

and the condition at infinity for τ1 which is given by the matching condition, i.e. ,

lim
y2→+∞

(
τ1(x̄1,y)− y2σ

0
,2(x̄1,−¯̀/2, y3)

)
= σ1(x̄1,−¯̀/2, y3). (54)

This problem admits a solution only if the resultant of the external forces in the direction e3 vanishes and if the
resultant torque of the external forces in the direction e1 vanishes. The former condition gives the second boundary
condition for U0 whereas the latter gives the first boundary condition for U1. To simplify the notation, we omit
up to the end of this section the arguments of the functions when there is no risk of confusion. In particular, all
global quantities are implicitly evaluated at (x̄1,−¯̀/2).

First, multiplying the equilibrium equation by e3 and integrating over Y at a given x̄1 leads to

0 =

∫
{x̄1}×Y

2
(
∂τ1

32

∂y2
+
∂τ1

33

∂y3
+
∂τ0

31

∂x̄1

)
dy =

∫ 1/2

0

2τ1
32(x̄1,+∞, y3)dy3 +

U0
,112

1 + ν

∫
Y

∂Wf

∂y3
dy,
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where have been used the boundary conditions for τ1
33 at y3 = 0 and y3 = 1/2, the boundary condition for τ1

32 at
y2 = 0, and the expression (50) for τ0

31. Then, since τ1
32 at y2 = +∞ is equal to σ1

32 at x̄2 = −¯̀/2, one gets the
desired condition ∫ 1/2

0

2σ1
32(x̄1,−¯̀/2, y3)dy3 +

U0
,112

1 + ν

(∫
Y

∂Wf

∂y3
dy

)
= 0.

Using (10), (20) and (53), this condition reads also as

T 0
2 −M0

21,1 = 0 at x̄2 = −¯̀/2,

which, expressed in terms of U0, becomes U0
,222 + (2− ν)U0

,112 = 0.
Now, multiplying the equilibrium equation by e1 ∧ y and integrating, at a given x̄1, with respect to y over

Yζ = (0, ζ)× (0, 1/2) (where ζ > 0 is destined to tend to infinity) leads to

0 =

∫
{x̄1}×Yζ

2divyτ
1 · (e1 ∧ y)dy +

U0
,112

1 + ν

∫
Yζ

(
y2
∂Wf

∂y3
− y3

∂Wf

∂y2
+ 2y2

3

)
dy,

where we have used the expression (50) for τ0. Integrating by parts the first integral, using the expression (20) of
M0

21 and the boundary conditions get

2

∫ 1/2

0

y3τ
1
22(x̄1, ζ, y3)dy3 = 2ζ

∫ 1/2

0

τ1
32(x̄1, ζ, y3)dy3 + ζM0

21,1 + 12M0
21,1

∫
Yζ

(
y2
∂Wf

∂y3
− y3

∂Wf

∂y2

)
dy. (55)

The matching condition (54) gives

lim
ζ→+∞

(∫ 1/2

0

2y3τ
1
22(x̄1, ζ, y3) dy3 + ζM0

22,2

)
= −M1

22, lim
ζ→+∞

∫ 1/2

0

2τ1
32(x̄1, ζ, y3)dy3 = T 0

2 .

whereas the equilibrium equation (11) at order 0 gives T 0
2 +M0

21,1+M0
22,2 = 0. Because convergence is exponential,

after inserting these relations into (55) one finally obtains

M1
22 = 6JfM0

21,1 at x̄2 = −¯̀/2 ,

where Jf is the coefficient defined by

Jf = 2

∫
Y

(
y3
∂Wf

∂y2
− y2

∂Wf

∂y3

)
dy.

Therefore, the normal bending moment does not satisfy in general the free boundary condition because of the
boundary layer associated with the shear stress σ12. The coefficient Jf is obtained by solving the twist boundary
layer problem (51). Since this problem is universal, so is the coefficient Jf . Let us prove that Jf reads also as
Jf = 2

∫
Y
∇Wf ·∇Wfdy and hence is positive. Indeed, from (51) one gets

0 = −
∫

Y

(Wf + y2y3)∆Wfdy =

∫
Y

(
∇Wf · ∇Wf + y2

∂Wf

∂y3
+ y3

∂Wf

∂y2

)
dy +

∫ 1/2

0

2y3W
f(0, y3)dy3,

and the result follows by

∫ 1/2

0

2y3W
f(0, y3)dy3 = −

∫
Y

2y3
∂Wf

∂y2
dy. Using the series (52), the computation of Jf

gives

Jf =
∑
n∈N

32

(2n+ 1)5π5
≈ 0.105041 . (56)

4.7 Determination of the out-of-plane part of v3 and τ1

In order to find the second boundary condition for U1, we shall solve the out-of-plane problem for v3 and τ1. It
reads

∂τ1
12

∂y2
+
∂τ1

13

∂y3
= y3U

0
,111,

2(1 + ν)τ1
12 =

∂v3
1

∂y2
+ νy2y3U

0
,111 − y3U

1
,12,

2(1 + ν)τ1
13 =

∂v3
1

∂y3
+
ν

2

(
y2
3 − y2

2

)
U0
,111 + y2U

1
,12 + U2

,1,

in I1 ×Y, with


τ1
12 = 0 at y2 = 0,

v3
1 = 0 at y3 = 0,

τ1
13 = 0 at y3 = 1/2,
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and matching conditions at infinity

lim
y2→+∞

(
τ1
12 −

νy2y3

1 + ν
U0
,111

)
= − y3

1 + ν
U1
,12, lim

y2→+∞
τ1
13 =

4y2
3 − 1

8(1 + ν)
U0
,111,

where the values of U0, U1, U2 and their derivatives are taken at (x̄1,−¯̀/2). By linearity this problem (whose
solution is unique) can be decomposed into three sub-problems: one associated with U2

,1, the second with U1
,12 and

the third with U0
,111. The first two have been solved in Subsection 4.5. It turns out that the third one can be solved

in closed form eventually obtaining

v3
1 = −y3U

2
,1 +

(
Wf(y)− y2y3

)
U1
,12 +

(
ν

2
y2
2y3 + (2− ν)

y3
3

6
− y3

4

)
U0
,111,

τ1
12 =

U1
,12

2(1 + ν)

(
∂Wf

∂y2
(y)− 2y3

)
+
νy2y3

1 + ν
U0
,111,

τ1
13 =

U1
,12

2(1 + ν)

∂Wf

∂y3
(y) +

4y2
3 − 1

8(1 + ν)
U0
,111.

(57)

4.8 Second boundary condition for U1

To find the second boundary condition that U1 must satisfy at x̄2 = −¯̀/2, one follows the same procedure as
that described in Section (4.6). Specifically, the problem for τ2 and v4 admits a solution only if the resultant of
the external forces in the direction e3 vanishes and if the resultant torque of the external forces in the direction
e1 vanishes. The former condition gives the second boundary condition for U1 whereas the latter gives the first
boundary condition for U2. We only consider here the former.

Starting from the equilibrium equation in the direction 3 and integrating over Yζ (at given x̄1) leads to

0 =

∫
Yζ

2
(
∂τ2

32

∂y2
+
∂τ2

33

∂y3
+
∂τ1

31

∂x̄1
+ f

)
dy,

where ζ > 0 is destined to go to infinity. Boundary conditions give τ2
32 = 0 at y2 = 0, τ2

33 = 0 at y3 = 0 and τ2
33 = F

at y3 = 1/2. Note that body forces appear here and we assume that one can define their limit at x̄2 = −¯̀/2.
Accordingly, in the relations above f and F stand for f(x̄1,−¯̀/2) and F (x̄1,−¯̀/2), respectively. With the help of
the expression (57) for τ1

13 one gets

0 = 2

∫ 1/2

0

τ2
32(ζ, y3)dy3 +

U1
,112

1 + ν

∫
Yζ

∂Wf

∂y3
(y)dy − ζD(1− ν)U0

,1111 + ζF0. (58)

Matching conditions for the stress at order 2 give

T 1
2 = lim

ζ→∞

(
2

∫ 1/2

0

τ2
32(ζ, y3)dy3 − ζT 0

2,2

)
.

But, by virtue of (21) and (49), one has D(1− ν)U0
,1111−F0 = T 0

2,2. Therefore, by passing to the limit when ζ goes
to infinity in (58) and using (53), one gets

T 1
2 −M1

21,1 = 0 at x̄2 = −¯̀/2 ,

which is the usual boundary condition at a free side. That means that there is no boundary layer effect for this
condition at this order.

At the opposite side x̄2 = +1/2, one can proceed in the same manner and the boundary conditions read as

M0
22 = T 0

2 −M0
21,1 = T 1

2 −M1
21,1 = 0, M1

22 = −6JfM0
21,1 at x̄1 = +1/2.

One can summarise the results obtained in the present section by the following proposition:

Proposition 2 On the free sides x̄2 = ±¯̀/2 the shear force vector T 0 and the bending moment tensorM0 must satisfy

the usual conditions

T 0
n −

∂M0
nt

∂t
= 0, M0

nn = 0,

where the indices n and t refer to the outer normal n = ±e2 and the tangent vector t = ±e1.
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The shear force vector T 1 and the bending moment tensor M1 must satisfy the following boundary conditions:

T 1
n −

∂M1
nt

∂t
= 0, M1

nn = −6Jf
∂M0

nt

∂t
,

which differ from the usual ones because of the presence of a boundary layer. The last one involves the universal positive

coefficient Jf given by (56) and coming from the twist boundary layer problem (51).

5 Analysis of boundary layers near a line of geometrical defects

The present section is devoted to the study of the boundary layers induced by a “line of defects” localised near the
plane x2 = 0 of the plate. Specifically, the goal is to deduce from an asymptotic analysis the effective transmission
conditions across the line x2 = 0 that the first two displacement fields U0 and U1 (or their derivatives) have to
satisfy.

5.1 The assumed type of defects and notations

The plate is “slightly” modified by geometrical defects in the neighbourhood of the plane x2 = 0, the size of which
is of the order of the thickness h. These defects can be cracks, voids, geometrical stiffeners, or weakeners which
are assumed to be symmetrically arranged with respect to the mid-plane x3 = 0 of the plate. To simplify the
presentation we will only consider here the case of geometrical stiffening or weakening like in Figure 4. Specifically,
the three-dimensional plate with the geometrical defect has for reference configuration

ΩdR = {x : (x1, x2) ∈ (−L/2,+L/2)× (−`/2, `/2), |x3| < H(x2)/2},

so that the defect is invariant in the direction x1 and its height H(x2) is equal to the constant h as soon as |x2| /h is
large enough. We assume that those defects can modify locally the distribution of the body forces and the surface
forces, but they do not change the properties of symmetry of the fields.

Fig. 4 Examples of defect near the plane x2 = 0 of the plate: (left) geometrical stiffening, (right) geometrical weakening.

Throughout this section y2 = x̄2/η and hence (y2, y3) represent the small scale coordinates in the neighbourhood
of the defect whereas x̄1 is the large scale coordinate. Specifically, the boundary layer problems will be posed on
an infinite strip Y of the (y2, y3) plane, see Figure 5, whereas x̄1 will only play the role of a parameter varying
in I1 = (−1/2, 1/2). Accordingly, we denote by y the pair (y2, y3) in Y. The upper side of the strip Y is denoted
∂+Y. Since we will have to compare the perturbed cell Y with the perfect one Y0 = R × (0, 1/2), we denote by
Y \Y0 the part of Y which is not in Y0, and by Y0 \Y the part of Y0 which is not in Y:

Y \Y0 = Y ∩ {y3 ≥ 1/2}, Y0 \Y = Y0 ∩Yc.

Moreover, we introduce the following integral for a function ϕ defined in Y ∪Y0:∫
Y−Y0

ϕ(y)dy =

∫
Y\Y0

ϕ(y)dy −
∫

Y0\Y
ϕ(y)dy. (59)

Fig. 5 The infinite strip Y with the defect which consists here both in a geometrical stiffening and a geometrical weakening.
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Otherwise, the notations are the same as those of Section 4. In particular Lemma 2 still holds.

5.2 Hypothesis on the form of expansions and matching conditions

The expansion (14) remains valid far enough from the plane x̄2 = 0 but must be changed in its neighbourhood.
Specifically, we suppose that, near the plane x̄2 = 0, the displacement uη admits the following asymptotic expansion
with respect to the small parameter η

uη(x̄, y3) = v0(x̄1,y) + ηv1(x̄1,y) + η2v2(x̄1,y) + η3v3(x̄1,y) + · · · , (60)

with x̄1 ∈ I1 and y = (x̄2/η, y3) ∈ Y. Consequently, strains and stresses admit the same type of asymptotic
expansion which a priori starts at order −2{

εη(x̄, y3) = η−2γ−2(x̄1,y) + η−1γ−1(x̄1,y) + γ0(x̄1,y) + ηγ1(x̄1,y) + η2γ2(x̄1,y) + · · · ,
ση(x̄, y3) = η−2τ−2(x̄1,y) + η−1τ−1(x̄1,y) + τ0(x̄1,y) + ητ1(x̄1,y) + η2τ2(x̄1,y) + · · · .

For displacements, matching conditions with the expansion (14) read as
u0(x̄1, 0±, y3) = limy2→±∞ v0(x̄1, y2, y3),

u1(x̄1, 0±, y3) = limy2→±∞
(
v1(x̄1, y2, y3)− y2u0

,2(x̄1, 0±, y3)
)
,

u2(x̄1, 0±, y3) = limy2→±∞
(
v2(x̄1, y2, y3)− y2u1

,2(x̄1, 0±, y3)− 1
2
y2
2u0

,22(x̄1, 0±, y3)
)
.

(61)

Let us note that matching conditions must be written on each side of the line of defect and one must assume a

priori that the outer expansions obtained in Subsection 2.3 can be discontinuous across x̄2 = 0. The same type of
matching conditions hold for stresses, except that they start at order −2 instead of 0 (and hence all the indices
must be shifted).

5.3 Determination of the first three kinematic transmission conditions

In this subsection we want to obtain the kinematic transmission conditions that U0, U1, U0
,2 and U1

,2 satisfy across
the line x̄2 = 0. Inserting the expansions (60) into (6)–(9) gives for the leading terms the following set of equations

divyτ
−2 = 0 in I1 ×Y,

γ−2 = εy(v0) = −ν Tr τ−2I + (1 + ν)τ−2 in I1 ×Y,

v0
1 = v0

2 = τ−2
33 = 0 at y3 = 0, τ−2n = 0 on I1 × ∂+Y.

Moreover, since σ−2 = 0, the first matching condition for stresses gives τ−2(x̄1,±∞, y3) = 0. Multiplying the
equilibrium equation by v0 and integrating over I1×Y leads to

∫
I1×Y

divyτ
−2 ·v0dx̄1 dy = 0. Integrating by parts

the integral, using boundary conditions, and matching conditions gives
∫
I1×Y

τ−2 ·εy(v0)dx̄1 dy = 0. Then, by the

constitutive relation between τ−2 and εy(v0), we conclude that εy(v0) = 0. Finally, Lemma 2 gives

v0(x̄1,y) = V 0(x̄1)e3 + ω0(x̄1)e1 ∧ y, τ−2 = 0, γ−2 = 0 in I1 ×Y.

Moreover, the first of matching conditions (61) combined with (15) gives ω0 = 0 and U0(x̄1, 0±) = V 0(x̄1), the
continuity of U0 at x̄2 = 0 follows which constitutes the first transmission condition

[[U0]] = 0 at x̄2 = 0 ,

where the double brackets denote the jump, [[ϕ]](x̄1) = ϕ(x̄1, 0+)−ϕ(x̄1, 0−). Let us set v∗(x̄1,y) = y3U
0
,1(x̄1, 0)e1

and remark that εx̄(v0) = εy(v∗). Considering now the next terms of the expansion, one deduces from (6)–(9)
that τ−1 and v1 must satisfy

divyτ
−1 = 0 in I1 ×Y,

εy(v1 + v∗) = −ν Tr τ−1I + (1 + ν)τ−1 in I1 ×Y,

v1
1 = v1

2 = τ−1
33 = 0 at y3 = 0, τ−1n = 0 on I1 × ∂+Y.

Since σ−1 = 0 and since v∗ satisfies the boundary condition at y3 = 0, one can follow the same procedure as
for v0 and τ−2 to obtain

∫
I1×Y

τ−1 · εy(v1 + v∗)dx̄1 dy = 0 and hence εy(v1 + v∗) = 0 and τ−1 = 0 in I1 × Y.
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Therefore, by Lemma 2, v1 +v∗ = V 1(x̄1)e3 +ω1(x̄1)e1∧y. Then, using (15)-(16), the second matching conditions
(61) give

−y3U
0
,2(x̄1, 0±)e2 + U1(x̄1, 0±)e3 = −y3ω

1(x̄1)e2 + V 1(x̄1)e3 + lim
y2→±∞

y2

(
ω1(x̄1)− U0

,2(x̄1, 0±)
)
e3

and hence are satisfied if and only if V 1(x̄1) = U1(x̄1, 0±) and ω1(x̄1) = U0
,2(x̄1, 0±). One deduces the continuity

of U1 and U0
,2 at x̄2 = 0, that constitute two other transmission conditions

[[U0
,2]] = 0 and [[U1]] = 0 at x̄2 = 0 .

Furthermore, v1 reads

v1(x̄1,y) = −y3U
0
,α(x̄1, 0)eα +

(
U1(x̄1, 0) + y2U

0
,2(x̄1, 0)

)
e3.

It remains to find the transmission condition for U1
,2. It will be given by the inner problem at next order which

gives also the first static transmission condition.

5.4 Determination of the last kinematic and the first static transmission conditions

Using the previous results, one deduces from (6)–(9) that τ0 and v2 must satisfy
divyτ

0 = 0 in I1 ×Y,

εy(v2) + εx̄(v1) = −ν Tr τ0I + (1 + ν)τ0 in I1 ×Y,

v2
1 = v2

2 = τ0
33 = 0 at y3 = 0, τ0n = 0 on I1 × ∂+Y,

(62)

and the condition at infinity for τ0 which is given by the matching condition between σ0 and τ0, i.e. ,

lim
y2→±∞

τ0(x̄1, y2, y3) = σ0(x̄1, 0±, y3). (63)

Since rigid motions of the form v(x̄1,y) = V (x̄1)e3 + ω(x̄1)e1 ∧ y are still allowed by virtue of Lemma 2, the
loading at infinity given by σ0 must satisfy conditions in order that this problem for v2 and τ0 admits at least
one solution. Specifically, the e3 component of the resultant force and the e1 component of the resultant moment
of the external forces must vanish. That leads to the following two conditions:∫

∂Y

τ0n · e3 ds = 0,

∫
∂Y

(y ∧ τ0n) · e1 ds = 0

where ∂Y denotes the boundary of Y including the sections at infinity {±∞}× (0, 1/2). By virtue of the boundary
conditions satisfied by τ0 and the fact that σ0

α3 = 0, the first equality is automatically satisfied whereas the second
is reduced to ∫ 1/2

0

y3σ
0
22(x̄1, 0+, y3) dy3 =

∫ 1/2

0

y3σ
0
22(x̄1, 0−, y3) dy3.

Comparing with (10), this condition requires that the normal bending moment M0
22 be continuous, namely, the

first static transmission condition

[[M0
22]] = 0 at x̄2 = 0 . (64)

In terms of the derivatives of U0, using (20), (64) implies that U0
,22 is continuous at x̄2 = 0 and hence U0 and all

its derivatives up to the second order are continuous. Consequently, all the components of the stress tensor σ0 and
the moment tensorM0 are continuous. For the shear force T 0, its tangential component T 0

1 is continuous but the
jump condition for its normal component T 0

2 remains to be determined.
Assuming that the condition (64) is satisfied, the problem (62)-(63) admits a solution which is defined up to

an admissible rigid motion. Using the linearity and after tedious calculations which are not reproduced here, the
solution eventually reads as follows

v2
1 = −U0

,12y2y3 − U1
,1y3 + U0

,12W
d(y),

v2
2 = −U0

,22y2y3 +
(
U0
,22 + νU0

,11

)
V d2 (y)− ω2(x̄1)y3,

v2
3 = U0

,22
y2
2

2
+
(
U0
,11 + U0

,22

)
νy2

3

2(1− ν)
+
(
U0
,22 + νU0

,11

)
V d3 (y) + V 2(x̄1) + ω2(x̄1)y2,

(65)
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

τ0
22 =

(
U0
,22 + νU0

,11

)
Σd22(y) + σ0

22,

τ0
23 =

(
U0
,22 + νU0

,11

)
Σd23(y),

τ0
33 =

(
U0
,22 + νU0

,11

)
Σd33(y),

τ0
11 =

(
U0
,22 + νU0

,11

)
Σd11(y) + σ0

11,

,


τ0
21 =

U0
,12

2(1 + ν)

(
∂Wd

∂y2
(y)− 2y3

)
,

τ0
31 =

U0
,12

2(1 + ν)

∂Wd

∂y3
(y),

(66)

where second derivatives of U0, U1
,2 and σ0 are evaluated at x̄2 = 0. All these quantities are well defined by

virtue of the already obtained continuity properties. In (65), V 2 and ω2 denote a translation and a rotation, left
arbitrary. In (65) and (66), the pair of displacement and stress fields (Vd,Σd) is solution of the following plane
strain problem posed in the strip Y, called the bending boundary layer problem near the defect:



divyΣd = 0 in Y,

εy(Vd) = −ν Tr ΣdI + (1 + ν)Σd in Y,

V d2 = Σd33 = 0 at y3 = 0,

Σdn =
y3n2

1− ν2
e2 on ∂+Y,

lim
y2→±∞

Σd(y) = 0,

(67)

whereas the displacement field Wd is the unique solution of the following out-of-plane problem posed in Y,
called the twist boundary layer problem near the defect:

∂2Wd

∂y2
2

+
∂2Wd

∂y3
2

= 0 in Y in Y,

Wd = 0 at y3 = 0,

∂Wd

∂n
= 2y3n2 on ∂+Y,

lim
y2→±∞

Wd(y) = 0.

(68)

These two boundary layer problems will be studied in details in the next subsections. However, the determination
of the last kinematic transmission condition requires some preliminary results concerning the bending boundary
layer problem near the defect.

Because Σd tends to 0 when |y2| tends to infinity, so does εy(Vd). Consequently, since V d2 = 0 on y3 = 0, by
virtue of Lemma 2, there exists four constants K+

d , K−d , C+
d and C−d (depending only on the geometry of the defect

and on the Poisson ratio) such that

lim
y2→+∞

(
Vd(y)− C+

d e1 ∧ y
)

= K+
d e3, lim

y2→−∞

(
Vd(y)− C−d e1 ∧ y

)
= K−d e3. (69)

Since Vd is defined up to an admissible rigid displacement, only the difference between the limits at infinity are
fixed. Accordingly, we set

Cd = C−d − C+
d , Kd = K+

d − K−d , (70)

where the definition of Cd is chosen so that Cd be positive in the case of a reinforcement (see Section 5.7). Using
(16), (18), (65) and (69), the third matching condition (61) for v2

2 gives

U1
,2(x̄1, 0±) = C±d

(
U0
,22(x̄1, 0) + νU0

,11(x̄1, 0)
)

+ ω2(x̄1),

and hence the last kinematic transmission condition

[[U1
,2]] = −Cd(U0

,22 + νU0
,11) at x̄2 = 0.

The above jump condition can be also read in term of the bending moment M0
22: D [[U1

,2]] = −CdM0
22. The third

matching condition (61) for v2
1 is automatically satisfied, essentially because limy2→±∞Wd(y) = 0. Furthermore

the third matching condition (61) for v2
3 gives a first transmission condition for U2, [[U2]] = Kd(U0

,22 + νU0
,11), that

will be not used in the sequel.
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5.5 Determination of two other static transmission conditions

Let us consider the next inner problem for τ1 and v3. The stress field τ1 must satisfy
divyτ

1 + divx̄τ
0 = 0 in I1 ×Y,

τ1
33 = 0 at y3 = 0, τ1n = 0 on I1 × ∂+Y,

lim
y2→±∞

(
τ1(x̄1, y2, y3)− y2σ

0
,2(x̄1, 0±, y3)

)
= σ1(x̄1, 0±, y3).

(71)

In order that a solution exists, the e3 component of the resultant force and the e1 component of the resultant
moment of the external forces must vanish. These equilibrium conditions will give us two static transmission
conditions.

The former condition is obtained by integrating the third component of the equilibrium equation over Y.
Specifically, that leads to

0 =

∫
Y

2(divyτ
1 + divx̄τ

0) · e3dy =

∫ 1/2

0

2
(
τ1
32(x̄1,+∞, y3)− τ1

32(x̄1,−∞, y3)
)
dy3 +

∫
Y

2
∂τ0

31

∂x̄1
(x̄1,y)dy.

Using the condition at infinity with σ0
32 = 0 and (66), one gets

0 =

∫ 1/2

0

2
(
σ1

32(x̄1, 0+, y3)− σ1
32(x̄1, 0−, y3)

)
dy3 +

U0
,211(x̄1, 0)

1 + ν

∫
Y

∂Wd

∂y3
(y)dy. (72)

The first integral in (72) is the jump of the shear force T 0
2 . Let us show that it vanishes because

∫
Y

∂Wd

∂y3
dy = 0.

Indeed, by virtue of (68), one has

0 =

∫
Y

y3∆Wddy = −
∫

Y

∂Wd

∂y3
dy +

∫
∂Y

y3
∂Wd

∂n
ds = −

∫
Y

∂Wd

∂y3
dy +

∫
∂+Y

2y2
3n2ds.

But since

0 =

∫
Y

∂
(
y2
3

)
∂y2

dy =

∫
∂+Y

y2
3n2ds,

the result follows. Hence we have obtained the second static transmission condition

[[T 0
2 ]] = 0 at x̄2 = 0, (73)

which can be also read as [[T 0
2 −M0

21,1]] = 0 owing to the continuity of U0 and U0
,2. Moreover (73) implies that

U0
,222 and hence all the third derivatives of U0 are continuous at x̄2 = 0.

Let us consider now the condition of vanishing of the e1 component of the resultant moment of the external
forces. Multiplying the equilibrium equation in (71) by 2e1 ∧ y and integrating, at a given x̄1, with respect to y

over Yζ = Y ∩ {|y2| < ζ} leads to

0 =

∫
{x̄1}×Yζ

2divyτ
1 · (e1 ∧ y)dy +

U0
,211

1 + ν

∫
Yζ

(
y2
∂Wd

∂y3
− y3

∂Wd

∂y2
+ 2y2

3

)
dy,

where we have used the expression (66) for τ0. Since ζ is destined to tend to infinity, we assume from now that ζ
is sufficiently large so that the geometric defect is entirely included in Yζ . Integrating by parts the first integral,
using the expression (20) of M0

21 and the boundary conditions give∫ 1/2

0

2y3

(
τ1
22(x̄1, ζ, y3)− τ1

22(x̄1,−ζ, y3)
)
dy3 = 2ζ

∫ 1/2

0

(
τ1
32(x̄1, ζ, y3) + τ1

32(x̄1,−ζ, y3)
)
dy3

+ 12M0
21,1(x̄1, 0)

∫
Yζ

(
y2
∂Wd

∂y3
− y3

∂Wd

∂y2
+ 2y2

3

)
dy.

After multiplying by 2y3 and integrating with respect to y3 the condition at infinity in (71), one gets for the 22
and 32 components

lim
ζ→±∞

(∫ 1/2

0

2y3τ
1
22(x̄1,±ζ, y3) dy3 ± ζM0

22,2(x̄1, 0)

)
= −M1

22(x̄1, 0±),
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and

lim
ζ→±∞

∫ 1/2

0

2τ1
32(x̄1,±ζ, y3)dy3 = T 0

2 (x̄1, 0).

The equilibrium equation (11) at order 0 gives T 0
2 +M0

21,1 +M0
22,2 = 0 which can be used at x̄2 = 0 because all

quantities are continuous. Since all the convergences above are exponential with respect to ζ, after passing to the
limit into (74) when ζ goes to infinity, one finally obtains the third static transmission condition

[[M1
22]] = −6JdM0

21,1 at x̄2 = 0 ,

where Jd is the coefficient defined by

Jd = 4

∫
Y−Y0

y2
3dy + 2

∫
Y

(
y2
∂Wd

∂y3
− y3

∂Wd

∂y2

)
dy, (75)

the factor 6 being introduced so that Jd has a physical interpretation. To obtain (75) we used also the relationship
24
∫
Yζ

y2
3dy = 2ζ + 24

∫
Y−Y0

y2
3dy for ζ large enough.

5.6 Determination of the last static transmission condition

The last static transmission condition is obtained from the equilibrium equation at order 0. Since the given
body forces and surface forces appear at this order, one must make an assumption on their regularity in the
neighbourhood of x̄2 = 0 and on how they are modified by the defect. Accordingly, we assume that body forces
depend smoothly on x̄2 and hence that, for (x̄1, y) ∈ I1 ×Y,

f(x̄1, ηy2, y3) = f0(x̄1, y3) + higher order terms.

As far as surface forces are concerned, to simplify the presentation, we assume that they vanish in the neigh-
bourhood of x̄2 = 0. Accordingly, the equilibrium equation at order 0 and the associated boundary or matching
conditions for stresses read as


divyτ

2 + divx̄τ
1 + f0e3 = 0 in I1 ×Y

τ2
33 = 0 at y3 = 0, τ2n = 0 on I1 × ∂+Y

lim
y2→±∞

(
τ2(x̄1, y2, y3)− y2σ

1
,2(x̄1, 0±, y3)− 1

2
y2
2σ

0
,22(x̄1, 0±, y3)

)
= σ2(x̄1, 0±, y3)

Integrating the third component of the equilibrium equation over Yζ and using boundary conditions leads to

0 =

∫
Yζ

2(divyτ
2 + divx̄τ

1 + f0e3) · e3dy

=

∫ 1/2

0

2
(
τ2
32(x̄1,+ζ, y3)− τ2

32(x̄1,−ζ, y3)
)
dy3 +

∫
Yζ

2

(
∂τ1

31

∂x̄1
(x̄1,y) + f0(y3)

)
dy.

The matching condition with (10), (17) and (19) give

lim
ζ→±∞

(
2

∫ 1/2

0

τ2
32(x̄1,±ζ, y3)dy3 ∓ ζT 0

2,2(x̄1, 0)
)

= T 1
2 (x̄1, 0±),

where we used also the continuity of T 0
2,2 at x̄2 = 0 by virtue of the equilibrium equation

T 0
2,2 −M0

12,12 −M0
11,11 +

∫ 1/2

0

2f0(x̄1, y3)dy3 = 0,

and the assumption on the external forces on the neighbourhood of x̄2 = 0. Therefore (76) becomes

0 = [[T 1
2 ]] + 2 lim

ζ→∞

(
ζ
(
M0

12,12 +M0
11,11

)
+

∫
Yζ

∂τ1
31

∂x̄1
dy

)
+ 2

∫
Y−Y0

f0dy, (77)
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where we used (59) to decompose
∫
Yζ

f0dy. It remains to evaluate

∫
Yζ

∂τ1
31

∂x̄1
dy. Starting from the e1-component

of the equilibrium equation (71), once it is multiplied by 2y3 and integrated over Yζ one gets

0 =

∫
Yζ

(
2y3

∂τ1
13

∂y3
+ 2y3

∂τ1
12

∂y2

)
dy +

∫
Yζ

2y3
∂τ0

11

∂x̄1
dy.

Integrating by parts the first term, using the boundary conditions τ1
1ini = 0 on ∂+Y to simplify the first two terms

and using (17) and (66) for the third term leads to

∫
Yζ

2τ1
13(x̄1,y)dy =

∫ 1/2

0

2y3

(
τ1
12(x̄1, ζ, y3)− τ1

12(x̄1,−ζ, y3)
)
dy3 +

∫
Yζ

2y3
∂τ0

11

∂x̄1
dy.

From the matching condition limy2→±∞
(
τ1
12(x̄1,y)− y2σ

0
12,2(0, x̄1, y3)

)
= σ1

12(x̄1, 0±, y3), one gets

lim
ζ→∞

∫ 1/2

0

2y3

(
τ1
12(x̄1, ζ, y3)− τ1

12(x̄1,−ζ, y3)
)
dy3 + 2ζM0

12,2(x̄1, 0)
)

= −[[M1
12]](x̄1, 0).

The expression (66) for τ0
11 with σ0

11 = −12y3M0
11 and M0

22 = D(U0
,22 + νU0

,11) give

∫
Yζ

2y3
∂τ0

11

∂x̄1
dy = −2ζM0

11,1 − 24M0
11,1

∫
Y−Y0

y2
3dy +

1

D
M0

22,1

∫
Yζ

2y3Σ
d
11(y)dy,

where we used (59) to decompose
∫
Yζ

y2
3dy. Inserting the three previous relations into (77) gives the last static

transmission condition

[[T 1
2 −M1

21,1]] = 24M0
11,11

∫
Y−Y0

y2
3dy −

2

D
M0

22,11

∫
Y

y3Σ
d
11(y)dy − 2

∫
Y−Y0

f0dy. (78)

The right hand side above can be simplified by virtue of the following equality∫
Y

y3

(
Σd22(y) +Σd33(y)

)
dy =

∫
Y−Y0

y2
3

1− ν2
dy. (79)

To prove (79) one uses the plane strain problem (67). Specifically, one gets for ζ large enough

0 =

∫
Yζ

divyΣd ·
(
y2y3e2 +

1

2

(
y2
3 − y2

2

)
e3

)
dy = −

∫
Yζ

y3

(
Σd22 +Σd33

)
dy +

∫
∂+Yζ

y2
3

1− ν2
y2n1ds+ Cζ ,

where limζ→∞ Cζ = 0 and ∂+Yζ = ∂+Y ∩ {|y2| < ζ}. Hence

∫
Y

y3

(
Σd22 +Σd33

)
dy = lim

ζ→+∞

(∫
∂+Yζ

y2
3y2n1

1− ν2
ds

)
=

1

1− ν2
lim

ζ→+∞

(∫
Yζ

y2
3dy −

ζ

12

)
=

∫
Y−Y0

y2
3

1− ν2
dy.

Inserting (79) with Σd11 = ν(Σd22 +Σd33) into (78) gives the final form of the last static transmission condition

[[T 1
2 −M1

21,1]] = IdU
0
,1111 −F0

0 at x̄2 = 0,

where Id is the coefficient and F0
0 (x̄1) the density of line forces given by

Id = 2

∫
Y−Y0

y2
3dy, F0

0 (x̄1) = 2

∫
Y−Y0

f0(x̄1, y3)dy. (80)

One can summarise the results obtained in the present section by the following proposition:
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Proposition 3 Across the line x̄2 = 0 where the defect is located, the displacement U0, the shear force vector T 0 and

the bending moment tensor M0 must satisfy the usual continuity conditions

[[U0]] = 0,

[[
∂U0

∂x̄2

]]
= 0,

[[
T 0

2 −
∂M0

21

∂x̄1

]]
= 0, [[M0

22]] = 0.

The displacement U1, the shear force vector T 1 and the bending moment tensor M1 must satisfy the following trans-

mission conditions: 
[[U1]] = 0,

[[
T 1

2 −
∂M1

21

∂x̄1

]]
= Id

∂4U0

∂x̄4
1

−F0
0 ,

D

[[
∂U1

∂x̄2

]]
= −CdM0

22, [[M1
22]] = −6Jd

∂M0
21

∂x̄1
,

which differ from the usual ones because of the presence of a boundary layer. That requires to solve the bending boundary

layer problem (67) and the twist boundary layer problem (68) to obtain the coefficients Cd and Jd whereas the coefficient

Id is given by (80).

Let us note that the sign of the coefficients Cd, Jd and Id will depend on the type of defects considered as we will
see in the next subsection.

5.7 Study of the boundary layer coefficients Cd, Jd and Id

One first considers the twist boundary layer problem (68) which gives Jd. Let us show that Jd can also read as

Jd = 8

∫
Y−Y0

y2
3dy − 2

∫
Y

∇Wd(y) · ∇Wd(y)dy. (81)

Using (68), one successively gets the following relations:

0 = −
∫

Y

∆Wd(Wd + y2y3

)
dy =

∫
Y

∇Wd ·
(
∇Wd +∇(y2y3)

)
dy −

∫
∂+Y

2y3n2

(
Wd + y2y3

)
ds

=

∫
Y

(
∇Wd · ∇Wd + y2

∂Wd

∂y3
+ y3

∂Wd

∂y2

)
dy −

∫
Y

2y3
∂Wd

∂y2
dy −

∫
Y−Y0

2y2
3dy

=

∫
Y

(
∇Wd · ∇Wd + y2

∂Wd

∂y3
− y3

∂Wd

∂y2

)
dy −

∫
Y−Y0

2y2
3dy.

Inserting this last equality into (75) leads to (81). One immediately deduces from (81) that Jd is negative when
the defect is a geometrical weakening because in that case

∫
Y−Y0

y2
3dy = −

∫
Y0\Y y2

3dy < 0. Let us prove on the

other hand that Jd is positive when the defect is a geometrical stiffening. For that one uses the theorem of the
complementary energy. Specifically, let S be the set of statically admissible vector fields for the twist boundary
layer problem, i.e. ,

S = {T = (T2, T3) ∈ L2(Y)2 : divyT = 0 in Y,T · n = 2y3n2 on ∂+Y},

and let P∗(T) = 1
2

∫
Y

T ·T dy be the complementary energy associated with T ∈ S. The theorem of the comple-

mentary energy says that ∇Wd (which belongs to S) is the (unique) minimiser of P∗ over S. Accordingly, one
gets ∫

Y

∇Wd · ∇Wddy ≤
∫

Y

T ·T dy, ∀T ∈ S.

Assuming that the defect is a geometrical stiffening and hence that Y0 ⊂ Y, let us set

T =

{
0 in Y0,

2y3e2 in Y \Y0.

One easily checks that T ∈ S (only T3 has to be continuous at y3 = 1/2) and since
∫
Y

T ·T dy =
∫
Y\Y0

4y2
3dy one

obtains the inequality Jd ≥ 0. The equality can hold only when T = ∇Wd.
One now considers the bending boundary layer problem (67) which gives Cd. Let us show that Cd can read as

Cd = 24

∫
Y−Y0

y2
3dy − 24(1− ν2)

∫
Y

Σd · εy(Vd)dy. (82)
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Introducing the fields V∗(y) = y2y3e2 −
(
y2
2
2 +

νy2
3

2(1−ν)

)
e3 and Σ∗(y) = y3

1−ν2

(
νe1 ⊗ e1 + e2 ⊗ e2

)
which are related

by εy(V∗) = (1 + ν)Σ∗− ν Tr Σ∗I, using (67), the behavior at infinity of Vd and the definition (70) of Cd one gets

0 = −
∫

Y

divyΣd ·
(
Vd + V∗

)
dy =

∫
Y

(
Σd · εy(Vd) + Σ∗ · εy(Vd)

)
dy −

∫
∂+Y

y3n2

1− ν2

(
V d2 + y2y3

)
ds

=

∫
Y

Σd · εy(Vd) dy +

∫
Y

y3

1− ν2

∂V d2
∂y2

dy −
∫
∂+Y

y3

1− ν2
V d2 n2ds−

∫
Y−Y0

y2
3

1− ν2
dy

=

∫
Y

Σd · εy(Vd) dy + Cd

∫ 1/2

0

y2
3

1− ν2
dy3 −

∫
Y−Y0

y2
3

1− ν2
dy

and this latter equality gives (82). One immediately deduces from (82) that Cd is negative when the defect is a
geometrical weakening. Let us prove on the other hand that Cd is positive when the defect is a geometrical stiffening
by using the theorem of the complementary energy again. The set of statically admissible (in-plane) stress fields
for the bending boundary layer problem is defined by

S =

Σ =

Σ11 0 0
0 Σ22 Σ23

0 Σ23 Σ33

 : Σij ∈ L2(Y), divyΣ = 0 in Y, Σ33 = 0 at y3 = 0,Σn =
y3n2

1− ν2
on ∂+Y

 ,

and the complementary energy associated with Σ ∈ S is given by

P∗(Σ) =
1

2

∫
Y

(
(1 + ν)Σ ·Σ− ν(Tr Σ)2

)
dy.

The theorem of the complementary energy says that Σd is the (unique) minimiser of P∗ over S. Accordingly, one
gets

∫
Y

Σd · εy(Vd)dy = 2P∗(Σd) ≤ 2P∗(Σ) for every Σ ∈ S. Assuming that the defect is a geometrical stiffening,
let us consider the following statically admissible stress field Σ:

Σ =

{
0 in Y0,
y3

1− ν2
(νe1 ⊗ e1 + e2 ⊗ e2) in Y \Y0.

Since 2P∗(Σ) =

∫
Y\Y0

y2
3

1− ν2
dy one obtains the inequality Cd ≥ 0 and the equality can hold only when Σd = Σ.

By (80) the sign of Id is obvious: Id is positive in the case of a geometrical stiffening, and negative in the case
of a weakening. Therefore, one can summarise that study of the coefficients by the following proposition.

Proposition 4 The three coefficients Cd, Jd and Id involved in the transmission conditions are positive when the defect

is a geometrical stiffening whereas they are negative in the case of a geometrical weakening.

To illustrate the dependence of the geometry of the defect on the three coefficients, we consider a defect whose
width is equal to the thickness of the plate and whose height is left as a parameter. Specifically, the defect is the
rectangle (−1/2, 1/2)×(1/2, 1/2+ā) with ā > 0 in the case of a stiffening, or the rectangle (−1/2, 1/2)×(1/2+ā, 1/2)
with −1/2 < ā < 0 in the case of a weakening. The three coefficients are computed numerically (by a finite element
code for Cd and Jd) as a function of ā, the Poisson ratio being equal to 0.25 (Cd and Id depend on ν but not Jd).
Their graph is plotted on Figure 6. Their sign is conform to Proposition 4. When the height ā of the stiffener
grows, Cd tends to a limit whereas the growth of Jd and Id are respectively linear and quadratic. On the other
hand, in the case of a weakening, when the height of the defect tends to the thickness of the plate, then Cd tends
to −∞ whereas Id and Jd tend to a finite limit.
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Fig. 6 Graphs of the coefficients Cd, Id and Jd as a function of the height ā of the defect when ν = 0.25, ā > 0 corresponds to a
stiffening, ā < 0 to a weakening. While Id is a geometric moment, the coefficients Cd and Jd can be interpreted as effective rotational
and torsional stiffnesses, respectively.

6 The model of a bent elastic plate including boundary layer effects

Throughout this section, the double brackets denote the jump whereas the angles denote the mean value for
discontinuous quantities across the line of defect, i.e. ,

[[ϕ]] = ϕ+ − ϕ−, 〈ϕ〉 =
1

2

(
ϕ+ + ϕ−

)
. (83)

6.1 The first boundary value problem

We have shown that the leading terms of the expansion, i.e. , U0 for the displacements, T 0 andM0 for the shear
forces and the bending moments are solutions of the following boundary problem:

in Ω0 \ I on ∂cΩ0 on ∂fΩ0 on I
divT 0 + F0 = 0,

divM0 + T 0 = 0,

M0
αβ = D

(
ν∆U0δαβ + (1− ν)U0

,αβ

)
,

{
U0 = 0,

U0
,1 = 0,

{
T 0

2 −M0
21,1 = 0,

M0
22 = 0,

{
[[U0]] = [[T 0

2 −M0
21,1]] = 0,

[[U0
,2]] = [[M0

22]] = 0,

where I = (−1/2,+1/2) × {0} denotes the line of defect, ∂cΩ0 = {±1/2} × (−¯̀/2,+¯̀/2) the clamped part of the
boundary and ∂fΩ0 = (−1/2,+1/2)×{±¯̀/2} the free part of the boundary. Therefore, at first order, one recovers
the usual model of Love-Kirchhoff which does not account for the presence of the defect nor the boundary layer
effects at the boundary. By standard arguments [10], one can show that the displacement field U0 is the minimizer
of the potential energy P0 over the set V0 of kinematically displacement fields with P0 and V0 defined by

P0(V ) =

∫
Ω0

D

2

(
ν(∆V )2 + (1− ν)∇2V · ∇2V

)
dx̄−

∫
Ω0

F0 V dx̄,

V0 =
{
V ∈ H2(Ω0), V = ∂V/∂n = 0 on ∂cΩ0

}
.

The Sobolev space H2(Ω0) is the natural space of functions of finite energy where the solution has to be
searched [10]. The existence and the uniqueness of U0 is guaranteed as soon as the loading F0 is smooth enough,
for instance F0 in L2(Ω0) is sufficient. The functions of H2(Ω0) have a trace on the boundary which belongs (at
least) to H3/2(∂Ω0) and their normal derivative ∂V/∂n belongs (at least) to H1/2(∂Ω0). Accordingly, the clamped
conditions on the sides x̄1 = ±1/2 must be understood in that sense of traces. The components of the bending
moment tensor fieldM0 are (at least) in L2(Ω0). When F0 is a smooth (infinitely differentiable) function of x̄, so
is U0 and hence all the mechanical fields are infinitely differentiable in the open set Ω0. That regularity remains
true on the boundary except at the four corners (±1/2,±¯̀/2) where weak singularities can occur because of the
change of the type of boundary conditions. Specifically, the bending moments and the shear forces could tend to
infinity when x̄ tends to one corner. As we will see in the next subsection, the discussion to know whether such a
weak singularity exists is important when one considers the problem for U1.
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6.2 The second boundary value problem

We assume from now that the loading F0 is a smooth function of x̄ and hence that the first boundary value
problem admits a smooth solution in the closure of Ω0 except maybe at the four corners. Therefore, assuming that
U0, T 0 andM0 are known (both inside the domain Ω0 and on its boundary), the fields U1, T 1 andM1 have to
satisfy the following boundary value problem:

in Ω0 \ I :

{
divT 1 = 0, divM1 + T 1 = 0,

M1
αβ = D

(
ν∆U1δαβ + (1− ν)U1

,αβ

)
,

on ∂cΩ0 on ∂fΩ0 on I{
U1 = 0

DU1
,n = CcM0

nn

{
T 1
n −M1

nt,t = 0

M1
nn = −6JfM0

nt,t


[[U1]] = 0

[[T 1
2 −M1

21,1]] = IdU
0
,1111 −F0

0

D [[U1
,2]] = −CdM0

22

[[M1
22]] = −6JdM0

21,1

where the indices n and t refer to the outer normal and tangent vectors at the considered boundary. Let us discuss
the existence of a solution for U1 in the natural space H2(Ω0\I). (Since the normal derivative of U1 is discontinuous
on I, U1 cannot belong to H2(Ω0).) The kinematic data and the loading of the plate are smooth on each side of
the plate and on the defect line by virtue of the assumption on F0. But it remains to check whether U0 has a weak
singularity at the four corners of the plate and whether a misfit between the data occurs at the two end points
D± = (±1/2, 0) of the line of defect.

Let us first study the question of the singularity of U0 at a corner. Specifically, we consider the corner
(−1/2,−¯̀/2) and introduce the polar coordinates (r, θ) defined by

x̄1 + 1/2 = r sin θ, x̄2 + ¯̀/2 = r cos θ, r > 0, θ ∈ [0, π/2],

so that θ = 0 corresponds to the clamped side and θ = π/2 to the free side. The singular part of U0, denoted U0
S , is

searched of the form U0
S(x̄) = rpu(θ) with 1 < p < 2 (the complete analysis of the singularities is outside the scope

of this paper and we suppose that the singularities have necessarily that form, see [13,22] for a more comprehensive
analysis) so that U0

S is in H2(Ω0) but not in H3(Ω0). When such a singularity exists, bending moments associated
with the singular part are of the form rp−2mαβ(θ) and hence are infinite at the corner. Consequently, the boundary
conditions for U1 on the clamped side will read

U1(r, 0) = 0,
∂U1

∂θ
(r, 0) =

Cc

D
mθθ(0)rp−1 + · · · ,

and cannot be satisfied by a function of H2(Ω0 \ I) when p < 2 and Ccmθθ(0) 6= 0. In the same manner, the
boundary conditions forM1 and T 1 on the free side read

T 1
θ (r, π/2)− ∂M1

θr

∂r
(r, π/2) = 0, M1

θθ(r, π/2) = 6(2− p)Jfmθr(π/2)rp−3 + · · · ,

and cannot be satisfied by a function U1 in H2(Ω0 \ I) when p < 2 and mθr(π/2) 6= 0. On the other hand, those
boundary conditions are compatible with U1 in H2(Ω0 \ I) when p > 2 whereas the case p = 2 is a particular
case that one must study separately. So let us search in what condition a singularity exists with p < 2. From the
equilibrium condition ∆2U0

S = 0 and the kinematic conditions u(0) = u′(0) = 0 one gets that the angular function
must read

u(θ) = a
(

cos(p− 2)θ − cos pθ
)

+ b
(
p sin(p− 2)θ − (p− 2) sin pθ

)
,

where a and b are two arbitrary constants. The static conditions at θ = π/2 give the equation for p and a relation
between a and b: {

2(1− ν)2p(2− p) + 3 + 6ν − ν2 = (1− ν)(3 + ν) cos pπ,

(2− (p− 1)ν) a + (3− ν − p(1− ν)) tan(pπ/2) b = 0.

The solution for the exponent p is plotted in Figure 7 as function of ν. One sees that p < 2 only for negative Poisson’s
ratios. When ν = 0 one directly shows that p = 2 is solution but the associated field reads U0

s (x̄) = a(x̄1 + 1/2)2

and hence is not singular. So one can conclude that if the Poisson ratio is non negative, then boundary conditions
at the four corners can be satisfied by a function U1 in H2(Ω0 \ I).
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Fig. 7 Left:Value of the exponent p of a singularity of the type rpu(θ) for U0 at a corner of the plate in function of the Poisson
ratio ν. When p < 2, then U0 is not regular enough in order that U1 be in H2(Ω0). It is the case when −1 < ν < 0.
Right: angular function u (red) and its derivative u′ (blue) entering in the singular part of U1 at the end points D± of the line of
defect.

Let us now study the question of the boundary conditions near the end points D±. The fixation condition on
the clamped side gives U1 = 0 and hence U1

,2 = 0 on x̄1 = ±1/2. On the other hand the jump condition for the
rotation gives D[[U1

,2]] = −CdM0
22 on x̄2 = 0. Therefore ifM0

22(D±) 6= 0, there exists a misfit of the data at D± and
[[U1
,2]] is not defined there. Such boundary conditions cannot be satisfied by a function in H2(Ω0 \ I) but only by

a less regular field. Let us construct such a singular field. Specifically, we consider the end point D− = (−1/2, 0)
and introduce the polar coordinates (r, θ) defined by

x̄1 + 1/2 = r cos θ, x̄2 = r sin θ, r > 0, θ ∈ [−π/2, π/2],

so that θ = 0 corresponds to the line of defect and θ = ±π/2 to the clamped side. Since U0 is smooth in the
neighbourhood of D−, the boundary and jump conditions near D− (i.e. , for small r) can read as:

at θ = ±π/2 at θ = 0 at θ = 0

U1 = 0, [[U1]] = 0, [[T 1
θ −M

1
θr,r]] = IdU

0
,1111(D−)−F0

0 (−1/2) + · · · ,
DU1

,θ = ±CcM0
11(D−)r + · · · , D[[U1

,θ]] = −CdM0
22(D−)r + · · · , [[M1

θθ]] = −6JdM0
21,1(D−) + · · · ,

where the dots stand for higher order terms in r. Accordingly, let us search the singular part of U1 of the form
US(r, θ) = ru(θ) in such a manner that, in the neighbourhood of D−, U1 can read as

U1(x̄) = −Cd

D
M0

22(D−)ru(θ)− Cc

D
M0

11(D−)(x̄1 + 1/2) + · · · .

The singular part MS of the bending moments are of the order of r−1 and the singular part T S of the shear
forces are of the order of r−2. Therefore the singular part of U1 must satisfy

for θ ∈ (−π/2, π/2) \ {0} at θ = ±π/2 at θ = 0

∆2US = 0,

{
US = 0,

US,θ = 0,

{
[[US ]] = 0,

[[US,θ]] = r,

{
[[T Sθ −M

S
θr,r]] = 0,

[[MS
θθ]] = 0.

After some calculations which are not reproduced here the singular part is determined in a unique way, see the
graphs of u and du/dθ on Figure 7, and eventually reads

US(r, θ) =
r

π

((
π

2
− |θ|

)
|sin θ| − cos θ

)
. (85)

So US belongs to H1(Ω) but not to H2(Ω \ I), as expected. The associated bending moments and shear forces are
infinite at D− and given by

MS(r, θ) = −2D cos θ

πr
(νer ⊗ er + eθ ⊗ eθ), T S(r, θ) = − 2D

πr2
(cos θer + sin θeθ).
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One can proceed in the same manner at the end point D+. Introducing the polar coordinates (r, θ): 1/2−x̄1 = r cos θ,
x̄2 = −r sin θ with r > 0 and θ ∈ [−π/2, π/2], one gets that, in the neighbourhood of D+, U1 can read as

U1(x̄) = −Cd

D
M0

22(D+)US(r, θ)− Cc

D
M0

11(D+)(1/2− x̄1) + · · · ,

where US is still given by (85).
Finally, reintroducing the Cartesian coordinates, the singular part of U1 is the combination of the singularities

found at the two end points and reads

U1S(x̄) =
Cd

πD
M0

22(D−)

(
x̄1 +

1

2
−
(
π

2
− arctan

2 |x̄2|
2x̄1 + 1

)
|x̄2|
)

+
Cd

πD
M0

22(D+)

(
1

2
− x̄1 −

(
π

2
− arctan

2 |x̄2|
1− 2x̄1

)
|x̄2|
)
,

from which one deduces the singular parts M1S and T 1S of the bending moments and the shear forces. Note
that U1S , M1S and T 1S have a trace on the whole boundary of Ω0 and on the defect. The boundary conditions
satisfied by the regular parts must be written accordingly. Specifically, let us decompose U1, M1 and T 1 into
their regular and singular parts: U1 = U1S + U1R,M1 =M1S +M1R, T 1 = T 1S + T 1R. The regular part U1R

has to satisfy the following kinematic conditions on the clamped sides and on the defect:

at x̄1 = ±1/2 at x̄2 = 0

U1R = − Cd

πD
M0

22(D∓)
(

1− π
2 |x̄2|+ x̄2 arctan x̄2

)
,

[[
U1R

]]
= 0,

∂U1R

∂x̄1
= ∓ Cd

πD

M0
22(D∓)

1 + x̄2
2

± Cc

D
M0

11,

[[
∂U1R

∂x̄2

]]
=

Cd

D

(
M0

22(D−) +M0
22(D+)−M0

22

)
,

(87)

which are compatible with U1R ∈ H2(Ω0 \ I). The regular parts M1R and T 1R have to satisfy the following set
of equilibrium and boundary conditions:

in Ω0 \ I at x̄2 = ±¯̀/2 at x̄2 = 0{
divT 1R = 0,

divM1R + T 1R = 0,

{
T 1R
n −M1R

nt,t =M1S
nt,t − T 1S

n ,

M1R
nn = −6JfM0

nt,t −M1S
nn,

{
[[T 1R

2 −M1R
21,1]] = IdU

0
,1111 −F0

0 ,

[[M1R
22 ]] = −6JdM0

21,1.

(88)

Note that the singular partsM1S and T 1S are involved on the free sides where they are smooth functions of x̄1.
We are in position to state the following existence and uniqueness result for U1

Proposition 5 When the Poisson ratio is non negative and when the loading F0 is smooth, the problem (84) admits a

unique solution such that the singular part U1S of U1 is given by (86) from which one deduces the singular parts M1S

and T 1S of M1 and T 1 by

M1S = D
(
ν∆U1SI + (1− ν)∇2U1S), T 1S = −divM1S .

The regular part U1R of U1 is the unique minimizer of P1 over the affine subspace V1 = UR + V0 of H2(Ω0 \ I) where

P1(V ) =

∫
Ω0\I

D

2

(
ν(∆V )2 + (1− ν)∇2V · ∇2V

)
dx̄− f1(V ),

f1(V ) =

∫
I

(
6JdM0

21,1 〈V,2〉+
(
F0

0 − IdU
0
,1111

)
V
)
ds−

∫
∂fΩ0

((
6JfM0

nt,t +M1S
nn

)
V,n +

(
T 1S
n −M1S

nt,t

)
V
)
ds,

and UR is a arbitrarily chosen field in H2(Ω0 \ I) which satisfies the kinematic conditions (87). Then the regular parts

M1R and T 1R are given by M1R = D
(
ν∆U1RI + (1− ν)∇2U1R

)
and T 1R = −divM1R.

Proof To prove the proposition, let us show first that the following variational equality holds:∫
Ω0\I

M1R
αβV,αβdx̄ = f1(V ), ∀V ∈ V0, (89)
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with M1R related to U1R by the constitutive relations. One starts from the equilibrium equation M1R
αβ,αβ = 0

that is multiplied by V ∈ V0 (hence [[V ]] = [[V,2]] = 0 on I) and integrated over Ω0 \ I. After two integrations by
parts and using the boundary conditions V = V,n = 0 on x̄1 = ±1/2, one gets∫

Ω0\I
M1R

αβV,αβdx̄ =

∫
∂fΩ0

(
M1R

nαV,α + T 1R
n V

)
ds−

∫
I

(
[[M1R

2α ]]V,α + [[T 1R
2 ]]V

)
ds.

Decomposing the first term of each integral in the right hand side above into its tangential and normal parts, then
integrating by parts the tangential part gives∫

Ω0\I
M1R

αβV,αβdx̄ =

∫
∂fΩ0

(
M1R

nnV,n +
(
T 1R
n −M1R

nt,t

)
V
)
ds−

∫
I

(
[[M1R

22 ]]V,2 + [[T 1R
2 −M1R

21,1]]V
)
ds.

Finally, it suffices to use the boundary conditions (88) satisfied by M1R and T 1R to obtain (89). The existence
and uniqueness for U1R follows by standard arguments, P1 being continuous as well as coercive and V1 being
closed in H2(Ω0 \ I). ut

Therefore U1 is not of finite energy because of its singular part. However the determination of U1 (including
its singular part) is necessary to obtain a good approximation of the real potential energy of the three-dimensional
plate up to the order η. Indeed let us show that the real potential energy Pη of the three-dimensional plate with
the defect admits the following expansion:

Pη = −1

2
hL2E

(∫
Ω0

F0(U0 + ηU1)dx̄ + η

∫
I

F0
0U

0dx̄1

)
+ o(η) with lim

η→0
o(η)/η = 0. (90)

Note that the integral
∫
Ω0
F0(x̄)U1S(x̄)dx̄ is finite even though the elastic energy associated to U1S is infinite. By

virtue of the theorem of the potential energy and of the Clapeyron formula, the potential energy of the plate at
equilibrium is minus one half of the work done by the external given forces through the real displacement. Hence,
H(x2) denoting the (variable) height of the three-dimensional plate with the defect and u the three-dimensional
displacement field at equilibrium, Pη reads

Pη = −
∫ L/2

−L/2

∫ `/2

−`/2

(∫ H(x2)

0

fR(x)u3(x)dx3 + FR(x1, x2)u3(x1, x2, H(x2))

)
dx1dx2,

where the properties of symmetry have been used. After introducing the dimensionless quantities, one gets

Pη = −hL2E

∫
Ω0

(∫ H̄(x̄2)

0

f(x̄, y3)uη3(x̄, y3)dy3 + F (x̄)uη3(x̄, H̄(x̄2))

)
dx̄,

where H̄(x̄2) = H(x2)/h. One can use the outer expansion (14) of uη3 everywhere but in the boundary layers where
we must use the inner expansions. So by virtue of (15), (16) and (80), one gets

Pη = −1

2
hL2E

(∫
Ω0

F0(U0 + ηU1)dx̄ + η

∫
I

F0
0U

0dx̄1

)
+∆Pη,

where ∆Pη denotes the real potential energy contained in the boundary layers diminished by the approximate
potential energy contained in the boundary layers by using the outer expansion of uη3. (Specifically, neglecting the
terms o(η), ∆Pη is the integral over the boundary layer zones of the product of the external forces f and F by
uη3 −U

0.) Let us show that ∆Pη is itself o(η) by evaluating each boundary layer. We can take
√
η as the thickness

(at the scale of x̄) of the boundary layer because that corresponds to a distance from the side (or the defect) where
the outer and inner expansions are both valid. Accordingly, it suffices to show that uη3 − U

0 is of the order of η in
each boundary layer.

1. Near the clamped sides. There, since v0
3 = v1

3 = 0, the contribution of uη3 to ∆Pη is negligible. Moreover U0 can
be neglected in that boundary layer because U0 = U0

,1 = 0 at x̄1 = ±1/2. Hence, ∆Pη is negligible there.
2. Near the free side x̄2 = −¯̀/2. There using (41), (44) and (46), one gets

U0(x̄)− uη3(x̄, y3) = U0(x̄1, x̄2)− U0(x̄1,−¯̀/2)− U0
,2(x̄1,−¯̀/2)

(
x̄2 +

¯̀

2

)
+O(η) = O(η).

Therefore ∆Pη is negligible at this side. By the same argument ∆Pη is negligible near x̄2 = ¯̀/2.
3. Near the defect. In the same manner, since uη3(x̄, y3) = U0(x̄1, 0)+ x̄2U

0
,2(x̄1, 0)+O(η) in that zone, one concludes

that ∆Pη is negligible there.
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4. Near the corners (±1/2,±¯̀/2) or the end points D±. The inner expansions that we have considered for the three
boundary layers are not valid near those points. We should consider another type of expansion to have a good
approximation of the mechanical fields there. However, it is easy to show that, at first order, uη3(x̄,y3) is equal
to the value taken by U0 at the corner (or the end point). That suffices to conclude that ∆Pη is negligible in
the neighbourhood of those points.

So we can conclude by

Proposition 6 The potential energy Pη of the plate at equilibrium can be evaluated up to second order by (90) which

requires to determine both the regular and singular parts of U1.

6.3 The merged model of plate including the boundary layer effects

The determination of U1 requires to find first its singular part and then to solve a plate problem where the data
depend in a rather intricate manner on the singularity and on the solution of the problem at the first order. From
a practical point of view, it must be done on a case by case basis. For instance, singularities change when the end
points of the defect are on a free side rather than on a clamped side, or when the angles at the corners of the plate
between the clamped or the free sides are changed. To overcome these difficulties, the idea is to merge the two
boundary value problems into a single problem which can be solved in one step and which does not contain any
singularity. For that, reintroducing the small parameter η, one combines the first two problems in such a manner
that U0 + ηU1 is a good approximation of the solution Uη of that new problem (in fact the first two terms of the
expansion). Specifically, the displacement field Uη and the associated shear force and bending moment fields T η
andMη are solutions of the following boundary value problem

in Ω0 \ I :

{
divT η + F0 = 0, divMη + T η = 0,

Mη
αβ = D

(
ν∆Uηδαβ + (1− ν)Uη,αβ

)
,

on ∂cΩ0, on ∂fΩ0 on I

{
Uη = 0

DUη,n = ηCcMη
nn,

{
T ηn −Mη

nt,t = 0,

Mη
nn = −6ηJfM

η
nt,t,


[[Uη]] = 0,

D [[Uη,2]] = −ηCd

〈
Mη

22

〉
,

[[T η2 −M
η
21,1]] = ηIdU

η
,1111 − ηF

0
0 ,

[[Mη
22]] = −6ηJd

〈
Mη

21,1

〉
,

where angle brackets stand for the average value on I, see (83). Le us compare this effective plate model to the
Love-Kirchhoff plate. in (91) the usual boundary and transmission conditions are replaced by new ones. Specifically,
on the clamped sides the displacement must still vanish, but its normal derivative which represents the rotation
is no longer zero but proportional to the normal bending moment. In other words, the usual clamped condition
is replaced by a Robin’s type condition, the stiffness coefficient being of the order of 1/η. In the same manner,
on the free sides one obtains also a condition linking the normal bending moment to the tangential derivative of
the twist moment. Across the line of defect, one obtains jump condition of Ventcel’s type [2,9,15,29,35,46] where
both the rotation, the shear forces and the moments can be discontinuous.

Let us give an energetic interpretation of this plate model and on the associated boundary and transmission
conditions. That leads to the following proposition:

Proposition 7 The merged problem (91) is equivalent to find Uη extremum of Eη over V where

Eη(V ) =

∫
Ω0\I

D

2

(
ν(∆V )2 + (1− ν)∇2V · ∇2V

)
dx̄ + Bη(V )−

∫
Ω0

F0V dx̄−
∫
I

ηF0
0V dx̄1,

Bη(V ) = −
∫
∂cΩ0

D

2ηCc
(V,n)2

dx̄2 −
∫
∂fΩ0

ηJf
4(1 + ν)

(V,nt)
2
dx̄1

−
∫
I

D

2ηCd
[[V,2]]2dx̄1 +

∫
I

ηJd
4(1 + ν)

〈V,21〉2 dx̄1 +

∫
I

ηId
2

(V,11)2
dx̄1 −

Id
2Cc

(
V,1(D+)2 + V,1(D−)2

)
,

and

V =

{
V ∈ H2(Ω0 \ I) ∩H2(I),

∂V

∂n
∈ H1

0 (∂fΩ0),

〈
∂V

∂x̄2

〉
∈ H1

0 (I), V = 0 on ∂cΩ0, [[V ]] = 0 on I

}
.

In the particular case where Cd = 0, one must add the kinematic constraint [[V,2]] = 0 on I in the definition of V, and

one must drop the associated integral over I in the definition of B. Similarly, in the particular case where Cc = 0, one

must add the kinematic constraint V,1 = 0 on ∂cΩ0 in the definition of V, and one must drop the associated integral over

∂cΩ0 and the term at the end points D± in the definition of B.
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Proof Let us give a formal proof that if Uη,Mη and T η satisfy (91), then Uη is a stationary of E over the linear
space V. One starts from the equilibrium equation Mη

αβ,αβ = F0 that is multiplied by V ∈ V and integrated over
Ω0 \ I. After two integrations by parts one gets∫

Ω0\I
Mη

αβV,αβdx̄ =

∫
Ω0

F0V dx̄ +

∫
∂cΩ0

Mη
nnV,ndx̄2 +

∫
∂fΩ0

(
Mη

nαV,α + T ηn V
)
dx̄1

−
∫
I

(
[[Mη

22V,2]] + [[Mη
21]]V,1 + [[T η2 ]]V

)
dx̄1.

Integrating by parts the terms Mη
ntV,t on ∂fΩ0 and [[Mη

21]]V,1 on I leads to∫
Ω0\I

(
Mη ·∇2V −F0V

)
dx̄ =

∫
∂cΩ0

Mη
nnV,ndx̄2+

∫
∂fΩ0

Mη
nnV,ndx̄1−

∫
I

[[Mη
22V,2]]dx̄1−

∫
I

[[T η2 −M
η
21,1]]V dx̄1. (92)

Let us simplify each integral in the right hand side of (92) with the help of the boundary conditions satisfied by
Uη,Mη, T η, and V .

1. For the first integral, if Cc = 0 then Uη,n = 0 on ∂cΩ0. Adding this kinematic constraint in the definition of V,
the integral vanishes. Otherwise, when Cc 6= 0, one gets from the boundary condition∫

∂cΩ0

Mη
nnV,ndx̄2 =

∫
∂cΩ0

D

ηCc
Uη,nV,ndx̄2.

2. For the second integral, boundary conditions give∫
∂fΩ0

Mη
nnV,ndx̄1 = −

∫
∂fΩ0

6ηJfM
η
nt,tV,ndx̄1 =

∫
∂fΩ0

6ηJfM
η
ntV,ntdx̄1 =

∫
∂fΩ0

ηJf
2(1 + ν)

Uη,ntV,ntdx̄1,

where we have used V,n = V,2 = 0 at the corners of the plate.
3. For the third integral, using the general rule [[φϕ]] = [[φ]] 〈ϕ〉+ 〈φ〉 [[ϕ]], one gets∫

I

[[Mη
22V,2]]dx̄1 =

∫
I

〈
Mη

22

〉
[[V,2]]dx̄1 +

∫
I

[[Mη
22]] 〈V,2〉 dx̄1.

For the first integral in the right hand side above, if Cd = 0 then [[Uη,2]] = 0 on I. Adding this kinematic
constraint in the definition of V, the integral vanishes. Otherwise, when Cd 6= 0, one gets from the boundary
condition ∫

I

〈
Mη

22

〉
[[V,2]]dx̄1 = −

∫
I

D

ηCd
[[Uη,2]][[V,2]]dx̄1.

For the second integral, boundary conditions lead to∫
I

[[Mη
22]] 〈V,2〉 dx̄1 = −

∫
I

6ηJd
〈
Mη

21,1

〉
〈V,2〉 dx̄1 =

∫
I

ηJd
2(1 + ν)

〈
Uη,21

〉
〈V,21〉 dx̄1,

where we have used V = V,2 = 0 at the end points D±.
4. For the last integral, boundary conditions yield∫

I

[[T η2 −M
η
21,1]]V dx̄1 =

∫
I

ηIdU
η
,1111V dx̄1 −

∫
I

ηF0
0V dx̄1.

After two integrations by parts, the first integral in the right hand side above becomes∫
I

ηIdU
η
,1111V dx̄1 =

∫
I

ηIdU
η
,11V,11dx̄1 − ηIdU

η
,11V,1

∣∣D+

D− ,

where we have accounted for V = 0 at D±. Let us evaluate the terms at D± above. If Cc = 0, then Uη,1 = 0 on

∂cΩ0 and hence at D±. Inserting this kinematic constraint in the definition of V, the terms at the end points
vanish. Otherwise, since Uη = Uη,22 = 0 at D±, one has ηUη,11 = ηMη

11/D = ±Uη,1/Cc at D± and hence the terms

at D± read

η IdU
η
,11V,1

∣∣D+

D− =
Id
Cc

(
Uη,1(D+)V,1(D+) + Uη,1(D−)V,1(D−)

)
.

Inserting the expression of the four integrals into (92), one easily sees that (92) is nothing but the vanishing of the
first variation of Eη. Hence Uη is an extremal point of Eη in V. One can prove the converse (at least formally) in
the same manner. ut
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If one introduces the physical quantities in place of the dimensionless ones, the part B(V ) of the energy associated
with the boundary layers reads

B(V ) = −
∫
x1=±L

2

Eh2

24(1− ν2)Cc

(
∂V

∂x1

)2

dx2 −
∫
x2=± `

2

µh4Jf
2

(
∂2V

∂x2∂x1

)2

dx1 −
Eh3Id
2Cc

(
∂V

∂x1

)2
∣∣∣∣∣
(±L/2,0)

+

∫
x2=0

(
− Eh2

24(1− ν2)Cd

[[
∂V

∂x2

]]2

+
µh4Jd

2

(
∂

∂x1

〈
∂V

∂x2

〉)2

+
Eh4Id

2

(
∂2V

∂x2
1

)2
)
dx1,

where µ denotes the shear modulus. Let us give an interpretation of each term of B and on its sign.

1. Since Cc > 0 when ν 6= 0, the energy associated with the boundary layer on the clamped sides is negative. If
ν = 0, then Cc = 0, there no longer is a boundary layer and that term disappears. When ν 6= 0, the loss of
bending energy is due to an increase of the stiffness induced by the clamping. The coefficient Cc is a compliance
modulus which measures this effect. The first term (the one associated with Cd) in the energy associated with
the defect is interpreted in the same manner: when the defect is a geometrical stiffening, then the stiffener
increases the flexural stiffness of the plate in the direction orthogonal to the stiffener what is traduced by
Cd > 0; on the other hand, when the defect is a geometrical weakening, the flexural stiffness of the plate in
the orthogonal direction decreases and Cd < 0. In the limit case where the defect separates the plate into two
parts, then Cd goes to minus infinity (see Figure 6 and 9) and there is no flexural rigidity in the direction e2.

2. The term with the coefficient Jd in the energy associated with the defect corresponds to a torsional energy.
When the defect is a geometrical weakening, then Jd < 0, the plate loses this torsional energy, whereas when
the defect is a geometrical stiffening, then Jd > 0, the plate gains this torsional energy stored in the stiffener.
When the defect is a crack, then Jd < 0 and in the limit case where the crack separates the plate into two parts,
then two free surfaces are created. In such a case one can see on Figure 9 that Jd = −2Jf . Accordingly, the
negative torsional energy associated with a free surface (term with Jf) is a particular case of loss of torsional
energy induced by a geometrical weakening.

3. The term with the coefficient Id in the energy associated with the defect corresponds to a longitudinal bending
energy of the defect which can be viewed as a beam. When the defect is a geometrical weakening, then Id < 0,
the plate loses this bending energy, whereas when the defect is a geometrical stiffening, then Id > 0, the plate
gains this bending energy stored in the beam. Note that the coefficient Id is the usual geometrical inertial
moment that appears in the expression of the bending energy in the Navier-Bernoulli theory of beams. Here Id
is negative, when material is removed from the plate.

Let us consider now the questions of existence and uniqueness of a solution to (91) or, equivalently, of an extremal
point of Eη in V. It is easy to check that if one searches a solution of (91) for Uη close to U0 then a such solution
admits U0 +ηU1 as an expansion up to the second order (and the same property holds for the shear forces and the
bending moments). That verification is left to the reader. But we are no longer ensured of the existence nor the
uniqueness of a solution of (91). The natural space where one must search a solution is the one where all the terms
involved in the energy Eη are finite. Such a space is more regular than H2(Ω0 \ I) so that the torsional energies
(terms with Jf and Jd) and the longitudinal bending energy of the defect (terms with Id) be defined. On the other
hand, since several terms have the bad sign, coercivity of Eη over V is not ensured. Accordingly, one can no longer
consider (91) as a minimization problem. In conclusion, the analysis of those questions must be refined, this task
being outside the scope of this paper, is reserved to future works.

7 Two examples of application

We finish by two examples that illustrate the results obtained in the previous sections. The first one is the case of
a reinforcement by two circular cylinders of radius R = R̄h, one on each face of the plate. The second is the case
of a weakening by two transverse cracks of depth a = āh symmetrically disposed across the thickness of the plate.
That corresponds to the sections Y represented on Figure 8.
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Fig. 8 Section Y of the defect in the two examples. Left: case of a stiffening by a circular cylinder; Right : case of a weakening by
a transverse crack. By symmetry, there exists the same cylinder or the same crack in the opposite side y3 < 0.

7.1 Case of a stiffening by two cylinders

The two boundary layer problems (67) and (68) can be solved in a closed form owing to the particularities of the
geometry. Specifically, the stress field Σd solution of the bending boundary value problem (67) reads

Σd(y) =

{
0 in Y0,
y3

1− ν2
(νe1 ⊗ e1 + e2 ⊗ e2) in Y \Y0.

It is the particular case where the coefficient Cd vanishes, essentially because the attachment of the stiffener on
the plate is reduced to a point. Therefore there is no modification of the transversal bending stiffness of the plate
by the stiffener and one gets the kinematical constraint [[U1

,2]] = [[Uη,2]] = 0 for the problems (84) or (91).
Since the section of the stiffener is circular and its link with the plate is reduced to a point, the displacement

field Wd solution of the twist boundary value problem (68) can also be obtained in a closed form and eventually
reads

Wd(y) =

{
0 in Y0,

y1

(
y3 + 1

2 + R̄
)

in Y \Y0.

One deduces that the coefficients Jd and Id are given by

Jd = πR̄4 Id =
π

2
R̄4 +

π

2
R̄2 (1 + 2R̄

)2
.

Thus, Jd is twice the usual geometrical inertial moment of a circular disk. Accordingly, the part Bd(V ) of the
energy B(V ) associated with the stiffeners consists in the torsional and bending energies of the two cylinders seen
as slender beams. Specifically, Bd(V ) reads

Bd(V ) =

∫
x2=0

(
µ

2
h4JdV

2
,21 +

E

2
h4IdV

2
,11

)
dx1.

7.2 Case of a weakening by two transverse cracks

The two boundary layer problems (67) and (68) must be solved numerically. Using a finite element code one obtains
the values of the two coefficients Cd and Jd for any value of the crack depth ā. Since the crack has no thickness, the
coefficient Id vanishes. The graphs of Jd and Cd in function of ā are plotted on Figure 9 for ν = 0.25 (Cd depends
on ν, not Jd). Both coefficients are negative, in conformity with Proposition 4, and decreasing functions of ā. As
expected, when ā grows from 0 to 1/2, the compliance factor Cd decreases from 0 to −∞ whereas the torsional
modulus Jd decreases from 0 to −2Jf .



Plate model including boundary layer effects 37

Fig. 9 Graphs of the coefficients Cd and Jd as a function of the length a of the crack when ν = 0.25.They respectively represent
effective rotational and torsional stiffnesses.

Those results have been obtained assuming that the defect is invariant in the direction x1 and hence that the
depth of the crack is a constant independent of x1. Nevertheless the results remain true even if the depth of the
crack depends of x̄1 provided that this dependence is smooth. The effect of the gradient of x̄1 7→ ā(x̄1) will appear
at higher orders but not in the problem (84) giving U1. Accordingly, one can still use all the results of the previous
subsections with ā depending smoothly on x̄1. In this context, we propose to give the expression of the potential
energy release rate G = −δPη/δS associated with a virtual increase δS = hL

∫
I
δā(x̄1)dx̄1 of the cracked surface

from the uniform depth ā0. Since U0 does not depend on the depth of the crack, U0 and all the first order terms do
not change when the depth is changed. Only U1 and all the second order terms will change. Denoting by δU1 the
variation of U1, by virtue of Proposition 6 and the fact that the loading is kept constant, G can be approximated
by

G =
Eh

2

∫
Ω0
F0(x̄)δU1(x̄)dx̄∫
I
δā(x̄1)dx̄1

. (93)

Since U0, Cc and Jf do not depend on ā(x̄1), and since Id = 0, one deduces from (84) that the variation δU1 of
U1 and the associated variations δM1 and δT 1 of the bending moments and the shear forces are solution of the
following boundary value problem

in Ω0 \ I :

{
divδT 1 = 0, divδM1 + δT 1 = 0,

δM1
αβ = D

(
ν∆δU1δαβ + (1− ν)δU1

,αβ

)
,

on ∂cΩ0 :

{
δU1 = 0,

δU1
,n = 0,

on ∂fΩ0 :

{
δT 1
n − δM1

nt,t = 0,

δM1
nn = 0,

on I :


[[δU1]] = 0,

[[δT 1
2 − δM1

21,1]] = 0,

D [[δU1
,2]] = −δCdM0

22,

[[δM1
22]] = −6δJdM0

21,1,

where

δCd(x̄1) =
dCd

dā
(ā0)δā(x̄1), δJd(x̄1) =

dJd
dā

)(ā0)δā(x̄1).

By the same arguments as those used for the problem (84), one deduces that the solution of (94) is unique, δU1

having the same type of singularity as U1. However, its determination is not necessary to obtain G as we show
hereafter. Starting from the equilibrium equations satisfied by U0 and δU1, one gets∫

Ω0

F0δU1dx̄ =

∫
Ω0\I

(
M0

αβ,αβδU
1 − δM1

αβ,αβU
0
)
dx̄.

Integrating by parts twice the right hand side above, using all the boundary conditions, the smoothness of U0 and
the equality M0

αβδU
1
,αβ = δM1

αβU
0
,αβ , one eventually obtains∫

Ω0

F0δU1dx̄ = −
∫
I

(
δCd

D

(
M0

22

)2
+ 6δJdM0

21U
0
,21

)
dx̄1.
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Inserting this latter relation into (93) allows us to write the potential energy release rate under the following form

G
∫
I

δā(x̄1)dx̄1 = Eh

∫
I

G(x̄1)δā(x̄1)dx̄1,

with

G(x̄1) = −6(1− ν2)
dCd

dā
(ā0)M0

22(x̄1, 0)2 − 36(1 + ν)
dJd
dā

(ā0)M0
21(x̄1, 0)2.

Thus, G(x̄1) corresponds to the dimensionless local energy release rate and, as expected, is positive. If one adopts
the Griffith energy criterion, G(x̄1) allows us to evaluate the risk of propagation of the crack at the point x̄1 of
the line of defect by comparing it with the surface energy density Gc. To that end, it is sufficient to calculate the
bending moment field along the axis x̄2 = 0 with the usual Love-Kirchhoff theory (and hence as if the plate did
not contain any defect) and to use the two functions giving the coefficients Cd and Jd in function of the depth of
the crack. Since those coefficients only depend on the defect and not on the overall geometry of the plate nor on
its loading, the analysis of the risk of propagation is both possible (unlike to Love-Kirchhoff model) and greatly
simplified by comparison to a 3D approach.

8 Conclusion and perspectives

In the present paper an asymptotic method was developed to study boundary layer effects on the sides of a thin
elastic plate and to account for the presence of a geometrical defect inside the plate. The analysis results in a
bending model of plate which improves the classical Love-Kirchhoff one (in a different manner than the Mindlin-
Reissner model). Indeed, it consists either in solving successively two boundary value problems, or a single merged
one. In the first approach, the first boundary value problem is the classical Love-Kirchhoff model which does
not account for boundary layer effects but gives the data to solve the second boundary value problem which, in
turn, accounts for these effects. The particularity of the second boundary value problem is that its solution is in
general singular, requiring a careful study of the singularities on a case by case basis. In the second approach, the
two boundary value problems are merged into a single one which no longer contains any singularity but whose
mathematical properties remain to be well established. In both approaches, the new model allows us to treat
the question of the propagation of transverse cracks in an asymptotic manner without coming back to a three-
dimensional approach. This enhanced model is based on new “effective” boundary or transmission conditions of
Robin’s or Ventcel’s type which simply require solving once and for all a few boundary layer problems to obtain
the coefficients entering in these effective conditions. From an energetic point of view, the merged problem contains
additional terms in the expression of the effective potential energy of the plate. These terms correspond to surface
energies associated to boundary layers and some of them have the particularity of being negative.

Even if the construction of the enhanced model has been made in a particular context where are considered
only clamped or free boundary conditions, straight and one-directional geometrical defects, and pure bending
responses, the method could be easily adapted and the results extended to more general situations. Let us list
some possible or desirable extensions that could be the subject of future works: (i) consider the general three-
dimensional problem which leads to a model of plate coupling bending and membrane responses; (ii) complete the
analysis of the boundary layers by a comprehensive study of “all” usual boundary conditions, including curvilinear
frontiers; (iii) consider geometrical defects more general than those symmetric, straight, and one-directional; (iv)
complete the mathematical analysis of the merged boundary value problem.
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22. Grisvard, P.: Singularités en élasticité. Arch. Rat. Mech. Anal. 107, 157–180 (1989)
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