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Abstract

The stochastic Auxiliary Problem Principle (APP) algorithm is a general Stochastic
Approximation (SA) scheme that turns the resolution of an original convex optimiza-
tion problem into the iterative resolution of a sequence of auxiliary problems. This
framework has been introduced to design decomposition-coordination schemes but also
encompasses many well-known SA algorithms such as stochastic gradient descent or
stochastic mirror descent. We study the stochastic APP in the case where the iterates
lie in a Banach space and we consider an additive error on the computation of the
subgradient of the objective. In order to derive convergence results or efficiency esti-
mates for a SA scheme, the iterates must be random variables. This is why we prove
the measurability of the iterates of the stochastic APP algorithm. Then, we extend
convergence results from the Hilbert space case to the reflexive separable Banach space
case. Finally, we derive efficiency estimates for the function values taken at the aver-
aged sequence of iterates or at the last iterate, the latter being obtained by adapting
the concept of modified Fejér monotonicity to our framework.

1 Introduction

Let U be a reflexive separable Banach space whose norm is denoted by ‖·‖, (Ω,A,P) be a
probability space and (W,B(W)) be a measurable topological vector space with B(W) being
the Borel σ-field on W. We refer to [3, 6] for the definitions of basic concepts in analysis and
probability theory. We consider a stochastic optimization problem of the form:

min
u∈Uad

{
J(u) := JC(u) + JΣ(u)

}
where

{
JC(u) = E

(
jC(u,W )

)
,

JΣ(u) = E
(
jΣ(u,W )

)
.

(1)

where Uad ⊂ U is a non-empty closed convex set, W : Ω → W is a random variable,
jC : U×W→ R and jΣ : U×W→ R are such that jC(·, w) and jΣ(·, w) are proper, convex,
and lower-semicontinuous (l.s.c.) real-valued functions for all w ∈W.

Stochastic Approximation (SA) algorithms are the workhorse for solving Problem (1).
The SA technique has been originally introduced in [20, 30] as an iterative method to find
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the root of a monotone function which is known only through noisy estimates. SA algorithms
have been the subject of many theoretical studies [2, 19, 25, 29] and have applications in
various disciplines such as machine learning, signal processing or stochastic optimal con-
trol [4, 22]. Back in 1990, with decomposition applications in mind, Culioli and Cohen [13]
proposed a general SA scheme in an infinite dimensional Hilbert space based on the so-called
Auxiliary Problem Principle (APP), called the stochastic APP algorithm. This algorithm
also encompasses several well-known algorithms such as stochastic gradient descent, the
stochastic proximal gradient algorithm or stochastic mirror descent. Recently, [15, 24] apply
SA methods to solve PDE-constrained optimization problems. In this paper, we extend the
stochastic APP algorithm to the Banach case.

A SA algorithm is defined by a recursive stochastic update rule. For k ∈ N, the k-th
iterate of a SA algorithm is a mapping Uk : Ω → U, where the range of Uk is included in
Uad. We denote by 〈· , ·〉 the duality pairing between U and its topological dual space U

⋆.
In the case where jC is differentiable with respect to u, the k-th iteration of the stochastic
APP algorithm computes a minimizer uk+1 such that:

uk+1 ∈ argmin
u∈Uad

K(u) +
〈
εk∇uj

C(uk, wk+1)−∇K(uk) , u
〉
+ εkj

Σ(u, wk+1) , (2)

where εk > 0 is a positive real, wk+1 is a realization of the random variable W and K is
a user-defined Gateaux-differentiable1 convex function. The role of the function K is made
clear in Section 2. In the context of the APP, Problem (2) is called the auxiliary problem and
the function K is called the auxiliary function. Let us now briefly expose how this scheme
reduces to well-known algorithms for particular values of K and jΣ.

The most basic SA scheme is stochastic gradient descent. Assume that U is a Hilbert
space, Uad = U and jΣ = 0. The k-th iteration is given by:

uk+1 = uk − εk∇uj
C(uk, wk+1) . (3)

This is exactly the stochastic APP algorithm (2) with jΣ = 0 and K = 1
2
‖·‖2 where ‖·‖ is

the norm induced by the inner product in U.
In the case where jC is differentiable and jΣ is non-smooth but with a proximal operator

that is easy to compute, proximal methods [1, 28] are particularly efficient, even in a high-
dimensional Hilbert space U. An iteration of the stochastic proximal gradient algorithm
is:

uk+1 ∈ argmin
u∈U

1

2εk
‖uk − u‖

2 +
〈
∇uj

C(uk, wk+1) , u− uk
〉
+ jΣ(u, wk+1) . (4)

This is again the stochastic APP algorithm with K = 1
2
‖·‖2 but with a non zero function jΣ.

The proximal term 1
2εk
‖uk − u‖

2 forces the next iterate uk+1 to be close to uk with respect

to the norm ‖·‖. When jΣ is the indicator of a convex set, the stochastic proximal gradient

1We use [3, Definition 2.43] for the Gateaux-differentiability, which requires the linearity and boundedness
of the directional derivative.
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method reduces to stochastic projected gradient descent and when jΣ = 0, this is just the
regular stochastic gradient descent (3). Proximal methods are well-suited for regularized
regression problems in machine learning for example.

When U is only a Banach space and not a Hilbert space, Equation (3) does not make
sense as uk ∈ U while ∇uj

C(uk, wk+1) ∈ U
⋆, thus the minus operation is not defined. This

difficulty is addressed with the mirror descent algorithm [26]. The original insight of the
method is to map the iterate uk to ∇K(uk) ∈ U

⋆, where K is a Gateaux-differentiable user-
defined function. Then, we do a gradient step in U

⋆ and we map back the resulting point
to the primal space U. The function K is called the mirror map in this setting [9]. There
is also a proximal interpretation of mirror descent: instead of defining proximity with the
norm ‖·‖, the mirror descent algorithm and its stochastic counterpart [25] use a Bregman
divergence [7] that captures the geometric properties of the problem:

uk+1 ∈ argmin
u∈Uad

1

εk
DK(u, uk) +

〈
∇uj

C(uk, wk+1) , u− uk
〉
, (5)

where DK is the Bregman divergence associated with K:

DK(u, u
′) = K(u)−K(u′)− 〈∇K(u′) , u− u′〉 , u, u′ ∈ U .

The function K is sometimes called the distance-generating function as it defines the prox-
imity between u and u′. With K = 1

2
‖·‖2, we get back to the setting of stochastic gradient

descent. The mirror descent algorithm is particularly suited to the case where ∇uj
C has

a Lipschitz constant which is large with respect to the norm ‖·‖ but small with respect to
some other norm that is better suited to the geometry of the problem [25]. For example, in
the finite-dimensional case, the performance of stochastic gradient descent depends on the
Lipschitz constant of ∇uj

C in the Euclidean geometry. Hence, if the problem exhibits a non-
Euclidean geometric structure, stochastic mirror descent may be more efficient. Stochastic
mirror descent corresponds to the stochastic APP with a general function K and jΣ = 0.

The stochastic APP algorithm combines the ideas of mirror descent and of the proximal
gradient method. The iteration defined by (2) can be equivalently written as:

uk+1 ∈ argmin
u∈Uad

1

εk
DK(u, uk) +

〈
∇uj

C(uk, wk+1) , u− uk
〉
+ jΣ(u, wk+1) .

In the sequel, we stick to the formulation (2) and we consider a more general version as
jC is only assumed to be subdifferentiable and we allow for an additive error on the sub-
gradient ∂uj

C(uk, wk+1). Figure 1 summarizes the relationship between the four stochastic
approximation algorithms that we have introduced.

The paper is organized as follows. In Section 2, we describe the setting of the stochas-
tic APP algorithm considered in this paper along with some examples of application. In
Section 3, we prove the measurability of the iterates of the stochastic APP algorithm in a
reflexive separable Banach space. The issue of measurability is not often addressed in the
literature, yet it is essential from a theoretical point of view. When convergence results or
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Stochastic APP (2)

Stochastic Proximal Gradient (4) Stochastic Mirror Descent (5)

Stochastic Gradient Descent (3)

K = 1
2
‖·‖2 jΣ = 0

jΣ = 0 K = 1
2
‖·‖2

Figure 1: Links between the different stochastic approximation algorithms.

efficiency estimates are derived for SA algorithms, the iterates must be random variables so
that the probabilities or the expectations that appear in the computation are well-defined.
For that purpose, we carry out a precise study based on [10, 17] and we adapt some results
of [32] to the infinite-dimensional case. Section 4 deals with convergence results and effi-
ciency estimates. In §4.1, convergence results for the iterates and for the function values
of the stochastic APP algorithm are extended to reflexive separable Banach spaces. These
results already appear in [13] for the Hilbert case. They are also given, again in the Hilbert
case, for stochastic projected gradient in [15] and stochastic mirror descent in the finite-
dimensional setting [25]. In §4.2, we derive efficiency estimates for the expected function
value taken either for the averaged sequence of iterates or for the last iterate. These effi-
ciency estimates take into account the additive error on the subgradient, using the technique
from [16]. To obtain convergence rates for the expected function value of the last iterate,
we adapt the concept of modified Fejér monotonicity [23] to the framework of the stochastic
APP algorithm. The paper ends by some concluding remarks in Section 5.

2 Description of the algorithm and examples

We describe the version of the stochastic APP algorithm that is studied in this paper and
we give some examples of problems that fit in the general framework of Problem (1).

2.1 Setting of the stochastic APP algorithm

The original idea of the APP, first introduced in [11] and extended to the stochastic case
in [13], is to solve a sequence of auxiliary problems whose solutions converge to the optimal
solution of Problem (1). Assume that jC is subdifferentiable with respect to u. At iteration
k of the algorithm, a realization wk+1 of a random variable Wk+1 is drawn. The random vari-
ables W1, . . . ,Wk+1 are independent and identically distributed as W . Then, the following
auxiliary problem is solved:

min
u∈Uad

K(u) + 〈εk(gk + rk)−∇K(uk) , u〉+ εkj
Σ(u, wk+1) , (6)
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where gk ∈ ∂uj
C(uk, wk+1) and we allow for an additive error rk on the gradient. The term

rk represents a numerical error or a bias due to an approximation of the gradient e.g. with a
finite difference scheme. The auxiliary problem is characterized by the choice of the auxiliary
function K. In the introduction, we have given particular choices for K that lead to well-
known algorithms. Depending on the context, the function K allows for an adaptation of the
algorithm to the geometric structure of the data or it can provide decomposition properties
to the algorithm, see Example 2.2. The stochastic APP algorithm is given in Algorithm 1.

Algorithm 1 Stochastic APP algorithm

1: Choose an initial point u0 ∈ U
ad, and a positive sequence {εk}k∈N.

2: At iteration k, draw a realization wk+1 of the random variable Wk+1.
3: Solve Problem (6), denote by uk+1 the solution.
4: k ← k + 1 and go back to 2.

No explicit stopping rule is provided in Algorithm 1. It is indeed difficult to know when to
stop a stochastic algorithm as its properties are of statistical nature. Nevertheless, stopping
rules have been developed in [36, 37] for the Robbins-Monro algorithm. In practice, the
stopping criterion may be a maximal number of evaluations imposed by a budget limitation.

2.2 Some cases of interest for the stochastic APP

The structure of Problem (1) is very general and covers a wide class of problems that arise
in machine learning or stochastic optimal control. We give some cases of interest that can
be cast in this framework.

Example 2.1 Regularized risk minimization in machine learning.
Let (X,X) and (Y,Y) be two measurable spaces, where X and Y denote respectively the

σ-fields on X and Y. Let X ⊂ X and Y ⊂ Y and assume there is a probability distribution ν
on X × Y . Let {(xi, yi)}1≤i≤N ∈ (X × Y )N be a training set which consists of independent
and identically distributed samples of a random vector (X ,Y ) following the distribution ν.
Consider a convex loss function ℓ : Y × Y → R+ and let U be a space of functions from
X to Y . The goal of regularized expected loss minimization is to find a regression function
u♯ ∈ Uad, where Uad ⊂ U, such that:

u♯ ∈ argmin
u∈Uad

∫

X×Y

ℓ
(
y, u(x)

)
ν(dx, dy) +R(u) , (7)

where R is a regularization term. In practice, as the distribution ν is unknown, we solve an
approximate problem, called the regularized empirical risk minimization problem:

u♯ ∈ argmin
u∈Uad

1

N

N∑

i=1

ℓ
(
yi, u(xi)

)
+R(u) . (8)

5



Problem (8) is exactly of the form of Problem (7) if the distribution ν is taken to be the
empirical measure ν = 1/N

∑N
i=1 δ(xi,yi), where δ(xi,yi) denotes the measure of mass one at

(xi, yi) and zero elsewhere. The regularized expected loss minimization Problem (7) is of the
form of Problem (1) with the smooth term JC(u) =

∫
X×Y

ℓ
(
y, u(x)

)
ν(dx, dy) and the possibly

non-smooth term JΣ(u) = R(u).

Example 2.2 Decomposition aspects of the stochastic APP algorithm.
Let n > 0 be a given positive integer. Suppose that U = U1 × . . . × Un and Uad =

Uad
1 × . . . × Uad

n with Uad
i ⊂ Ui for all i ∈ {1, · · · , n}. Moreover, assume that jΣ is an

additive function, that is, jΣ(u,W ) =
∑n

i=1 j
Σ
i (u

i,W ) with ui ∈ Ui, whereas jC induces a
non-additive coupling. In this case, Problem (1) is:

min
u∈Uad

JC(u) +

n∑

i=1

JΣ
i (u

i) ,

where JΣ
i (u

i) = E
(
jΣi (u

i,W )
)
. We apply the stochastic APP algorithm with an additive

auxiliary function K(u) =
∑n

i=1Ki(u
i). Let ū ∈ U be given, a canonical choice for Ki is:

Ki(u
i) = JC(ū1:i−1, ui, ūi+1:n), i ∈ {1, . . . , n} ,

where ūi:j = (ūi, . . . , ūj) for 1 ≤ i ≤ j ≤ n and ū1:0 denotes the empty vector by conven-
tion. Another classical choice is K = 1

2
‖·‖2. With an additive function K, the auxiliary

problem (6) can be split into n independent subproblems that can be solved in parallel. At
iteration k of the stochastic APP algorithm, the i-th subproblem is:

min
ui∈Uad

i

Ki(u
i) +

〈
εk(g

i
k + rik)−∇Ki(u

i
k) , u

i
〉
+ εkj

Σ
i (u

i, wk+1) , (9)

where gik ∈ ∂uij
C(uk, wk+1) and rik is an additive error on ∂uij

C(uk, wk+1). This example
shows that the stochastic APP encompasses decomposition techniques.

3 Measurability of the iterates of the stochastic APP al-

gorithm

Convergence results for SA algorithms often consist in proving the almost sure convergence
of the sequence of iterates

{
Uk

}
k∈N

to the optimal value u♯. Other results provide non-

asymptotic bounds for the expectation of function values E
(
J(Uk)−J(u

♯)
)

or the quadratic

mean E

(∥∥Uk − u
♯
∥∥2
)

for example. In order for these expectations and probabilities to be

well-defined, Uk must be a measurable mapping from Ω to U. However, as far as we know,
the current literature does not provide constructive conditions under which the measurability
of Uk is ensured. We aim at filling this theoretical gap by proving the measurability of the
iterates of the stochastic APP algorithm.
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3.1 A general measurability result

This section is devoted to the proof of a general measurability result in Theorem 3.23. We
obtain the measurability of the iterates of the stochastic APP algorithm as a consequence
in Theorem 3.27.

Recall that (Ω,A,P) is a probability space and that (W,B(W)) is a measurable topo-
logical vector space. The Banach space U is equipped with the Borel σ-field B(U). The
topological dual of U, equipped with the topology of the norm induced by the primal norm,
is denoted by U

⋆, and its Borel σ-field is B(U⋆). We consider the following problem:

min
u∈Uad

{
Φ(ω, u) := K(u) +

〈
ϕ(ω) , u

〉
+ εjΣ

(
u,W (ω)

)}
, (10)

where ε > 0 is a given positive real number and ϕ : Ω→ U
⋆ is a given measurable function.

The goal is to show the existence of a measurable mapping Ũ such that for all ω ∈ Ω, Ũ (ω) ∈
argminu∈Uad Φ(ω, u). The mapping ω 7→ argminu∈Uad Φ(ω, u) is a set-valued mapping.

3.1.1 Some tools from the theory of set-valued mappings

We recall some results from the theory of set-valued mappings that are used to state and
prove the measurability result of Theorem 3.23. The definitions and propositions are mostly
taken from [10, 17]. Theorem 3.23 requires U to be a reflexive separable Banach space.
However, all results from §3.1.1 are more generally valid for U being a Polish space. For two
sets X, Y , we denote by Γ : X ⇒ Y a set-valued mapping Γ from X to Y . This means that
for x ∈ X, Γ(x) ⊂ Y or in other words that Γ(x) ∈ P(Y ) where P(Y ) is the power set of Y .

Definition 3.1 (Measure completion) Let (Ω,A) be a measurable space.

• Let µ be a measure on (Ω,A). The µ-completion of A is the σ-field Aµ generated by
A ∪ {A′ ∈ P(Ω) |A′ ⊂ A,A ∈ A and µ(A) = 0}, that is, the union of A and the
µ-negligible sets. The σ-field A is said to be complete for the measure µ if A = Aµ.

• The σ-field Â of universally measurable sets is defined by Â =
⋂
µAµ where µ ranges

over the set of positive σ-finite measures on the measurable space (Ω,A).

Definition 3.2 (Measurable selection) Let (Ω,A) be a measurable space and U be a sep-
arable Banach space. Let Γ : Ω ⇒ U be a set-valued mapping. A function γ : Ω → U is a
measurable selection of Γ if γ(ω) ∈ Γ(ω) for all ω ∈ Ω and γ is measurable.

Definition 3.3 (Measurable mapping) Let (Ω,A) be a measurable space and U be a sep-
arable Banach space. A set-valued mapping Γ : Ω ⇒ U is Effros-measurable if, for every
open set O ⊂ U, we have:

Γ−(O) =
{
ω ∈ Ω, Γ(ω) ∩ O 6= ∅

}
∈ A .

Remark 3.4 The Effros-measurability of a set-valued mapping Γ : Ω ⇒ U is equivalent to
the measurability of Γ viewed as a function from Ω to P(U).
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Proposition 3.5 [10, Theorem III.9] Let (Ω,A) be a measurable space and U be a separable
Banach space. Let Γ : Ω ⇒ U be a non-empty-valued and closed-valued mapping. Then the
following statements are equivalent:

(i) Γ is Effros-measurable.

(ii) Γ admits a Castaing representation: there exists a sequence of measurable functions
{γn}n∈N such that for all ω ∈ Ω, Γ(ω) = cl

{
γn(ω), n ∈ N

}
where cl denotes the

closure of a set.

Remark 3.6 An important consequence of Proposition 3.5 is that any Effros-measurable
mapping admits a measurable selection. This result is usually known as the Kuratowski–Ryll-
Nardzewski selection theorem [21].

Proposition 3.7 [10, Proposition III.23: Sainte-Beuve’s projection theorem] Let (Ω,A) be
a measurable space and (U,B(U)) be a separable Banach space equipped with its Borel σ-field.

Let G ∈ A ⊗ B(U). Denote by projΩ (G) the projection of G on Ω. Then, projΩ (G) ∈ Â,
where we recall that Â is the σ-field of universally measurable sets.

Proposition 3.8 [10, Proposition III.30] Let (Ω,A, µ) be a measure space where A is a
complete σ-field, that is, A = Aµ and let U be a separable Banach space. Let Γ : Ω ⇒ U be
a non-empty valued and closed-valued mapping. The following statements are equivalent:

(i) Γ is Effros-measurable.

(ii) For every closed set C ⊂ U, we have:

Γ−(C) = {ω ∈ Ω, Γ(ω) ∩ C 6= ∅} ∈ A .

Remark 3.9 When U is finite-dimensional, Proposition 3.8 is true in any measurable space
(Ω,A); that is, the completeness assumption of the σ-field A is not needed [32, Theorem
14.3]. In the infinite-dimensional setting, (ii) implies (i) remains true in any measurable
space (Ω,A) [10, Proposition III.11]. The completeness assumption is only required to prove
(i) implies (ii) when U is infinite-dimensional. Essentially, in the finite-dimensional case,
the proof of (i) implies (ii) relies on the fact that U is locally compact. In the infinite-
dimensional case, U is not locally compact and the proof uses the Sainte-Beuve’s projection
theorem.

Definition 3.10 (Graph and epigraph) Let (X,X) be a measurable space and U be a
Banach space. Let h : X→ R∪{+∞} be a function and Γ : X ⇒ U be a set-valued mapping.

• The graph and the epigraph of h are respectively defined by:

gphh =
{
(x, α) ∈ X× R, h(x) = α

}
,

epi h =
{
(x, α) ∈ X× R, h(x) ≤ α

}
.
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• The graph of Γ is defined by:

gphΓ =
{
(x, u) ∈ X× U, u ∈ Γ(x)

}
.

Definition 3.11 (Normal integrand) Let (Ω,A) be a measurable space and U be a Ba-
nach space. A function f : Ω × U → R ∪ {+∞} is a normal integrand if it satisfies the
following conditions:

(i) For all ω ∈ Ω, f(ω, ·) is l.s.c.,

(ii) The epigraphical mapping Sf : Ω ⇒ U × R defined by Sf (ω) = epi f(ω, ·) is Effros-
measurable.

Remark 3.12 The point (i) of Definition 3.11 is equivalent to Sf being closed-valued. In this
paper, we consider the definition of the normal integrand used by Hess [17]. It differs from the
definition of Castaing [10] where the point (ii) is replaced by the A⊗B(U)-measurability of
f . We shall see in Proposition 3.17 that the Effros-measurability of the epigraphical mapping
Sf implies the A ⊗ B(U)-measurability of f . Note also that if A is complete for a positive
σ-finite measure µ, these two definitions are equivalent, see [10, Proposition III.30].

Definition 3.13 (Carathéodory integrand) Let (Ω,A) be a measurable space and U be
a separable Banach space. A function f : Ω × U → R (finite-valued) is a Carathéodory
integrand if it satisfies the following conditions:

(i) For all u ∈ U, f(·, u) is measurable.

(ii) For all ω ∈ Ω, f(ω, ·) is continuous.

Proposition 3.14 [17, Proposition 2.5] If f is a Carathéodory integrand, then it is a normal
integrand.

Proposition 3.15 [10, Proposition III.13] Let (Ω,A) be a measurable space and (U,B(U))
be a separable Banach space equipped with its Borel σ-field. If Γ : Ω ⇒ U is an Effros-
measurable, closed-valued mapping, then gphΓ ∈ A⊗B(U).

We now recall a technical result on the Borel σ-field of a product space that is used in
the proof of subsequent propositions.

Proposition 3.16 [5, Proposition 7.13] Let
{(

Xi,B(Xi)
)}

i∈N
be a sequence of measurable

separable topological spaces equipped with their Borel σ-fields. For n ∈ N, let Yn =
∏n

i=1Xi

and let Y =
∏

i∈N Xi. Then, the Borel σ-field of the product space Yn (resp. Y) coincides
with the product of the Borel σ-fields of {Xi}

n
i=1 (resp. {Xi}i∈N), that is:

B (Yn) =
n⊗

i=1

B(Xi) and B (Y) =
⊗

i∈N

B(Xi) .
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The following proposition shows that a normal integrand f : Ω × U → R ∪ {+∞}, as
defined in [17], is jointly A⊗B(U)-measurable. This result is given in [32, Corollary 14.34]
when U = R

n but is extended here in the Banach case.

Proposition 3.17 Let (Ω,A) be a measurable space and (U,B(U)) be a separable Banach
space equipped with its Borel σ-field. If f : Ω× U→ R ∪ {+∞} is a normal integrand, then
f is A⊗B(U)-measurable.

Proof. The function f is a normal integrand so its epigraphical mapping Sf is Effros-measurable
and closed-valued. Moreover U is separable, so by Proposition 3.15, we get that:

gphSf =
{
(ω, u, α) ∈ Ω× U× R, f(ω, u) ≤ α

}
∈ A⊗B(U× R) .

Using that U and R are separable, we have B(U× R) = B(U) ⊗ B(R) by Proposition 3.16. Then,
for each α ∈ R, we get:

f−1
(
]−∞, α]

)
=
{
(ω, u) ∈ Ω× U, f(ω, u) ≤ α

}
∈ A⊗B(U) .

This shows that f is A⊗B(U)-measurable. ✷

The following proposition is an adaptation of [32, Proposition 14.45(c)] on the composi-
tion operations on normal integrands to the Banach case. The separability of U is a crucial
assumption that is used explicitly in the proof of Proposition 3.18 and that appears in most
of the results of this part. Essentially, as only a countable union of measurable sets is measur-
able, countable dense subsets of a separable space are often used in proofs of measurability.
Moreover, in the infinite-dimensional setting, we must assume the completeness of the σ-field
A because we appeal to Proposition 3.8 in the proof.

Proposition 3.18 Let (Ω,A, µ) be a measure space where A is a complete σ-field, that is,
A = Aµ. Let (W,B(W)) be a topological measurable space and (U,B(U)) be a separable
Banach space equipped with its Borel σ-field. Let h : U ×W → R ∪ {+∞} be l.s.c. and
W : Ω→W be a measurable mapping. Then:

f : (ω, u) ∈ Ω× U 7→ h
(
u,W (ω)

)
∈ R ∪ {+∞}

is a normal integrand.

Proof. We have that h is l.s.c. so f(ω, ·) = h(·,W (ω)) is l.s.c. for all ω ∈ Ω. It remains to
prove that the epigraphical mapping Sf is Effros-measurable. As h is l.s.c., the set epih is closed.
Define:

G : (ω, u, α) ∈ Ω× U× R 7→ (u,W (ω), α) ∈ U×W× R .

Then, let:

Q(ω) =
[
(U× R)× epih

]
∩ gphG(ω, ·, ·) ,

=
{ (

(u, α), (u,W (ω), α)
)

such that h(u,W (ω)) ≤ α, (u, α) ∈ U× R
}
,

=
{ (

(u, α), (u,W (ω), α)
)

such that f(ω, u) ≤ α, (u, α) ∈ U× R
}
.
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Now, define the projection operator P as:

P : (U× R)× (U ×W× R)→ (U× R) ,

((u, α), (v,w, β)) 7→ (u, α)

so that we have:

Sf (ω) =
{
(u, α) ∈ U× R, f(ω, u) ≤ α

}
= P

(
Q(ω)

)
.

• Let Γ be the set valued mapping defined by Γ : ω ∈ Ω 7→ gphG(ω, ·, ·) ∈ (U×R)×(U×W×R).
We show that Γ is Effros-measurable. As U is separable, there exists a countable dense
subset {(bn, rn), n ∈ N} of U × R. For n ∈ N, let γn(ω) =

(
(bn, rn), G(ω, bn, rn)

)
. As

G(ω, bn, rn) = (bn,W (ω), rn) and W is measurable, we get that γn is measurable. Then, we
have Γ(ω) = cl{γn(ω), n ∈ N}. Hence, {γn}n∈N is a Castaing representation of Γ. Moreover,
Γ is closed-valued and non-empty valued so by Proposition 3.5, we deduce that Γ is Effros-
measurable.

• Let C ⊂ (U× R)× (U×W× R) be a closed set. We have:

Q−(C) =
{
ω ∈ Ω,

[
(U× R)× epih

]
∩ Γ(ω) ∩ C 6= ∅

}
,

= Γ−
(
C ∩

[
(U× R)× epih

])
.

As epih is closed, the set C ∩
[
(U × R) × epih

]
is closed. By assumption, the σ-field A is

complete and we have shown that Γ is Effros-measurable, therefore by Proposition 3.8, we
get that Γ−

(
C ∩

[
(U × R)× epih

])
= Q−(C) ∈ A. Hence, Q is Effros-measurable.

• Finally, for every open set V ⊂ U× R, as Sf (ω) = P
(
Q(ω)

)
, we have:

S−
f (V ) =

{
ω ∈ Ω, Q(ω) ∩ P−1(V ) 6= ∅

}
.

The projection P is continuous so P−1(V ) is open. As Q is Effros-measurable, we get that
S−
f (V ) ∈ A, that is, Sf is Effros-measurable.

This completes the proof. ✷

We now give the main results that are used to prove the measurability of the iterates
of the stochastic APP. The following proposition is a slight extension of [18, Proposition
4.2(c)].

Proposition 3.19 Let (Ω,A) be a measurable space and (U,B(U)) be a separable Banach
space equipped with its Borel σ-field. Let Uad be a closed subset of U. Let f : Ω × U →
R ∪ {+∞} be an A ⊗ B(U)-measurable function. Let M : Ω ⇒ U be the argmin set-valued
mapping:

M(ω) = argmin
u∈Uad

f(ω, u) .

Assume that the argmin mapping M is non-empty valued, then M admits an Â-measurable
selection.
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Proof. Let α ∈ R and m(ω) = minu∈Uad f(ω, u). The function m is well-defined as M is
non-empty valued. Let:

H = (Ω× Uad) ∩ {(ω, u) ∈ Ω× U, f(ω, u) < α} .

We have:

{ω ∈ Ω, m(ω) < α} = projΩ (H) ,

where projΩ (H) is the projection of H on Ω. As f is A⊗B(U)-measurable and Uad is closed hence
measurable, we get that H ∈ A ⊗ B(U). From Proposition 3.7, we deduce that m−1 (]−∞, α[) is
Â-measurable so that m is Â-measurable. As A ⊂ Â, we have that A⊗B(U) ⊂ Â⊗B(U), therefore
the function f is Â⊗B(U)-measurable. We can write:

M(ω) =
{
u ∈ Uad, f(ω, u) = m(ω)

}
,

so, gphM =
{
(ω, u) ∈ Ω× Uad, f(ω, u) = m(ω)

}
. Therefore, gphM is Â⊗B(U)-measurable as the

inverse image of {0} under the Â⊗B(U)-measurable mapping (ω, u) 7→ f(ω, u)−m(ω). Let O be
an open subset of U. We have:

M−(O) = projΩ ((Ω×O) ∩ gphM) .

As (Ω × O) ∩ gphM ∈ Â⊗ B(U), by Proposition 3.7, we get that M−(O) ∈
ˆ̂
A = Â. Hence, M is

Effros-measurable for the σ-field Â and is non-empty-valued by assumption, so by Proposition 3.5,

M admits an Â-measurable selection. ✷

Corollary 3.20 Let (Ω,A, µ) be a complete probability space, i.e. A = Aµ. Let (U,B(U))
be a separable Banach space equipped with its Borel σ-field. Let f : Ω×U→ R∪{+∞} be an
A ⊗ B(U)-measurable function. Suppose that the argmin mapping M is non-empty valued.
Then, M admits an A-measurable selection.

Proof. As µ is a positive σ-finite measure, we have Â =
⋂
µAµ ⊂ Aµ = A. By Proposition 3.19,

M admits an Â-measurable selection, which is also an A-measurable selection. ✷

Proposition 3.21 [17, Theorem 4.6] Let (Ω,A) be a measurable space and U be a separable
Banach space with separable topological dual U⋆. Let f : Ω × U → R ∪ {+∞} be a proper
normal integrand and U : Ω → U be a measurable mapping. Then, the set-valued mapping
DU : Ω ⇒ U

⋆ defined by

DU (ω) = ∂uf
(
ω,U (ω)

)

=
{
v ∈ U

⋆, f(ω, u) ≥ f(ω,U (ω)) +
〈
v , u−U (ω)

〉
, ∀u ∈ U

}
,

is Effros-measurable.
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3.1.2 Existence of a measurable selection for the argmin mapping of Φ

In this section, we make use of the tools introduced in §3.1.1 to prove our main measurability
result. We introduce the argmin set-valued mapping M : Ω ⇒ U for Problem (10):

M(ω) = argmin
u∈Uad

{
Φ(ω, u) := K(u) +

〈
ϕ(ω) , u

〉
+ εjΣ

(
u,W (ω)

)}
. (11)

We consider the following assumptions:

(A1) The space U is a reflexive, separable Banach space. This implies in particular that U⋆

is separable.

(A2) Uad is a non-empty closed convex subset of U.

(A3) jΣ : U×W→ R is jointly l.s.c. and for all w ∈W, jΣ(·, w) is proper and convex.

(A4) The function K : U → R is proper, convex, l.s.c. and Gateaux-differentiable on an
open set containing Uad.

(A5) For all ω ∈ Ω, the function u 7→ Φ(ω, u) is coercive on Uad meaning that when ‖u‖ →
+∞ with u ∈ Uad, we have Φ(ω, u)→ +∞. This assumption is automatically satisfied
if Uad is bounded.

(A6) The σ-field A is complete for the measure P, that is, A = AP.

(A7) The function W : Ω→W is measurable.

(A8) The function ϕ : Ω→ U
⋆ is measurable.

The objective of this part is to prove that M defined in Equation (11) admits a measurable
selection. We start by a classical theorem from optimization theory giving conditions for the
existence and uniqueness of a minimizer Φ(ω, ·).

Theorem 3.22 Let ω ∈ Ω. Under Assumptions (A1)-(A5), M(ω) is non-empty, closed and
convex. Moreover, if K is strongly convex, then M(ω) is a singleton, meaning that Φ(ω, ·),
defined in (11), has a unique minimizer.

Proof. The objective function Φ(ω, ·) is the sum of three convex, l.s.c. functions, it is then
convex and l.s.c. By (A5), Φ(ω, ·) is also coercive. As U is a reflexive Banach space (A1) and Uad is
non-empty, closed and convex (A2), the set of minimizers M(ω) is non-empty [8, Corollary III.20].
The convexity of Φ(ω, ·) ensures that M(ω) is convex and the lower-semicontinuity of Φ(ω, ·) ensures
that M(ω) is closed.

If K is strongly convex, then Φ(ω, ·) is strongly convex, hence the minimizer of Φ(ω, ·) is unique

so M(ω) is a singleton.2 ✷

2In the case where K is strongly convex, the coercivity assumption is not needed as it is implied by the
strong convexity of Φ(ω, ·).
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Theorem 3.23 Under Assumptions (A1)-(A8), the mapping M defined in Equation (11)
admits a measurable selection.

Proof. We start by proving that Φ(ω, u) = K(u) +
〈
ϕ(ω) , u

〉
+ εjΣ

(
u,W (ω)

)
is a normal

integrand:

• As the function K is l.s.c. (A4), (ω, u) 7→ K(u) is a normal integrand. Indeed, its epigraphical
mapping ω 7→ {(u, α) ∈ U×R, K(u) ≤ α} is a constant function of ω and is then measurable.

• The Banach space U is separable (A1) and A is complete (A6). The space U
⋆ equipped

with its Borel σ-field B(U⋆) is a measurable space. The function ϕ is measurable (A8) and
the function (u, v) ∈ U × U

⋆ 7→ 〈v , u〉 ∈ R is continuous hence, in particular, l.s.c.. Then,
Proposition 3.18 applies, showing that the function (ω, u) 7→

〈
ϕ(ω) , u

〉
is a normal integrand.

• With the same reasoning, using that U is separable (A1), W is measurable (A7), A is
complete (A6) and jΣ is l.s.c. (A3), we use Proposition 3.18 with h = jΣ to deduce that
(ω, u) 7→ jΣ

(
u,W (ω)

)
is a normal integrand.

The function Φ is then a normal integrand as the sum of three normal integrands. As U is separa-

ble (A1), we use Proposition 3.17 to get that Φ is A⊗B(U)-measurable. In addition, using (A2)-(A5)

to apply Theorem 3.22 ensures that M is non-empty valued. Moreover, the σ-field A is complete

for P (A6). Hence, by Corollary 3.20, we conclude that M : ω 7→ argminu∈Uad Φ(ω, u) admits a

measurable selection. ✷

Corollary 3.24 Under Assumptions (A1)-(A8) and if we additionally assume that K is
strongly convex, then for all ω ∈ Ω, Φ(ω, ·), defined in (11), has a unique minimizer and the
mapping:

Ũ (ω) = argmin
u∈Uad

Φ(ω, u) ∈ U

is measurable, that is, Ũ is a random variable.

3.2 Application to the stochastic APP algorithm

We aim at studying the iterations of the stochastic APP in terms of random variables so we
consider the argmin set-valued mapping M : Ω ⇒ U defined by:

M(ω) = argmin
u∈Uad

K(u) +
〈
ε(G(ω) +R(ω))−∇K(U (ω)) , u

〉
+ εjΣ(u,W (ω)) , (12)

with ε > 0, U (ω) ∈ Uad, W (ω) ∈ W, G(ω) ∈ ∂uj
C(U (ω),W (ω)) and R(ω) ∈ U

⋆. An
iteration of the stochastic APP algorithm consists in solving Problem (12), which is exactly
of the form of Problem (11) with:

ϕ(ω) = ε
(
G(ω) +R(ω)

)
−∇K

(
U (ω)

)
. (13)

In addition to (A1)-(A7), we assume now:
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(A9) The function jC : U×W → R that appears in Problem (1) is jointly l.s.c. and for all
w ∈W, jC(·, w) is proper, convex and subdifferentiable on an open set containing Uad.

(A10) The mappings U : Ω→ Uad and R : Ω→ U
⋆ are measurable.

In (A10), we assume that the mappings U and R are random variables. We cannot do
the same for the mapping G as it must satisfy G(ω) ∈ ∂uj

C(U (ω),W (ω)) for all ω ∈ Ω. In
the following proposition, we ensure that there exists a measurable mapping satisfying this
relationship.

Proposition 3.25 Under Assumptions (A1), (A6), (A7), (A9), (A10), the subgradient map-
ping Γ : ω 7→ ∂uj

C(U (ω),W (ω)) ⊂ U
⋆ admits a measurable selection G : Ω→ U

⋆.

Proof. Let f(ω, u) = jC
(
u,W (ω)

)
for ω ∈ Ω, u ∈ U.

• Using that U is separable (A1), W is measurable (A7), A is complete (A6) and jC is l.s.c.
(A9), Proposition 3.18 with h = jC shows that f is a normal integrand.

• We have that for all ω ∈ Ω, Γ(ω) = ∂uf
(
ω,U (ω)

)
. With (A9), we get that f(ω, ·) is proper

for all ω ∈ Ω. We have that U and U
⋆ are separable (A1), U is measurable (A10) and f is a

normal integrand, so by Proposition 3.21, Γ is Effros-measurable.

Assumption (A9) ensures that Γ is non-empty valued. In addition, Γ is Effros-measurable and

closed-valued in U
⋆ which is separable. By Proposition 3.5, Γ admits a measurable selection. This

means that there exists a measurable function G : Ω→ U
⋆ such that for all ω ∈ Ω, G(ω) ∈ Γ(ω) =

∂uj
C(U (ω),W (ω)). ✷

In the sequel, G denotes a measurable selection of Γ. In order to apply Theorem 3.23 to
prove that the iterates of the stochastic APP algorithm are measurable, we must ensure that
Assumption (A8) is satisfied, that is, we must show that the mapping ϕ defined in (13) is
measurable. We prove in Proposition 3.26 that Assumption (A8) can be deduced from the
other assumptions.

Proposition 3.26 Under Assumptions (A1), (A4), (A7), (A9), (A10), the function ϕ is
measurable.

Proof. We have already seen in the proof of Theorem 3.23 that Λ : (ω, u) 7→ K(u) is a normal

integrand. Assumption (A4) ensures that Λ(ω, ·) is proper for all ω ∈ Ω. We have that U and U
⋆

are separable (A1), U is measurable (A10), so ω 7→ ∇uΛ
(
ω,U (ω)

)
= ∇K

(
U (ω)

)
is measurable by

Proposition 3.21. Finally, R is also measurable (A10), so ϕ is measurable as a sum of measurable

functions. ✷

From Theorem 3.23 and Proposition 3.26, we have obtained that under Assumptions (A1)-
(A7), (A9),(A10), the mapping M defined in (12) admits a measurable selection. Now, we
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give the measurability result for the iterates of the stochastic APP algorithm, which is defined
by the following recursion for ω ∈ Ω and k ∈ N:

M0(ω) = {u0} ⊂ Uad , (14)

Mk+1(ω) = argmin
u∈Uad

K(u) +
〈
εk
(
Gk(ω) +Rk(ω)

)
−∇K

(
Uk(ω)

)
, u
〉

+ εkj
Σ
(
u,Wk+1(ω)

)
,

Theorem 3.27 Under Assumptions (A1)-(A7), (A9), (A10), for all k ∈ N, the mapping
Mk that defines the k-th iteration of the stochastic APP algorithm (14) admits a measurable
selection.

Proof. The mapping M0 admits a measurable selection defined by U0(ω) = u0. Then, by

iteratively using the fact that (12) admits a measurable selection, we deduce that for all k ∈ N, Mk

admits a measurable selection. ✷

Corollary 3.28 Assume that (A1)-(A7), (A9), (A10) are satisfied and that the auxiliary
mapping K is strongly convex. Then, for all k ∈ N, the unique mapping Uk that defines the
k-th iterate of the stochastic APP algorithm is measurable.

Proof. If K is strongly convex, from Corollary 3.24, we get that Mk is single-valued, so the

iterate Uk is uniquely defined. The measurability of Uk follows from Theorem 3.27. ✷

Remark 3.29 In [32, Chapter 14], Rockafellar exposes a whole set of measurability re-
sults in the case where U is finite-dimensional. The finite-dimensional framework allows to
avoid some technicalities of the infinite-dimensional case. In particular, the completeness
assumption (A6) is not needed as shown by [32, Proposition 14.37] which is the analogous
of Proposition 3.19 in the finite-dimensional case.

Remark 3.30 In Problem (1), when U is a Hilbert space, Uad = U, jΣ = 0 and jC is
assumed to be differentiable with respect to u, we can use stochastic gradient descent. Then,
we have the explicit formula:

Uk+1 = Uk − εk∇uj
C(Uk,Wk+1) . (15)

Under Assumptions (A1), (A7), (A9), the measurability of the iterates is directly obtained
by induction using the explicit formula (15).

4 Convergence results and efficiency estimates

In this section, we prove the convergence of the stochastic APP algorithm for solving Prob-
lem (1). In addition, we give efficiency estimates for the convergence of function values.
Some technical results for the proofs of this section are given in the appendix.
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4.1 Convergence of the stochastic APP algorithm

Let {Fk}k∈N be a filtration with Fk = σ
(
W1, . . . ,Wk

)
, where

(
W1, . . . ,Wk

)
are the random

variables that appear in the successive iterations of the stochastic APP algorithm (14) defined
on the probability space (Ω,A,P). Recall that, in (14), Gk ∈ ∂uj

C(Uk,Wk+1)
3 is an

unbiased stochastic gradient, whereas Rk represents a bias on the gradient.
Convergence results for the stochastic APP algorithm are already proved in [12, 13] when

U is a Hilbert space (possibly infinite-dimensional) and when there is no bias Rk. In [15],
convergence of the projected stochastic gradient descent is proved in a Hilbert space and
with a bias Rk. For stochastic mirror descent in the finite-dimensional setting, convergence
results and efficiency estimates can be found in [25], but no bias is considered. Here, we
present convergence results for the stochastic APP algorithm in a reflexive separable Banach
space and we allow for a bias Rk, hence generalizing previous results.

In addition to (A1)-(A7), (A9), (A10), we make the following assumptions:

(A11) The functions jC(·, w) : U→ R and jΣ(·, w) : U→ R have linearly bounded subgradi-
ent in u, uniformly in w ∈W:

{
∃c1, c2 > 0 , ∀(u, w) ∈ Uad ×W , ∀r ∈ ∂uj

C(u, w) , ‖r‖ ≤ c1‖u‖+ c2 .

∃d1, d2 > 0 , ∀(u, w) ∈ Uad ×W , ∀s ∈ ∂uj
Σ(u, w) , ‖s‖ ≤ d1‖u‖+ d2 .

(A12) The objective function J is coercive on Uad.

(A13) The function K is b-strongly convex for b > 0, meaning that for all u, v ∈ U:

K(v) ≥ K(u) +
〈
∇K(u) , v − u

〉
+
b

2
‖u− v‖2 ,

and ∇K is LK-Lipschitz continuous with LK > 0, that is, for all u, v ∈ U:

‖∇K(v)−∇K(u)‖⋆ ≤ LK ‖v − u‖ ,

where ‖·‖⋆ is the dual norm on U
⋆.

(A14) The sequence of step sizes {εk}k∈N, with εk > 0 for all k, satisfies
∑

k εk = +∞ and∑
k ε

2
k < +∞.

(A15) Each Rk is measurable with respect to Fk+1, the sequence of random variables
{
Rk

}
k∈N

is P-almost surely (P-a.s.) bounded,4 and we have:

∑

k∈N

εkE
( ∥∥Rk

∥∥ ∣∣ Fk
)
< +∞ P-a.s.

3In this expression, the ∈ relationship is to be understood ω by ω.
4The set

{
ω ∈ Ω, {R

k
(ω)}k∈N is unbounded

}
is negligible.
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(A16) For all integers k ≥ 1, the integrand τk : U × Ω → R defined by τk(u, ω) = (jC +
jΣ)(u,Wk(ω)) for all (u, ω) ∈ U×Ω is A-quasi-integrable [35]. That is, for each k ≥ 1,
there exists an integrable mapping ψk : Ω→ R such that ψk ≤ τk(u, ·) for all u ∈ U.

We make some comments on Assumptions (A11)-(A16):

• Assumption (A11) is a relaxation of the standard assumption of bounded gradients,
used in [25] for example.

• Assumption (A12) is used to ensure the existence of solutions to Problem (1) when Uad

is an unbounded domain. When Uad is bounded, Assumption (A12) is automatically
satisfied.

• Assumption (A13) is related to the user-defined function K and not to the intrinsic
characteristics of the minimization problem, thus it is not restrictive.

• Assumptions (A14) and (A15) are standard to ensure the convergence of SA schemes.
In particular, (A15) ensures that the noise on the gradient vanishes sufficiently fast.

• Assumption (A16) is a technical assumption used to ensure that the conditional expec-
tation of the integrand τk is defined. As a sufficient condition, assuming that jC + jΣ

is nonnegative would ensure Assumption (A16).

Assumptions (A1)-(A3), (A9) and (A12) ensure that J is well-defined, convex, l.s.c.,
coercive and attains its minimum on Uad. Hence, Problem (1) has a non-empty set of
solutions U ♯. From now on, K is supposed to be b-strongly convex, so by Corollary 3.28, the
problem solved at each iteration k of the stochastic APP algorithm admits a unique solution
Uk+1, which is measurable.

We start by a technical lemma which gives a key inequality that will be used for the
proof of convergence of the stochastic APP algorithm in Theorem 4.2 and to derive efficiency
estimates in Theorems 4.5 and 4.7.

Lemma 4.1 Let v ∈ Uad and consider the Lyapunov function:

ℓv(u) = K(v)−K(u)−
〈
∇K(u) , v − u

〉
, u ∈ Uad . (16)

Let {uk}k∈N be the sequence of iterates of Algorithm 1 corresponding to the realization
{wk}k∈N of the stochastic process

{
Wk

}
k∈N

. Then, under Assumptions (A9), (A11) and
(A13), there exist constants α, β, γ, δ > 0 such that, for all k ∈ N:

ℓv(uk+1) ≤
(
1 + αε2k +

2

b
εk‖rk‖

)
ℓv(uk) + βε2kℓv(uk+1)

+
(
γε2k + εk‖rk‖+ δ(εk‖rk‖)

2
)

+ εk
(
(jC + jΣ)(v, wk+1)− (jC + jΣ)(uk, wk+1)

)
, (17)

where we recall that b > 0 is the strong convexity constant of K, εk is the step size and rk is
the additive error on the stochastic gradient at iteration k of the algorithm.
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Proof. By (A13), K is b-strongly convex implying that:

b

2
‖u− v‖2 ≤ ℓv(u) . (18)

This shows that ℓv is lower bounded and coercive. Let k ∈ N, as uk+1 is solution of (6), it solves the
following variational inequality, characterizing the minimum of the sum of a Gateaux-differentiable
and a non-differentiable function [14, Chapter II, Proposition 2.2]: for all u ∈ Uad,

〈
∇K(uk+1)−∇K(uk) + εk(gk + rk) , u− uk+1

〉

+ εk(j
Σ(u,wk+1)− jΣ(uk+1, wk+1)) ≥ 0 . (19)

We have:

ℓv(uk+1)− ℓv(uk) = K(uk)−K(uk+1)−
〈
∇K(uk) , uk − uk+1

〉
︸ ︷︷ ︸

T1

+
〈
∇K(uk)−∇K(uk+1) , v − uk+1

〉
︸ ︷︷ ︸

T2

. (20)

As K is convex (A13), we get T1 ≤ 0. The optimality condition (19) at u = v implies:

T2 ≤ εk
〈
gk + rk , v − uk+1

〉
+ εk

(
jΣ(v,wk+1)− jΣ(uk+1, wk+1)

)

≤ εk

( 〈
gk , v − uk

〉
+ jΣ(v,wk+1)− jΣ(uk, wk+1)︸ ︷︷ ︸

T3

+
〈
rk , v − uk

〉
︸ ︷︷ ︸

T4

+
〈
gk + rk , uk − uk+1

〉
+ jΣ(uk, wk+1)− jΣ(uk+1, wk+1)︸ ︷︷ ︸

T5

)
.

• As jC(·, wk+1) is convex (A9), we get:

T3 ≤
(
jC + jΣ

)
(v,wk+1)−

(
jC + jΣ

)
(uk, wk+1) .

• By Cauchy-Schwarz inequality, using a ≤ a2 + 1 for a ≥ 0 and (18), we get:

T4 ≤ ‖rk‖‖v − uk‖ ≤ ‖rk‖
(
‖v − uk‖

2 + 1
)
≤ ‖rk‖+

2

b
ℓv(uk)‖rk‖ .

• The optimality condition (19) at u = uk and the strong monotonicity of ∇K, that arises
from (A13), imply:

b
∥∥uk+1 − uk

∥∥2 ≤ εk
(
〈gk + rk , uk − uk+1〉

+ jΣ(uk, wk+1)− jΣ(uk+1, wk+1)
)
,

(21)

where we recognize εkT5 as the right-hand side. Using the linearly bounded subgradient
property of jΣ (A11) with the result of Proposition A.4, we get:

∣∣jΣ(uk, wk+1)− jΣ(uk+1, wk+1)
∣∣

≤
(
d1 max

{
‖uk‖, ‖uk+1‖

}
+ d2

)
‖uk − uk+1‖ ,

≤
(
d1
(
‖uk‖+ ‖uk+1‖

)
+ d2

)
‖uk − uk+1‖ .
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With Cauchy-Schwarz inequality on the first term of T5, we have:

T5 ≤ ‖gk + rk‖‖uk − uk+1‖+
(
d1‖uk‖+ d1‖uk+1‖+ d2

)
‖uk − uk+1‖ .

By the triangular inequality and Assumption (A11) for jC , we deduce that there exist positive
constants e1, e2 and e3 such that:

T5 ≤
(
e1‖uk‖+ e2‖uk+1‖+ e3 + ‖rk‖

)
‖uk+1 − uk‖ .

By Inequality (21), we then get:

∥∥uk+1 − uk
∥∥ ≤ εk

b

(
e1‖uk‖+ e2‖uk+1‖+ e3 + ‖rk‖

)
, (22)

and therefore by a repeated use of (a+ b)2 ≤ 2(a2 + b2),

T5 ≤
4εk
b

(
e21 ‖uk‖

2 + e22 ‖uk+1‖
2 + e23 + ‖rk‖

2 ) .

We bound ‖uk‖ (resp. ‖uk+1‖) by ‖uk − v‖ + ‖v‖ (resp. ‖uk+1 − v‖ + ‖v‖) and use (18) to
infer that there exist positive constants α, β, γ, δ such that:

T5 ≤ εk
(
αℓv(uk) + βℓv(uk+1) + γ + δ‖rk‖

2
)
.

Collecting the bounds for T1, T3, T4 and T5, we get the desired result. ✷

When no bias is present, rk = 0, we retrieve the same inequality as in [12, §2.5.1]. In
the proofs of the subsequent theorems, Inequality (17) is fundamental to derive boundedness
properties or convergence results for the Lyapunov function ℓv.

We give convergence results for the stochastic APP algorithm, in terms of function values
as well as for the iterates. The proof is similar to that in [12, 13] (case of a Hilbert space, no
bias considered). The assumption that the Banach U is reflexive (A1) allows for a similar
treatment as in the Hilbert case. The additional contribution of the bias is already taken
care of by Inequality (17). We denote by J ♯ the value of J on the non-empty set of solutions
U ♯ of Problem (1).

Theorem 4.2 Under Assumptions (A1)-(A7), (A9)-(A16), we have the following state-
ments:

• The sequence of random variables
{
J(Uk)

}
k∈N

converges to J ♯ almost surely.

• The sequence of iterates
{
Uk

}
k∈N

of the stochastic APP algorithm is almost surely
bounded and every weak cluster point of a bounded realization of this sequence belongs
to the optimal set U ♯.

Proof. Let u♯ ∈ U ♯ be a solution of Problem (1).
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1. Upper bound on the variation of the Lyapunov function. We write the inequality of
Lemma 4.1 at v = u♯ in terms of random variables and reorganize the terms as follows:

(1− βε2k)ℓu♯(Uk+1)︸ ︷︷ ︸
A
k+1

≤
(
1 + αε2k +

2

b
εk‖Rk‖

)
ℓu♯(Uk)

︸ ︷︷ ︸
B
k

+
(
γε2k + εk‖Rk‖+ δ(εk‖Rk‖)

2
)

︸ ︷︷ ︸
C
k

− εk
(
(jC + jΣ)(Uk,Wk+1)− (jC + jΣ)(u♯,Wk+1)

)
︸ ︷︷ ︸

D
k

, (23)

this last inequality being valid P-a.s.. We assume without loss of generality that (1−βε2k) > 0 as it
is true for k large enough. As Dk takes only finite values since jC+ jΣ takes finite values, we obtain
from Equation (23) that almost surely Ak+1 + Dk ≤ Bk + Ck. It is classical to define extended
conditional expectation for nonnegative random variables or more generally for A-quasi-integrable
random variables [35, p. 339]. Thus the (extended) conditional expectation with respect to Fk is well
defined for each of the three terms Ak+1, Bk, Ck. Moreover, as Bk and Ck are both nonnegative,
we have that E

(
Bk +Ck

∣∣ Fk
)
= E

(
Bk

∣∣ Fk
)
+ E

(
Ck

∣∣ Fk
)
. We now prove that the conditional

expectation of Dk with respect to Fk exists and satisfies E
(
Dk

∣∣ Fk
)
= εk(J(Uk)−J(u♯)). For that

purpose, we consider the integrand τk : U × Ω → R defined by τk(u, ω) = (jC + jΣ)(u,Wk+1(ω))
for all (u, ω) ∈ U×Ω and recall some results from [35]. The integrand τk is A-quasi-integrable (by
Assumption (A16)) and l.s.c. (using the assumptions on jC and jΣ). Therefore, there exists an
A-quasi-integrable integrand τFkk which gives the conditional expectation with respect to Fk of the

integrand τk, that is τFkk (u, ω) = E
(
τk(u, ·)

∣∣ Fk
)
(ω) for all (u, ω) ∈ U×Ω [35, Proposition 12]. We

have

τFkk (u, ω) = E
(
τk(u, ·)

∣∣ Fk
)
(ω) = E

(
(jC + jΣ)(u,Wk+1)

∣∣ Fk
)
(ω) ,

where the conditional expectation is an expectation since Wk+1 is independent of the σ-field Fk, so
that

τFkk (u, ω) = E
(
(jC + jΣ)(u,Wk+1)

)
= J(u) ,

that is, τFkk does not depend on ω. Moreover, given any Fk-measurable random variable Y we
have [35, Proposition 13] that

τFkk (Y (ω), ω) = E
(
τk(Y (·), ·)

∣∣ Fk
)
(ω) ,

which, using the fact that Uk is Fk-measurable, gives for all ω ∈ Ω that

εk
(
J(Uk(ω))− J(u♯)

)
= εk

(
τFkk (Uk(ω), ω) − τFkk (u♯, ω)

)

= εk
(
E
(
τk(Uk(·), ·)

∣∣ Fk
)
(ω)− E

(
τk(u

♯, ·)
∣∣ Fk

)
(ω)
)

= εkE
(
τk(Uk(·), ·) − τk(u

♯, ·)
∣∣ Fk

)
(ω)

(as E
(
τk(u

♯, ·)
∣∣ Fk

)
= J(u♯) is finite)

= εkE
(
(jC + jΣ)(Uk,Wk+1)− (jC + jΣ)(u♯,Wk+1)

∣∣ Fk
)
(ω)

= E
(
Dk

∣∣ Fk
)
(ω) .
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Thus, the conditional expectations with respect to Fk of Ak+1, Bk, Ck and Dk are properly defined.
To conclude it remains to show that E

(
Ak+1 +Dk

∣∣ Fk
)
= E

(
Ak+1

∣∣ Fk
)
+ E

(
Dk

∣∣ Fk
)

which is

the case as E
(
Dk

∣∣ Fk
)
= εk

(
J(Uk)− J(u♯)

)
is almost surely finite and nonnegative. Then we can

take the conditional expectation on both sides of Ak+1+Dk ≤ Bk +Ck with respect to the σ-field
Fk and use the just proved additivity properties to obtain

(1− βk)E
(
ℓu♯
(
Uk+1

) ∣∣ Fk
)
+ εk

(
J(Uk)− J(u♯)

)
≤ (1 +αk)ℓu♯

(
Uk

)
+ γk , (24)

where we have:

αk = αε2k +
2

b
εkE

(
‖Rk‖

∣∣ Fk
)
,

βk = βε2k ,

γk = γε2k + εkE
(
‖Rk‖

∣∣ Fk
)
+ δ

(
εkE

(
‖Rk‖

∣∣ Fk
))2

,

and where we have used that Uk is Fk-measurable, to obtain that E
(
ℓu♯
(
Uk

) ∣∣ Fk
)
= ℓu♯

(
Uk

)
. By

Assumptions (A14) and (A15), αk,βk and γk are the terms of convergent series. Recall that J(Uk)−
J(u♯) is almost surely nonnegative as u♯ is solution of (1). The right hand side of Equation (24) is
almost surely finite and since the left hand side is the sum of two positive terms, each of them is
almost surely finite. Thus we also have almost surely that

E
(
ℓu♯
(
Uk+1

) ∣∣ Fk
)
≤ (1 +αk)ℓu♯

(
Uk

)
+ βkE

(
ℓu♯
(
Uk+1

) ∣∣ Fk
)

+ γk − εk
(
J(Uk)− J(u♯)

)
. (25)

2. Convergence analysis. Applying Corollary A.3 of Robbins-Siegmund theorem, we get that
the sequence of random variables

{
ℓu♯
(
Uk

)}
k∈N

converges P-a.s. to a finite random variable ℓ∞
u♯

and
we have:

+∞∑

k=0

εk
(
J(Uk)− J(u♯)

)
< +∞ P-a.s. . (26)

3. Limits of sequences. The sequence
{
ℓu♯(Uk)

}
k∈N

is P-a.s. bounded, so by (18), we get

that the sequence
{
Uk

}
k∈N

is also P-a.s. bounded. Assumption (A11) then implies that the se-

quence
{
Gk

}
k∈N

is also P-a.s. bounded. Finally, as the sequence
{
Rk

}
k∈N

is assumed to be P-a.s.

bounded (A15), we deduce from (22) that the sequence
{
‖Uk+1−Uk‖/εk

}
k∈N

is also P-a.s. bounded.
This last property ensures that Assumption (c) of Proposition A.5, is satisfied. Assumption (b) of
Proposition A.5 is exactly (26) and Assumption (a) is satisfied as we have (A14). On a bounded
set containing the sequence

{
Uk

}
k∈N

, for instance the convex hull of this sequence, the function
J is Lipschitz continuous by Proposition A.4. This ensures the continuity assumption required to
apply Proposition A.5. We conclude that

{
J(Uk)

}
k∈N

converges almost surely to J(u♯) = J ♯, the
optimal value of Problem (1).

Let Ω0 be the negligible subset of Ω on which the sequence
{
ℓu♯
(
Uk

)}
k∈N

is unbounded and Ω1

be the negligible subset of Ω on which the relation (26) is not satisfied. We have P
(
Ω0 ∪ Ω1

)
= 0.

Let ω /∈ Ω0 ∪ Ω1. The sequence {uk}k∈N associated to this element ω is bounded and each uk is
in Uad, a closed subset of U. As U is reflexive (A1), there exists a weakly converging subsequence
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{uξ(k)}k∈N. Note that {ξ(k)}k∈N depends on ω. Let u be the weak limit of the sequence {uξ(k)}k∈N.
The function J is l.s.c. and convex, it is then weakly l.s.c. by [14, Corollary 2.2]. Thus we have:

J(u) ≤ lim inf
k→+∞

J(uξ(k)) = J(u♯) .

We conclude that u ∈ U ♯. ✷

When the differential of K is weakly continuous, we can prove stronger convergence
results for the sequence of iterates of the stochastic APP algorithm. These results already
appear in [12] and remain valid for our more general version of the algorithm.

Theorem 4.3 Consider again (A1)-(A7), (A9)-(A15) and suppose that the differential of
K is weakly continuous. Then, the sequence of iterates

{
Uk

}
converges weakly P-a.s. to a

single element of U ♯. If moreover, the function JC is strongly convex, then, the sequence of
iterates

{
Uk

}
converges strongly P-a.s. to the unique solution u♯ of Problem (1).

Proof. Consider the case where the differential of K is weakly continuous. Let {uk}k∈N be
a sequence generated by the algorithm. Suppose that there exist two subsequences {uξ(k)}k∈N
and {uψ(k)}k∈N converging weakly respectively to two solutions uξ and uψ of the problem, with uξ 6=
uψ. Then we have:

K(uψ)−K(uξ(k))−
〈
∇K(uξ(k)) , uψ − uξ(k)

〉
= K(uψ)−K(uξ)−

〈
∇K(uξ(k)) , uψ − uξ

〉

+
(
K(uξ)−K(uξ(k))−

〈
∇K(uξ(k)) , uξ − uξ(k)

〉)
. (27)

By the point 2 of the proof of Theorem 4.2,

lim
k→+∞

K(uψ)−K(uξ(k))−
〈
∇K(uξ(k)) , uψ − uξ(k)

〉
= lim

k→+∞
ℓuψ(uk) = ℓuψ ,

lim
k→+∞

K(uξ)−K(uξ(k))−
〈
∇K(uξ(k)) , uξ − uξ(k)

〉
= lim

k→+∞
ℓuξ(uk) = ℓuξ ,

therefore by weak continuity of ∇K and strong convexity of K, we get:

ℓuψ − ℓuξ = K(uψ)−K(uξ)−
〈
∇K(uξ) , uψ − uξ

〉
≥

b

2
‖uξ − uψ‖

2 .

Inverting the roles of uψ and uξ, by a similar calculation as previously we get:

ℓuξ − ℓuψ ≥
b

2
‖uξ − uψ‖

2 ,

We then deduce that uξ = uψ, which contradicts the initial assumption. We conclude that all
weakly converging subsequences of the sequence {uk} converge to the same limit, hence we have
the weak convergence of the whole sequence {uk} to a single element of U ♯.

Now consider the case where JC is strongly convex, with constant a. Then, Problem (1) admits
a unique solution u♯ which is characterized by the following variational inequality:

∃r♯ ∈ ∂JC(u♯) , ∀u ∈ Uad ,
〈
r♯ , u− u♯

〉
+ JΣ(u)− JΣ(u♯) ≥ 0 .
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The strong convexity assumption on JC yields:

J(Uk)− J(u♯) ≥
〈
r♯ ,Uk − u♯

〉
+

a

2
‖Uk − u♯‖2 + JΣ(Uk)− JΣ(u♯) ≥

a

2
‖Uk − u♯‖2 .

As
{
J(Uk)

}
k∈N

converges almost surely to J(u♯), we get that ‖Uk − u♯‖ converges to zero. Thus,

we have the strong convergence of the sequence
{
Uk

}
k∈N

to the unique solution u♯ of the problem.

✷

4.2 Efficiency estimates

In this section, we derive efficiency estimates for the convergence of the expectation of func-
tion values. In Theorem 4.5, we consider the expected function value taken for the averaged
iterates following the technique of Polyak-Ruppert [29, 34]. We take a step size εk of the
order O

(
k−θ
)

with 1/2 < θ < 1, ensuring the convergence of the algorithm, and leading to
a better convergence rate than with a small step size εk = O (k−1). The efficiency estimate
is obtained using a similar technique as in [25] but without requiring the boundedness of
Uad. Moreover, we are able to take into account the bias on the gradient with the following
assumption, inspired from [16]:

(A17) For k ∈ N, let Qk = ess supω∈Ω
∥∥Rk(ω)

∥∥ be the essential supremum of
∥∥Rk

∥∥ and
assume that:

∑

k∈N

Qkεk <∞ .

We start by a lemma that proves the boundedness of the expectation of the Lyapunov
function. This result will be used multiple times in this part.

Lemma 4.4 Under Assumptions (A1)-(A7), (A9)-(A17), the sequence of expectations of the
Lyapunov function

{
E
(
ℓu♯
(
Uk

)) }
k∈N

is bounded and the sequence
{
E
(
J(Uk)

) }
k∈N

takes
finite values.

Proof. From Inequality (25), using the fact that
∥∥Rk

∥∥ ≤ Qk almost surely and using the fact
that J(Uk)− J(u♯) is nonnegative, we obtain

E
(
ℓu♯
(
Uk+1

) ∣∣ Fk
)
≤ (1 + αk)ℓu♯

(
Uk

)
+ βkE

(
ℓu♯
(
Uk+1

) ∣∣ Fk
)
+ γk , (28)

where

αk = αε2k +
2

b
εkQk , βk = βε2k , γk = (γ + δQ2

k)ε
2
k +Qkεk . (29)

Then, taking the extended expectation (all random variables are nonnegative) on both sides of
Inequality (28) yields:

E
(
ℓu♯
(
Uk+1

))
≤ (1 + αk)E

(
ℓu♯
(
Uk

))
+ βkE

(
ℓu♯
(
Uk+1

))
+ γk .
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From (A14) and (A17), αk, βk and γk are the terms of convergent series. Using a deterministic
version of Corollary A.3, we get that the sequence

{
E
(
ℓu♯
(
Uk

)) }
k∈N

converges and is bounded.

Now, we can use again Inequality (25) and the fact that, from the previous point, E
(
ℓu♯
(
Uk+1

))

is finite to obtain that

εkE
(
J(Uk)− J(u♯)

)
≤ (1 + αk)E

(
ℓu♯
(
Uk

))
+ (βk − 1)E

(
ℓu♯
(
Uk+1

))
+ γk , (30)

from which we obtain in particular that E
(
J(Uk)− J(u♯)

)
is finite. ✷

Theorem 4.5 Suppose that Assumptions (A1)-(A7), (A9)-(A17) are satisfied. Let n ∈ N

and let
{
Uk

}
k∈N

be the sequence of iterates of the stochastic APP algorithm. Define the
averaged iterate as:

Ũ
n

i
=

n∑

k=i

ηikUk with ηik =
εk∑n
l=i εl

.

Suppose that for all k ∈ N, εk = ck−θ with 1/2 < θ < 1 and a constant c > 0. Then for any
minimizer u♯ of J , we have:

E

(
J
(
Ũ

n

1

)
− J

(
u♯
))

= O
(
nθ−1

)
.

In particular, the rate of convergence can be arbitrarily close to the order n−1/2 if θ is chosen
to be arbitrarily close to 1/2.

Proof. From Lemma 4.4, we get that Inequality (30) is satisfied and the sequence
{
E
(
ℓu♯
(
Uk

)) }
k∈N

is bounded. Then, there exists a constant M ≥ 0 such that E
(
ℓu♯
(
Uk

))
≤ M for all k ∈ N. Sum-

ming (30) over i ≤ k ≤ n and using E
(
ℓu♯
(
Uk

))
≤M , we get:

n∑

k=i

εkE
(
J
(
Uk

)
− J

(
u♯
))
≤M+

n∑

k=i

(
M(α+ β) + γ + δQ2

k

)
ε2k +

(
2

b
M + 1

)
Qkεk .

In the sequel, let R = M(α+ β) + γ and S = 2
bM + 1. By convexity of J , we get:

E

(
J
(
Ũ
n

i

)
− J(u♯)

)
≤

M+
∑n

k=i

(
R+ δQ2

k

)
ε2k + SQkεk∑n

k=i εk
.

We have εk = ck−θ with 1/2 < θ < 1 and:

n∑

k=1

k−θ ≥
(n+ 1)1−θ − 1

1− θ
≥ C̃θn

1−θ ,

for some C̃θ > 0. Moreover, from (A14) and (A17), ε2k, Qkεk and Q2
kε

2
k are the terms of convergent

series. Thus, there exists a constant Cθ > 0 such that:

E

(
J
(
Ũ
n

1

)
− J(u♯)

)
≤

Cθ
n1−θ

,
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which gives the desired rate of convergence. ✷

Theorem 4.5 proves a convergence rate of orderO
(
nθ−1

)
for the stochastic APP algorithm

without assuming strong convexity of the objective. This rate appears for stochastic gradient
descent in [2] where it is stated that the combination of large step sizes of order O

(
n−θ
)

with 1/2 < θ < 1, together with averaging lead to the best convergence behavior. A similar
rate is also given for stochastic proximal gradient in [33].

In the following theorem, we show that this rate also holds when we consider the expected
function value taken at the last iterate Un instead of the averaged iterate Ũ

n

1
. Using the

concept of modified Fejér monotone sequences, Lin and al. [23] have given convergence rates
of the expected function value of the last iterate for many algorithms, such as the projected
subgradient method or the proximal gradient algorithm. The idea of modified Fejér sequence
is adapted to the stochastic case in [33, Theorem 3.1]. We further adapt this concept for the
stochastic APP algorithm. Before stating the result, we need a technical lemma.

Lemma 4.6 Under Assumptions (A1)-(A7), (A9)-(A17), there exists a constant M ′ ≥ 0

such that E
(
ℓUj

(
Uk

))
≤M ′ for all j, k ∈ N.

Proof. As ∇K is LK-Lipschitz continuous by (A13), we have the following inequality (see for
example [27, Lemma 1.2.3])

K(v) ≤ K(u) +
〈
∇K(u) , v − u

〉
+

LK
2
‖u− v‖2 ,

and hence, for all u, v ∈ Uad,

ℓv(u) ≤
LK
2
‖u− v‖2 ≤ LK

(
‖u− u♯‖2 + ‖v − u♯‖2

)
,

the last inequality arising from the standard norm inequality ‖a+ b‖2 ≤ 2(‖a‖2+‖b‖2). Then using
the b-strong convexity of K and Equation (18), we obtain

ℓv(u) ≤
2LK
b

(
ℓu♯(u) + ℓu♯(v)

)
. (31)

Writing Inequality (31) in terms of random variables, v and u being respectively replaced by Uj

and Uk, and taking the extended expectation (all quantities are positive) leads to:

E

(
ℓUj

(Uk)
)
≤

2LK
b

(
E
(
ℓu♯(Uk)

)
+ E

(
ℓu♯(Uj)

))
,

≤
4LK
b

M ,

since we have by Lemma 4.4 that the quantities E
(
ℓu♯(Uk)

)
are bounded by a constant M . ✷

Theorem 4.7 Suppose that Assumptions (A1)-(A7), (A9)-(A17) are satisfied. Let n ∈ N

and let
{
Uk

}
k∈N

be the sequence of iterates of the stochastic APP algorithm. Suppose that
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for all k ∈ N, εk = ck−θ with 1/2 < θ < 1 and a constant c > 0. Assume also that Qk ≤ qk−ν

for ν > 1− θ and a constant q > 0. Then, for any minimizer u♯ of J we have:

E
(
J
(
Un

)
− J

(
u♯
))

= O
(
nθ−1

)
.

In particular, the rate of convergence can be arbitrarily close to the order n−1/2 if θ is chosen
to be arbitrarily close to 1/2.

Proof. For k ∈ N, let ak = E
(
J
(
Uk

)
− J

(
u♯
))

, which is finite by Lemma 4.4. Fix n ∈ N, from
Lemma A.1 applied to the sequence {εkak}k∈N (see Appendix), we have that:

εnan =
1

n

( n∑

k=1

εkak
)
+
n−1∑

i=1

1

i(i+ 1)

(( n∑

k=n−i+1

εkak

)
− iεn−ian−i

)
.

Moreover, we have that:

( n∑

k=n−i+1

εkak

)
− iεn−ian−i =

n∑

k=n−i+1

(εkak − εn−ian−i)

=

n∑

k=n−i+1

(
εk(ak − an−i) + (εk − εn−i)an−i

)

≤
n∑

k=n−i+1

εk(ak − an−i)

=

n∑

k=n−i+1

εkE
(
J
(
Uk

)
− J

(
Un−i

))
,

where the last inequality follows from the fact that the sequence {εk}k∈N is decreasing and that by
optimality of u♯, we have an−i ≥ 0. We therefore obtain that:

εnan ≤
1

n

( n∑

k=1

εkak

)
+

n−1∑

i=1

1

i(i + 1)

n∑

k=n−i+1

εkE
(
J
(
Uk

)
− J

(
Un−i

))
. (32)

We bound the terms of (32):

1. From Lemma 4.4, Inequality (30) is satisfied and there exists a constant M ≥ 0 such that
E
(
ℓu♯
(
Uk

))
≤ M for all k ∈ N. Summing (30) from 1 to n and using that βn − 1 ≤ 0 for n

large enough, we get:

n∑

k=1

εkak ≤M1 +
n∑

k=2

(
(αk + βk−1)E

(
ℓu♯
(
Uk

))
+ γk

)

+ (βn − 1)E
(
ℓu♯
(
Un+1

))

≤M1 +
n∑

k=2

M(αk + βk−1) + γk .

(33)

with M1 = (1 + α1)ℓu♯ (u1) + γ1.
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2. In order to bound the second term in the right hand side of (32), we start from Inequality (17)
in Lemma 4.1 that we write in terms of random variables, v being replaced by Un−i. This
leads to the following inequality

(1− βε2k)ℓUn−i
(Uk+1)︸ ︷︷ ︸

A
′

k+1

≤
(
1 + αε2k +

2

b
εk‖Rk‖

)
ℓUn−i

(Uk)
︸ ︷︷ ︸

B
′

k

+
(
γε2k + εk‖Rk‖+ δ(εk‖Rk‖)

2
)

︸ ︷︷ ︸
C

′

k

− εk
(
(jC + jΣ)(Uk,Wk+1)− (jC + jΣ)(Un−i,Wk+1)

)
︸ ︷︷ ︸

D
′

k

. (34)

This inequality is similar to Inequality (23), but the term D ′
k cannot be assumed to be

nonnegative and we need to adapt the steps used in the proof of Theorem 4.2. Using
Lemma 4.6 we obtain that the terms A′

k+1 and B ′
k are integrable so that their condi-

tional expectation is well defined. Moreover, since k ≥ n−i, the random variable Un−i is
Fk-measurable and thus ℓUn−i

(
Uk

)
is also Fk-measurable. For the term D ′

k, we consider

separately D
′,1
k = εk(j

C + jΣ)(Uk,Wk+1) and D
′,2
k = εk(j

C + jΣ)(Un−i,Wk+1). Following

the steps of the proof of Theorem 4.2, we obtain that both terms D
′,1
k and D

′,2
k admit ex-

plicit (extended) conditional expectations with respect to the σ-field Fk which are given by
E
(
D

′,1
k

∣∣ Fk
)
(ω) = εkJ(Uk(ω)) and E

(
D

′,2
k

∣∣ Fk
)
(ω) = εkJ(Un−i(ω)). Now, using Lemma 4.4

we have that J(Uk) and J(Un−i) are both integrable and therefore the conditional expecta-
tion of D ′

k is well defined as the difference of two integrable functions. We can therefore take
the conditional expectation w.r.t. Fk on both sides of Inequality (34) and we obtain

E
(
ℓUn−i

(
Uk+1

) ∣∣ Fk
)
≤ (1 +αk)ℓUn−i

(
Uk

)
+ βkE

(
ℓUn−i

(
Uk+1

) ∣∣ Fk
)

+ γk − εk
(
J(Uk)− J(Un−i)

)
.

In this last inequality, replacing the random variables (αk,βk,γk) by their deterministic upper
bounds (αk, βk, γk) given by Equation (29), and taking the expectation of the left and right
terms, we obtain:

E

(
ℓUn−i

(
Uk+1

))
≤ (1 + αk)E

(
ℓUn−i

(
Uk

))
+ βkE

(
ℓUn−i

(
Uk+1

))

+ γk − εkE
(
J
(
Uk

)
− J

(
Un−i

))
, (35)

We have already seen by Lemma 4.6 that E

(
ℓUn−i

(
Uk+1

))
is finite. We have also seen by

Lemma 4.4 that ak = E
(
J
(
Uk

)
− J

(
u♯
))

is finite, therefore so is E
(
J
(
Uk

)
− J

(
Un−i

))
=

ak − an−i. All quantities in (35) are finite and we can write:

εkE
(
J
(
Uk

)
− J

(
Un−i

))
≤ (1 + αk)E

(
ℓUn−i

(
Uk

))

+ (βk − 1)E
(
ℓUn−i

(
Uk+1

))
+ γk , (36)

28



From Lemma 4.6, there exists a constant M ′ ≥ 0 such that E
(
ℓUj

(
Uk

))
≤M ′ for all j, k ∈ N.

Summing (36) from n− i to n and using that βn − 1 ≤ 0 for n large enough, we get:

n∑

k=n−i+1

εkE
(
J
(
Uk

)
− J

(
Un−i

))
≤ γn−i +

n∑

k=n−i+1

M ′ (αk + βk−1) + γk . (37)

Define:

ᾱk = αε2k +
2

b
εkqk

−ν , γ̄k =
(
γ + δq2k−2ν

)
ε2k + εkqk

−ν .

As Qk ≤ qk−ν , we have αk ≤ ᾱk and γk ≤ γ̄k. Let ξk = (M +M ′)(ᾱk +βk−1)+ γ̄k. Moreover, note
that:

n−1∑

i=1

1

i(i+ 1)

n∑

k=n−i+1

ξk =
n∑

k=2

n−1∑

i=n−k+1

(
1

i
−

1

i+ 1

)
ξk =

n∑

k=2

ξk
n− k + 1

−
1

n

n∑

k=2

ξk . (38)

We plug (33) and (37) into (32) and use that M(αk + βk) + γk ≤ ξk and M ′(αk + βk) + γk ≤ ξk
along with (38). This yields:

εnan ≤
M1

n
+

1

n

n∑

k=2

ξk +

n∑

k=2

1

n− k + 1
ξk −

1

n

n∑

k=2

ξk +

n−1∑

i=1

γn−i
i(i+ 1)

=
M1

n
+

n∑

k=2

1

n− k + 1
ξk +

n−1∑

i=1

γn−i
i(i+ 1)

. (39)

From the assumptions on εk, {ξk}k∈N is non-increasing. Thus,

n∑

k=2

1

n− k + 1
ξk ≤ ξ⌊n2+1⌋

∑

n/2+1≤k≤n

1

n− k + 1
+

2

n

∑

2≤k<n/2+1

ξk ,

≤ ξ⌊n2+1⌋

(
log
(n
2

)
+ 1
)
+

2

n

n∑

k=2

ξk . (40)

By assumption, εn = cn−θ and we have:

ξk ≤
(
(M +M ′)(α+ β) + γ + δq2k−2ν

)
c2(k − 1)−2θ +

(
2

b
(M +M ′) + 1

)
cqk−(ν+θ)

≤ ξ(k − 1)−µ ,

for µ = min {2θ, ν + θ} and some constant ξ > 0 so that,

1

εn

n∑

k=2

1

n− k + 1
ξk ≤ 2µ

ξ

c
(n − 1)θ−µ

(
log
(n
2

)
+ 1
)
+ 2

ξ

c
nθ−1

n−1∑

k=1

k−µ . (41)
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As θ > 1/2 and ν > 1− θ, we have µ > 1 so,

n−1∑

k=1

k−µ ≤
µ

µ− 1
.

Using a similar computation as in (40) and that γi ≤ κi−µ for some constant κ > 0, we deduce
that there exist constants Γ1,Γ2 > 0 such that:

1

εn

n−1∑

i=1

γn−i
i(i + 1)

≤ Γ1n
θ−µ + Γ2n

θ−2 . (42)

Gathering (41) and (42) into (39), we get:

an ≤M1n
θ−1 + Ξ1(n− 1)θ−µ

(
log
(n
2

)
+ 1
)
+ Ξ2n

θ−1 + Γ1n
θ−µ + Γ2n

θ−2 , (43)

with Ξ1 = 2µ ξc and Ξ2 = 2 ξc
µ
µ−1 . Finally, as θ − µ < θ − 1, we get that an = O

(
nθ−1

)
. This

concludes the proof. ✷

Remark 4.8 Inequality (30) (which holds in fact for any u ∈ Uad in place of u♯) is the
counterpart of modified Fejér monotonicity [23]. The main differences are that (30) involves
a Bregman divergence instead of the Euclidean distance. Moreover, there are coefficients
αk, βk > 0 that slightly degrade the inequality compared to what we obtain with Fejér mono-
tone sequences where αk = βk = 0. The summability of αk and βk in addition with the
boundedness of the expectation of the Bregman divergence

{
E
(
ℓu♯
(
Uk

)) }
k∈N

allow us to
proceed in the same way as in [23, 33] to get the convergence rate of Theorem 4.7.

5 Conclusion

We have studied the stochastic APP algorithm in a reflexive separable Banach case. This
framework generalizes many stochastic optimization algorithms for convex problems. We
have proved the measurability of the iterates of the algorithm, hence filling a theoretical
gap to ensure that the quantities we manipulate when deriving efficiency estimates are well-
defined. We have shown the convergence of the stochastic APP algorithm in the case where
a bias on the gradient is considered. Finally, efficiency estimates are derived while taking the
bias into account. Assuming a sufficiently fast decay of this bias, we get a convergence rate
for the expectation of the function values that is similar to that of well-known stochastic
optimization algorithms when no bias is present, such as stochastic gradient descent [2],
stochastic mirror descent [25] or the stochastic proximal gradient algorithm [33]. Future
work will consist in an application the stochastic APP algorithm to an optimization problem
in a Banach space with decomposition aspects in mind.
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A Technical results used in the proofs

Lemma A.1 Let {ai}i∈N be a sequence in R. Let n ∈ N and for i ∈ {0, 1, . . . , n − 1}, let
si =

∑n
k=n−i ak. Then,

an =
sn−1

n
+

n−1∑

i=1

1

i(i+ 1)
(si−1 − ian−i) .

The proof of Lemma A.1 is a straightforward computation and is left to the reader.

Theorem A.2 [31, Robbins-Siegmund] Consider four sequences of nonnegative random vari-
ables {Λk}k∈N, {αk}k∈N, {βk}k∈N and {ηk}k∈N, that are all adapted to a given filtration
{Fk}k∈N. Moreover, suppose that:

E
(
Λk+1

∣∣ Fk
)
≤ (1 +αk)Λk + βk − ηk, ∀k ∈ N ,

and that
∑

kαk < +∞ and
∑

k βk < +∞ almost surely. Then, the sequence of random
variables {Λk}k∈N converges almost surely to a finite random variable Λ

∞, and we have in
addition that

∑
k ηk < +∞ almost surely.

An extension of Robbins-Siegmund theorem is given by the following corollary.

Corollary A.3 Consider the following sequences of nonnegative random variables {Λk}k∈N,
{αk}k∈N, {βk}k∈N, {γk}k∈N, and {ηk}k∈N, that are all adapted to a given filtration {Fk}k∈N.
Moreover suppose that:

E
(
Λk+1

∣∣ Fk
)
≤
(
1 +αk

)
Λk + βkE

(
Λk+1

∣∣ Fk
)
+ γk − ηk ,

and that
∑

k αk < +∞,
∑

k βk < +∞ and
∑

k γk < +∞ almost surely. Then, the sequence
of random variables {Λk}k∈N converges almost surely to a finite random variable Λ

∞, and
we have in addition that

∑
k ηk < +∞ almost surely.

Proof. Consider a realization of the different sequences satisfying the assumptions of the corol-
lary, and define three sequences {α̃k}k∈N, {γ̃k}k∈N and {η̃k}k∈N such that:

1 + α̃k =
1 + αk
1− βk

, γ̃k =
γk

1− βk
, η̃k =

ηk
1− βk

.

As the sequence {βk} converges to zero, we have that βk ≤ 1/2 for k large enough. For such k, we
get:

1

1− βk
≤ 1 + 2βk and 1 ≤

1

1− βk
≤ 2 .
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Then, we deduce that α̃k ≤ 2(αk + βk), γ̃k ≤ 2γk and η̃k ≥ ηk. The conclusions of the corollary are

then obtained by applying Theorem A.2 directly. ✷

Proposition A.4 Let U be a Banach space and consider a function J : U → R that is
subdifferentiable on a non-empty, closed, convex subset Uad of U, with linearly bounded sub-
gradient. Then, there exist c1 > 0 and c2 > 0 such that:

∀(u, v) ∈ Uad × Uad ,
∣∣J(u)− J(v)

∣∣ ≤
(
c1max

{
‖u‖, ‖v‖

}
+ c2

)
‖u− v‖ . (44)

In particular, J is Lipschitz continuous on every bounded subset that is contained in Uad.

Proof. Let (u, v) ∈ Uad × Uad. From the definition of subdifferentiability, we get that for all
r ∈ ∂J(u) and for all s ∈ ∂J(v):

〈s , u− v〉 ≤ J(u)− J(v) ≤ 〈r , u− v〉 ,

and therefore:

∣∣J(u)− J(v)
∣∣ ≤ max

{
〈r , u− v〉, 〈s , v − u〉

}
.

Using Cauchy-Schwarz inequality and the linearly bounded subgradient assumption, we get the

desired result. ✷

Proposition A.5 Let U be a Banach space and J : U → R be a Lipschitz continuous
function with constant L > 0. Let {uk}k∈N be a sequence of elements in U and let {εk}k∈N
be a real positive sequence such that:

(a)
∑

k∈N εk = +∞,

(b) ∃µ ∈ R,
∑

k∈N εk |J(uk)− µ| < +∞,

(c) ∃δ > 0, ∀k ∈ N, ‖uk+1 − uk‖ ≤ δεk.

Then, the sequence
{
J(uk)

}
k∈N

converges to µ.

Proof. For α > 0, define Nα =
{
k ∈ N, |J(uk)− µ| ≤ α

}
and N ∁

α = N \Nα.

(i) From Assumption (b), we have:

+∞ >
∑

k∈N

εk
∣∣J(uk)− µ

∣∣ ≥
∑

k∈N∁
α

εk
∣∣J(uk)− µ

∣∣ ≥ α
∑

k∈N∁
α

εk .

Hence, for all β > 0, there exists nβ ∈ N such that
∑

k≥nβ,k∈N∁
α
εk ≤ β.

(ii) From Assumption (a), we have
∑

k∈N εk =
∑

k∈Nα
εk +

∑
k∈N∁

α
εk = +∞ but we have just

proved that the last sum in the above equality is finite, hence the first sum of the right hand
side is infinite, which implies that Nα is infinite.
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Let ǫ > 0, choose α = ǫ/2 and β = ǫ/(2Lδ). Let nβ be the integer defined in (i). For k ≥ nβ, there
are two possible cases:

• k ∈ Nα: then, by definition of Nα, we have
∣∣J(uk)− µ

∣∣ ≤ α < ǫ.

• k /∈ Nα: let m be the smallest element of Nα such that m ≥ k, this element exists by (ii).
Using the fact that J is Lipschitz continuous, we get:

∣∣J(uk)− µ
∣∣ ≤

∣∣J(uk)− J(um)
∣∣+
∣∣J(um)− µ

∣∣ ≤ L‖uk − um‖+ α .

Now, with Assumption (c) and condition (i), it comes:

∣∣J(uk)− µ
∣∣ ≤ Lδ

(
m−1∑

l=k

εl

)
+ α ≤ Lδ

(
∑

l≥nβ ,l∈N∁
α

εl

)
+ α ≤ ǫ .

Hence, we get
∣∣J(uk)− µ

∣∣ ≤ ǫ for all k ≥ nβ, giving the desired result. ✷
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