N
N

N

HAL

open science

RESOLUTION OF FLUID-STRUCTURE COUPLED

PROBLEMS WITH FLOW USING THE BOUNDARY
ELEMENT METHOD

Robin Le Mestre, Jean-Sébastien Schotté, Olivier Doaré

» To cite this version:

Robin Le Mestre, Jean-Sébastien Schotté, Olivier Doaré. RESOLUTION OF FLUID-STRUCTURE
COUPLED PROBLEMS WITH FLOW USING THE BOUNDARY ELEMENT METHOD. 2021.

hal-03113414

HAL Id: hal-03113414
https://hal.science/hal-03113414

Preprint submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03113414
https://hal.archives-ouvertes.fr

Flow Induced Vibration, Antunes, Doaré, Moussou, Pastur eds.

Paris-Saclay, 2020

RESOLUTION OF FLUID-STRUCTURE COUPLED PROBLEMS WITH FLOW USING
THE BOUNDARY ELEMENT METHOD
Robin Le Mestre
ONERA, Chdtillon, France; ENSTA Paris, IPP. IMSIA, EDF, CEA, CNRS, Palaiseau, France

Jean-Sébastien Schotté
ONERA, Chdtillon, France

Olivier Doaré
ENSTA Paris, IPP, IMSIA, EDF, CEA, CNRS, Palaiseau, France

ABSTRACT

Effects of fluid-structure coupling on the dynamic be-
haviour of flexible airship can be modelled with a po-
tential, incompressible, inviscid flow. A new formal-
ism to study linear variations of the flow induced on
the fluid-structure interface in a time dependent am-
bient flow is introduced. The features of the Boundary
Element Method used to solve this problem numeri-
cally are exhibited. Numerical results of the linear
model are compared with analytical and non linear
numerical results, assessing the validity and the lim-
itations of the approach.

1. INTRODUCTION

Fluid-structure dynamical interaction of deformable
bodies with potential flows have various applications,
from bubbles (Galper (1995) - Riccardi et al (2020))
and airships (Li et al, 2009) to submerged pipes
(Veron et al, 2016). In the case of airships, fluid-
structure interaction solutions have been found, for
instance by (Liu et al, 2009) in the case of quasi
steady incompressible viscous flow by coupling CFD
and FEM codes for the fluid and structure respec-
tively on a hull-fin configuration. However this cou-
pling of a flowing fluid with a vibrating structure at
high Reynolds number remains a challenge to solve
at the scale of airships using CFD methods. A po-
tential flow approach was proposed (Li et al, 2009)
by deriving the inviscid, incompressible and irrota-
tional linear variations of the fluid loads applied on
a flexible airship. In their model, the hull is simpli-
fied as a cantilever beam from both fluid and struc-
ture point of view, using an Eulerian specification of
the fluid and solving the Lagrange equations of the
coupled system. In this study, the linear variations
of the potential, inviscid, irrotational flow induced
by the airship three dimensional hull are modelled
by linearization of the associated integral represen-
tation with an Arbitrary Lagrangian Eulerian speci-
fication. The problem is solved numerically using a

Boundary Element Method (BEM), offering both low
computational cost, in comparison with Finite Ele-
ment or other methods, and high fidelity of the so-
lution at the interface. The method enables to solve
fluid-structure interaction problems with strong cou-
pling effects (due to the similar orders of magnitude
of the fluid and structure densities) and highly flexi-
ble structures.

Section 2 of this paper introduces the equations gov-
erning the velocity of the fluid and the associated hy-
pothesis as well as a linearized integral representation
of the potential flow solution. Section 3 will focus
on the numerical implementation of the BEM and its
validation with analytical cases. The ability of the
linear model to capture the physics of the fluid will
be discussed with a comparison to non linear results.
Section 4 proposes a conclusion on the performance
of this method and perspectives regarding the future
extensions of the model.

2. MODEL

2.1. Governing equations

Figure 1. Scheme of the fluid and solid domain.

We consider a structure deforming in an inviscid flow.

The effects of the turbulent boundary layer are ne-

glected. The fluid evolves in a domain Q{I) bounded



by the fluid-structure interface X,y and its exterior
boundary dQ>. We consider the case where no cir-
culation is induced in the flow u, enabling to express
it with a potential ¢ defined up to a spatial constant
by:

- of
inQ/,. (1

u=Vy
The ambient flow is defined as the flow in the absence
of structure (dashed streamlines of figure 1):

uayt) - V¢(’;.I) in Qw, (2)

supposed to be time variant and inhomogeneous.
For a potential flow, the incompressibility condition
writes:

in Q. 3)

When a moving structure is introduced, the domain
Q% is divided into a fluid and a solid sub-domains
Q{Z) and Q‘Ez) separated by the fluid-structure interface

X(;). The flow u (continuous streamlines of figure 1)
in the fluid domain is decomposed into an ambient
flow u™ and a potential perturbed flow u? = V¢” such
that:

inQ/ . “4)

u=Vy=+VeP (1)

The flow incompressibility combined with (3) and (4)
provides

inQ/ . (5)

AP7 =0 0

One can show with energetic considerations that the
perturbations of the fluid decrease rapidly to infinity:

VoP = o (f%) on 90" ©6)

The inviscid kinematic boundary condition is intro-
duced as

43

u.n= W.n on Z(,), @)

n being the interface normal, oriented outward the
fluid (see figure 1). Equation (7) is valid when both
Reynolds and Stokes numbers (ratio between inertia
and viscosity effects of the fluid) are small:

U=L
Re=PY "
(8
QL2
=P o,

where L and Q are characteristic length and pulsa-
tion of the structure, py and p are the density and the
viscosity of the fluid respectively, and U is a charac-
teristic velocity of the ambient flow. When combined
with (4), equation (7) becomes

d
Vo¢P.n= <8§ — u°°> n onXg. )

Finally, since ¢? is defined up to a constant, we arbi-
trarily impose

(67 =0(1) ondQ~, (10)

to ensure the uniqueness of the solution. Now that the
set of equations describing the potential of perturba-
tions ¢ have been exhibited (boxed equations in this
section), it is necessary to obtain a formulation allow-
ing to find a numerical approximation of the solution
of this problem.

2.2. Boundary integral representation

The system describing this problem could be deter-
mined using the finite element method, by introduc-
ing a variational formulation of the Laplace equation
coupled to its boundary condition. However, if the
solid is evolving in an infinitely large fluid medium,
then a very large volume of fluid will be necessary
to avoid any artificial confinement effects (Liu et al,
2009), leading to the manipulation of very large num-
ber of degrees of freedom. Instead, the solution pre-
sented here is based on the boundary integral equa-
tions, enabling to manipulate only fluid degrees of
freedom located at the fluid-structure interface: the
equations on Q{t) are condensed on X ;).

The Green function G associated with Laplace equa-
tion in three dimensions (Bonnet, 1999) is defined as

1
G(xa)’)——m
V,,G(x—y):x;y2 Vx,y € Q7 x Q% (1D
A ||lx -y

AxGx—y) = 5(xfy)v



where & denotes the dirac distribution. Since 9Q~ U
;) is an enclosing boundary of the fluid volume Q{t),

the Green identity can be applied as

Vy € Q~, /g(ft) Ay ¢’£;) _A(b(’;) Gxy)dQ) = ...

fg,)uagw VxGey) s 90 — V9L M) G(xy)d(zl(;))

The boundary conditions (6) and (10) combined with
the properties

1 (e}
G(x_y) =0 <r> Vx € 8.Q
! 13)
VxG(x,y) =0 (”2> Vx € 8Q°°,

enable to neglect the integral on the border dQ*. The
property (Veron, 2016)

/Q _Z)AXG(,C_”(;)(I; Q= ..

%) (1 t ji() VxG<xy>'"<x>dZ<x>> vy € Q7
(14)

combined with equations (5) and (12), gives

0= [, VsGiavima (0~ 9f)

v 98w
+ 0y ("(x)‘ o

) .n(x)dZ(x)Vy S Z(z)-

15)

2.3. Linearized formulation on a reference inter-
face

2.3.1. Reference configuration

The linearized equations will be derived relatively to
a reference position X, arbitrarily set to be the fluid-
structure interface in the absence of deformations:
Xg—g)- This will allow to express the physical vari-
ables evolving on the time dependant interface X,

as a function of the reference space X, as detailed in
(Pfister, 2019). The functions defined on X are written

Figure 2. Reference and physical domains.

with a bar (.) and we can therefore define the position
of the physical interface x € X, as

é()_c,t) = x(XJ) —Xx Vxe Z, (16)
which is the common definition of the displacement
in solid mechanics written in a Lagrangian formalism
(hence inherent to a moving material point). Sim-
ilarly, one can express an oriented infinitesimal el-
ement of surface nd¥ (see Figure 2) with Nanson’s
formula (Holmes, 2009):

_ I
n(x)dZ(x) =det (F(§)> F n(,—c)dZ(x)

where #dX denotes the unit normal times an infinites-
imal area on the reference surface X (which is there-
fore different from the time dependant one). Super-
script (.)~T denotes the inverse of a transposed ten-
sor, and [ is the deformation gradient defined as

Fig)= (11 +i5)- (18)

We also define the fluid flow with respect to the ref-
erence interface

O =0 By

uf’ VXeX (19)

x)

where = stands for ”is defined as”, as well as the
Green function and its normal derivative

Gn(z5)dZx) = Gr_yn(dZy VE,je L
anG(xry) di(i) = VXG(X*y)'n(x) dz(x) vj,j’ I~ i
(20)

It is important to notice that equations (16), (19) and
(20) differ from (17): the first ones define an equality
between the parameters on the physical and reference
spaces whereas ndX undergoes a transformation rel-
atively to the reference configuration #adX. The way



¢? is defined isn’t inherent to a moving fluid particle
contrarily to a Lagrangian definition, but results from
their observation on a point moving in space which
also differs from the Eulerian definition that observes
particles properties on a fixed point of space: this
is the reason why this method might be referred to
as an Arbitrary Lagrangian Eulerian (ALE) approach
(Pfister, 2019). The ambient flow parametrized with
respect to the reference position is defined as:

vEeL. Q1)

By combining (9), (16), (17), (19) and (21) we de-
duce

Gla—y) VOl N2 dZ ) =
_ ag . L
Gn(x,)—,). (81( ) —Uu .f)) dZ Vx,y S Z
(22)

The integral representation written on the reference
configuration is then given by:

2.3.2. Linearized equations

This section will introduce a linearized formulation
of the integral representation (23), made possible
thanks to the small perturbations hypothesis :

1]
9=—"—x1
L (24)

o] <1

which allows to decompose the interface position, by
denoting with a superscript (.)! the variables with a
negligible amplitude relatively to those denoted with
a superscript (.)%:

E®)=x—3" vi'ex, (25)

resulting from ¥ < 1. In the following equations,
the superscript (.)! will not only attach informations

on the first order amplitude of a variable, but will as
well define its linearity to the displacements El (this

linearity being obvious for 51 itself). Because of the
small perturbations hypothesis (24), it is possible to
linearize Nanson’s formula (17) (h.o.t is for higher
order terms):

ndx ) = (n°+n")dZ+h.ot onZ, (26)

and the Green function (20), similarly to the method
presented by (Potthast, 1994) for acoustic applica-
tions:

En:EnO+€nl+h.o.t onxX

0 — _ (27)
0,G=09G + 8nG1 +h.ot onX.

Detailed expressions of (26) and (27) can be found in
appendix 6. The strain rate of an irrotational ambient
flow is:

D = % (vu=+¥'u). (28)

If the convection of the ambient flow by the interface
displacements is small, hence for

|pg!|| <o), (29)

the velocity at order zero and one at the interface is
obtained with a Taylor series (Galper, 1995):

Uiy = uy (30)

Under the assumption that the structure velocity is
small relatively to the ambient flow, the normal ve-
locity of the structure is given by:

FY Y
% _ow) a1

Based on equations (23), (25), (27), (30) and (31),
a linearization of the potential ¢” is introduced such
that

O =9y on¥,

_ _ _ (32)
oh = ¢([;'c()) + ¢(’;1) +h.o.t

onX.



We can therefore obtain the linearization of the inte-
gral representation (23)

0 _ [ A0 =p0 _ zp0
05) = /ga"G@—?) (66— 45)
0

+ Ga(3_y) -3 dZ VyeX

Vy € L.
(33)

The above equations allow to calculate ¢ by using
variables only on the reference configuration. The
differentiability of BEM operators had already been
studied in the fields of acoustics (Potthast, 1994).
However, to the knowledge of the authors, the appli-
cation of this kind of method to flowing incompress-
ible flow has not been exhibited in the literature . In
order to obtain the whole linearized velocity poten-
tial ¢, we need to introduce the linearized variations
of the ambient potential ¢ using a Taylor expansion
at the first order, which is valid since ¢ is defined on
the whole Q” domain:

‘IS(O;) =0 VX onX,
é&? = 0G0 VX onX, (34)
¢;§)1 = V¢§0)-§1 = HZZO).ﬁl VX onZX.

The linear potential of the ambient flow perturbed by
the vibrating solid can therefore be expressed as

¢ =@+ +6"+ 6= +hot on Xy (35)

The velocity u at orders zero and one can be calcu-
lated using the gradient and the potential from the
reference configuration (Pfister, 2019):

B =V§, @ =V§'-VED onI. (36)
The equations exhibited are valid based on hypothesis
that will be discussed in the following section, with a
particular attention to the case of airships.

2.4. Hypothesis of the model

The wall boundary condition is valid if the fluid can
be considered as inviscid, hence when hypotheses (8)
are met. Regarding airships, this seems to be valid
to a certain extent: airships evolve at high Reynolds
numbers because of their large dimensions. However,
(Lutz et al, 2002) showed that the hull alone can pro-
duce lift even at small angles of attack, which means
a correction for taking into account circulation effects
on the fluid might be necessary to take into account
a wider range of effects. However, for large angles
of attack separation appears, which isn’t predictable
by this model which supposes turbulence is negligi-
ble and the flow is attached. The small perturbations
of the solid (30) and (31) are reasonable approxima-
tions regarding the deformation of the hull’s mem-
brane if the steady deformed configuration is con-
sidered as the reference interface: taking the stress
free configuration as a reference isn’t a reasonable
approach, since the deformations between the stress
free and steady deformed configurations are expected
to be large, requiring to take into account geometric
non linearities. However, regarding the rigid body
motions, the small displacements hypothesis is a lim-
itation: in order to expand the model to any flight
configuration, an extension to large displacements
coupled with small deformation would be of high in-
terest, inspired from the works of (Thomasson et al,
2013) dealing with rigid body motions in currents for
example. Furthermore, the lack of orders higher than
1 to describe the potential is compensated by the abil-
ity to predict how instabilities might grow exponen-
tially from small perturbations, which is of high in-
terest in aerodynamics (Theodorsen, 1949; Dowell,
1989).

3. BOUNDARY ELEMENT METHOD
IMPLEMENTATION

3.1. Numerical procedure

Figure 3. BEM mesh of ¥, with collocation point

¥, on each node and a linear interpolation of E (x) on
each element.

In order to find a numerical approximation to the
solution associated with equation (33) for a steady
ambient flow, we introduce the BEM method which



approximates the integral over the fluid-structure in-
terface (Bonnet, 1999). The interface is discretised
into n, elements and n nodes, where the variables
are interpolated using linear basis functions attached
to the mesh nodes. According to the collocation
method, the evaluation points y; are also located on
the mesh nodes, see figure 3. We introduce the op-

erators [S],,3,> [$'],x3, (single layer operators) and
[D],,..;» [D'],1c3, (double layer operators), defined as
follows:

(37

where the brackets [.| denote matrices and {.} de-
notes a n—sized vector, its i’ component being the
value of the variable at the node y = y,. Because
of the linearization, BEM operators are only calcu-
lated once, allowing to take into account variations
associated to any small mesh deformation without re-
calculating the discretized operators for the BEM as
done in previous studies on fluid structure interaction
(Veron et al, 2016; Riccardi et al, 2020), at the price
of stocking four matrix operators instead of two. The
zero and first order solutions of the potential can be
obtained by inverting the linear systems with a GM-
Res algorithm:

(] = D) {97} = [S]{&™}
(1) = 10)) {07} = ([Pl gmy | + [50)] ) {& '}
z1
e (5)
(38)

Because the expression of [D’( 431,0)] depends on the

field ¢*°, this operator has to be computed once the
zero order system has been solved.

3.2. Validation

Equation (38) shows that the first order solution of
the velocity potential ¢ is composed of two parts,

proportional respectively to the position E and the ve-

U3

locity 5> of the structure, and referred as the quasi-
steady and the vibration components. In order to en-
sure that the solution associated with each of these
contributions is well predicted by the theory and the
numerical computation, two test cases are presented.

3.2.1. Vibration component

Figure 4. Velocity potential induced by a sphere os-
cillating in a fluid at rest.

When the structure vibrates, its normal velocity is

transmitted to the fluid via the fluid-structure inter-

face, which is responsible for the added mass effect

amongst others. The numerical results provided by
95

the BEM associated to vibrations a0 for £ =0, are
compared to analytical results in the case of a sphere
in a resting fluid (Veron, 2016). The results presented
in figure 4 show a maximal relative error of 0.2%
when compared with theoretical results. One can no-
tice that the solution at order 0 is solved by inverting
the same linear system with the imposed boundary

4

velocity 3> being replaced by — Y, which means the

potential ¢”° can be approximated numerically with
a similar accuracy.

3.2.2. Quasi steady component

The term proportional to the displacement & in equa-
tion (38) is referred as “quasi static” because it is the
solution found when the deformations occur at a neg-
ligible velocity. In order to verify if the linearization
of the quasi steady potential is valid or not, the results
of the first order solution ¢”! associated with a steady
homogeneous ambient flow are compared with the
variation of the zero order solution ¢”° obtained by
actually deforming the mesh, hence calculating new
BEM operators [S] and [D] on consecutive mesh po-
sitions.

Figure 5 compares the variation of the potential as

predicted by the linearization (for %—f = 0) (top half),
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Figure 5. Permanent flow potential variations around
a deformed ellipsoid. The top half of each figure is
the linear prediction ¢P' from the initial mesh, and
the bottom half is the potential variation calculated
with finite differences between the original and de-
formed mesh. The shape of deformation is the same
in each graph, and the amplitude of deformation is
represented at real scale. Bottom right graph shows
the evolution of the maximal error on the linear pre-
diction ¢ as a function of 9.

whereas the bottom half was obtained by deforming
the mesh and applying finite differences on an degen-
erated sphere mesh of ~ 7000 nodes, with semi axis
of 1 and 0.5. The side view was chosen because of
the axisymmetry of the problem. The error is defined
as

max <¢((-)x°) + ¢€x07€1) - ¢(x)>
max (0%~ 1)

(39)

err =

The bottom right graph shows that the maximal error
of the linear prediction is linear to the displacement
number for small perturbations up to 2 < 10~2. For
higher values of 2, the error becomes higher than
the linear trend at small displacement number. How-
ever, looking at the bottom left of figure 5, the ge-
ometry associated with 2 > 3.10~2 shows important
deformations which are out of the scope of this linear
model. The shape of the deformation presented here
shows good agreement (less than 1% error) with the
linear prediction of the potential ¢ until Z < 2.1073,
however for deformations with a more regular shape
(hence with less lobes on the surface for example)
the prediction would be more accurate according to
the small gradient hypothesis (24).

4. CONCLUSION

4.1. Summary and main results

A new method to solve linearized potential of the
fluid induced by a structure undergoing small de-
formations over time is introduced. The linear ver-
sion of the equations only requires to calculate two
additional operators on the reference mesh in order
to obtain an approximated solution when the fluid-
structure interface undergoes deformations, reducing
drastically the calculation costs with respect to the
computation of new BEM operators at each deforma-
tion.

4.2. Work in progress and perspectives

The pressure resulting from the potential solution is
currently being determined analytically from (Nitik-
itpaiboom, 1993), and its implementation will allow
to determine the fluid induced loads on the airship’s
hull. The linearized formulation will allow as well
to put forward added mass, damping and stiffness by
the fluid on the hull, as explained by the authors in
(Schotté et al, 2019), allowing to determine possible
instabilities of the airship induced by the coupling
with a heavy fluid. As mentioned in section 3.2.2,
an important part of the work will consist in compar-
ing non linear and linear approaches on test cases to
determine the validity of the approach depending on
the problem solved. Another perspective is the cou-
pling of the small strains of the structure with large
rigid body displacements, or with circulation contri-
butions.
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6. APPENDIX A: DETAILED CALCULATION
OF THE LINEARISATION

We detail here how the linearisation was performed.
Under the small displacement assumption, the values
of the oriented surface is given by (Holmes, 2009)

n’dX = adL

e 4
n'df = (9.8'-¥'¢") k. 40

The surface gradients are defined on the reference
surface for any scalar @ and vector b on X:

Vsa=Va— (Va.n)n onX

_T_ — - — - — - p—

Vib= (Vs(b.e), Vs(be,) Vs(be)) onE,
(41)

one can show that the small variations of ndX ), with

tr () denoting the trace operator, equals to:
n’dXL = ndxE

_ _ _ 42

was = (w(908) - P

The first order Taylor expansion of the norm of a vec-
tor at an arbitrary power n is:

=yl = [l =°["
+n(x0 _yO)' (gl(xO) _él(y0)> HxO _y0Hn72

+0(§1>.
(43)

The Green function given by (11) and its gradient be-
come when combined with the linearized expression
(43):

—o0 1 n°
" 47 | x0 —yY||

1 1
1 (@) (e Ele)n
Gn = - 3
an [0 — ¥
1 (x°—v%) n0
aTc‘):f(" y ):t
AT |lx—ylI
1 1
gl L (x0 —y%).n! N <§ w) — & (y°)> n’
T\ -y %0 — 0|2
0 0 1 1 0 0\ ,0
3(" -y )~<§ (xO)—§ (y0)> (x” —y").n )

5
X0 =0

10 =7

(44)



