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Abstract—TIn this paper, a decentralized autonomous controller
aimed to control a fleet of quadrotors is designed, based on
the iterative generation and exploitation of logged traces. The
presented approach, inspired by model predictive control, aims to
maintain the geometrical configuration for a set of quadrotors led
by remotely controlled leaders. The novelty of this approach is to
rely on inexpensive commercial off-the-shelf sensors (as opposed
to positioning systems and/or cameras) that only measure the
distance among quadrotors. In the first phase (trace generation)
quadrotors are operated using randomized controllers based on
domain knowledge, and their trajectories are registered. In the
exploitation phase, a policy is learned from the traces generated
in the previous phase, and the policy is iteratively refined, to
achieve a robust reactive control of each quadrotor agent. Ex-
tensive experiments using RotorS, a Software In the Loop (SITL)
framework in Gazebo simulator demonstrates the efficiency of
the approach, and its ability to preserve the flocking structure
of the quadrotors, following the (remotely and independently
controlled) leaders.

Index Terms—Quadrotors, leader-follower, machine learning,
iterative learning, model predictive control, neural networks

SIMULATION VIDEOS

Available at https://www.dropbox.com/sh/97ixrpOayejvim0/
AADAIRKRWxtexICP2C-nFGQEa?dl=0

I. INTRODUCTION

Since the 80s, Multi-Agent Systems (MAS) have been
thoroughly studied [1]: they aim to execute complex tasks
in a robust way, through the cooperation of simple agents.
A main challenge is to design decentralized agent controllers,
such that their execution on each independent agent enforces
their cooperation and achieves the target complex task. Indeed,
decentralized multi-agent control is known to be more difficult
by one or several orders of magnitude compared to the control
of a single-robot [2].

This paper focuses on multi-robot system and specifically
on quadrotor fleets. Quadrotors are appreciated for both their
ability to realize vertical take off, fly at low speed or to be
stationary in the air and their low price.

The last decades have shown a considerable development
of small aerial robots [3], as they tackle applications that
are out of reach for quadruped and humanoid robots, e.g.,
building construction [4], delivering packages [5], providing
on-demand wireless network [6] monitoring agriculture [7] or

execute search and rescuing missions [8]. Most applications
rely on manually designed controllers, specifically designed
for the task at hand and operating in a centralized or decentral-
ized way. Accordingly, they might face some limitations when
dealing with stochastic environments, and more generally
hardly adapt themselves to properly reflect changes in the
environment. In order to address these limitations, some on-
line optimization schemes have been proposed such as Model
Predictive Control (MPC) [9], [10] or Decentralized Model
Predictive Control (DMPC) [11] (more in section III). Such
schemes however also suffer from some limitations. On the
one hand, MPC and DMPC require heavy computational
resources to solve the objective function with respect to the
agent situation (set of constraints), precluding their use in
real-time. On the other hand, the task at hand and/or the
environment might be too complex to support the manual
design of the MPC model. In such cases, an alternative is of-
fered by machine learning, and typically (deep) reinforcement
learning [12].

This paper presents a new machine learning approach called
IL4AMRC for Iterative Learning for Model Reactive Control,
aimed to address the decentralized controller design challenge.
IL4MRC has been designed, deployed and validated within the
RotorS framework [13]. This framework pertains to the Soft-
ware In The Loop (SITL) frameworks, specifically designed
to run the autopilot software as an independent process on the
host machine (as opposed to, on a real quadrotor hardware).
By allowing the use of the same software infrastructure for
training/design and deployment/validation, the RotorS frame-
work offers a fair and unbiased platform to study high level
tasks such as path planning, collision avoidance, or flocking
behaviors. This alternative to real-world test-beds has been
extensively investigated in the context of quadrotor fleets [14],
and its robustness has been demonstrated [15], showing that
the trained controllers (learned or optimized in simulation) can
be directly transferred and deployed in a real-world setting,
with same performances.

The objective of ILAMRC decentralized controller is to
achieve specific flocking behavioral patterns. Specifically, the
considered set of quadrotors consists of: i) leaders, assumed
to be externally operated and synchronized; ii) followers.
The latter quadrotors, operated by the IL4MRC controller,



are required to maintain general flocking behavioral patterns
consistent with the leaders. The technical difficulty is to
achieve such a behavior under severe resource constraints, in
terms of computational abilities and sensing capacities.

Taking inspiration from MPC [16], IL4AMRC extracts and
gradually refines models, guiding the decentralized controller
operated on each follower. Formally, these models are learned
along an 3-step iterative supervised learning process. In each
iteration, as a first step a randomized controller is ported
on each quadrotor and used to generate logs, reporting the
quadrotor state (vector of sensor values) and action in each
time step. As a second step, the logs are used as in imitation
reinforcement learning [17] to learn a policy and a forward
models. In a third step, these models are used along a greedy
MPC to define a refined controller, and this controller is used
in the next iteration to generate new logs.

The empirical validation of the approach is conducted in
the context of micro-aerial vehicles (MAV). The considered
Software In The Loop (SITL) framework [13] relies on the
physics-compliant Gazebo simulator [18].

As said, the requirements on the controller are twofold:
i) it must allow each follower to flexibly accommodate the
changing directions and dynamics of the leaders, and it must
allow the set of followers as a whole to preserve a flocking
behavior; ii) it must do so under severe resource constraints in
terms of computational abilities and sensors. Compared to the
state of the art in MPC [16], the contribution is threefold.
On the one hand, the quadrotor controller only relies on
cheap cues (WiFi signal strength) and does not require heavy
positional or visual sensors (GPS or cameras). On the other
hand, the exploitation of a complex model (as in [16]) is
replaced by iteratively learning and refining simple models,
in a way that can be thought of as a self-play setting [19].
Lastly, compared to a full-scale reinforcement learning (RL)
approach [20] IL4AMRC offers an agile alternative inspired by
inverse reinforcement learning [21], with a much lower sample
complexity.

This paper is organized as follows. Section II briefly re-
views and discusses related work. Section III gives a formal
background, details the underlying assumptions and presents a
general overview of IL4MRC. Section IV proposes a proof of
concept to validate the proposed method. Sections V and VI
respectively present the experimental setting and reports the
empirical evidence obtained for this proof of concept. The
paper concludes with a discussion and some perspectives for
further research.

II. RELATED WORK

This section briefly discusses the state of the art in multi-
agent controller design. Model Predictive Control, being the
method most related to the IL4AMRC approach, will be pre-
sented in more detail in section III.

In the literature, most of the individual controllers for
multi-agent systems rely on manual design, along two main
approaches. In the centralized setting, a controller has an
omniscience of all the states of the agents, but the space and

action space dimensions are multiplied by the number of the
agents. For example, Lupashin ef al. [22] create a centralized
controller that operates on an independent command center
that send these commands to each quadrotor in order to create
the desired behavior. In the decentralized setting where the
goal is to design a controller independently operating each
agent [23], the state of each agent is partially observed (the
state / intentions of the other agents are most generally un-
known), and the controller design requires to solve a Partially
Observable Markov Decision Problem.

Another alternative to manual design investigated in the
last twenty years, multi-agent learning was mainly fo-
cused on reinforcement learning [24], [25] or genetic algo-
rithms [26]. For example, genetic algorithms have been applied
in RoboCup [27] competition in order to make a team of small
robots to play soccer, while reinforcement learning have been
applied to resolve the keep away sub-problem [28]

In the context of machine learning applied to quadrotors,
to our knowledge most of existing solutions are effective to
a single quadrotor. Molchanov et al. [29] propose a neural
network flight controller based on reinforcement learning for
a single quadrotors where the model is trained in simulator and
then transferred into a real-world platform. In [30], machine
learning is used to achieve quadrotors navigation; the authors
train quadrotors to navigate through a trail in a challenging
environment (forests) using a single camera. On the same
line [31], the authors uses supervised learning on a single
quadrotor to accomplish specific tasks such as navigation or
grasping [32]. C AD? RL achieves autonomous flight in indoor
environment [33], using deep reinforcement learning instead
of SLAM (Simultaneous Localization And Mapping) in a
simulated environment to train vision based navigation policy
for a flying robot with monocular camera; the learned policy
is transferred to real world to avoid obstacles and achieve
collision-free flight.

In the context of several quadrotors, Hock et al. [34] propose
an iterative learning control approach to a set of quadrotors
that follow the desired trajectory proposed by so-called the
virtual leader, while preserving the group formation. However,
their system depends on the communications to provide posi-
tional information to each agent between of them. Likewise,
Ekaterina et al. [35] have developed a decentralized controller
for quadrotors based on Graph Neural Network (GNN). The
objective is to learn a local controller for each quadrotor
that uses communications and exchange local information
with neighbors in order to achieve consistent group behaviour
(flocking problem). Otherwise, the same problem has been
addressed differently by [14], in which communications have
been replaced by the use of visual sensors that provide the full
state of the neighbors of each agent and the GNN is replaced
by supervised learning neural network.

III. OVERVIEW OF IL4MRC

For the sake of self-containedness, this section first briefly
presents Model Predictive Control [36] and discusses its



strengths and weaknesses. The IL4MRC approach, aimed to
overcome these weaknesses, is then described.

A. Decentralized Model Predictive Control

Most generally, MPC considers a dynamic system with
input (interchangeably referred to as command, or action in
the following) and output (referred to as response or state)
respectively noted u; and y;. Denoting respectively u;.; and
¥1..) the sequence of commands and output of the system
along time, MPC relies on a model of the system at hand,
describing how the output of the system depends on its past
input and output:

y(t)

or y(t) = F(y,u,t) for short. In the linear case, an example
of such a behavioral model is given by [37]:

= F(Y14-1,01:0-1)

Y¢ = —01Yt—1 — Q2Yi—2 + b1uz_1 + bauy_o (D

MPC goals is to find the command law yielding a desired
response in a finite horizon. For instance, denoting y7j., the
desired response for ¢ = 1...7T, the sought command uj,
satisfies:

T

T
u}k:Tzargmuin{Z(y F(y,u,t)) 2+Z (ur — ug—1) }
t=1 t=2

2
where the first term enforces the fact that the actual trajec-
tory of the agent matches the desired one, and the second
term serves as a regularizing term, requiring the command
to be as smooth as possible. MPC is widely used for the
control of industrial complex systems (see [38], [39] among
many others) and DMPC provides control on large scale
systems [11], though it faces some theoretical and algorithmic
issues. Typically, in the general case of non-linear behavioral
models, Eq. 2 cannot be solved in closed form and resorts to
numerical approximate optimization. Secondly, the F model
itself might be ridden with uncertainties, particularly when
considering non-deterministic systems [40]. Thirdly, MPC fails
computationally when the system is too large. In this case
MPC is replaced by DMPC. Nevertheless the deployment
of DMPC should consider the computational capacity of the
agent.

Recent approaches build upon i) acquiring empirical data
reporting the system behavior under various command laws;
ii) using supervised machine learning (e.g. neural nets) to
approximate the general behavioral law from these empirical
data; and iii) approximating the sought command law by
minimizing Eq. 2 based on the trained model [38], [39].

a) Discussion: The shortcomings of MPC can be ana-
lyzed as follows: On the one hand, i) in order for model F to
be very accurate, it must be trained from extensive data; ii) a
very accurate J might define a hard optimization landscape
whenever complex systems are considered. On the other hand,
an approximate F model can easily be learned; but it leads to
a very sub-optimal command law.

After the above analysis, the most severe issue for ML-based
MPC approaches [38], [39] is to gather training examples and
refine model F in regions where there exists but a small
margin between optimal and sub-optimal commands (with
respect to the sought target behavior). If such critical regions
are not properly sampled in the training set, the learned model
is prone to harmful mistakes, and therefore cannot support an
effective optimization process.

From a machine learning perspective, the difficulty is
twofold: firstly, such critical regions can hardly be identified
a priori; secondly and most importantly, such critical regions
might be hard to sample (e.g. have a very small measure).
When this is the case, great amounts of empirical data are
needed to gather sufficient evidence.

B. An iterative learning strategy

The proposed IL4MRC approach addresses the above diffi-
culties under the following assumptions:

o Assuming that the property is satisfied in the initial state
of the system. The goal is to preserve a property of the
system. Under this assumption, the desired command law
boils down to: ”In each time step, select the action most
appropriate to avoid violating the property”.

This first assumption implies that the control problem can
be tackled in terms of reaction (as opposed to, planning).

o The command or action space noted U/ is discrete.

This assumption makes it easier to verify if the control
problem can be solved in all possible destination for the
robot.

Note that these assumptions hold true for this specific
applications: the property of the system to be preserved is
the initial geometric shape. Likewise, the action space of the
robot is all the possible direction of the robot represented as a
discrete set (e.g., Forward, Backward, Left, Right, Up, Down).

Under these assumptions, IL4AMRC proceeds along an iter-
ative 4-step process, starting from an initial random controller
u(9), At the i-iteration:

1) trajectories defined as sequence of state and actions
{(ye,uD(y;)),t = 1...T} are recorded, where u") (y;)
is the action selected in state y, by the controller learned
in iteration ¢ — 1 (see below);

2) training set &; is built, with

E = {(ye,u (), &), t =1,...T}

where label ¢; is positive or negative depending on
whether the sought property of the system still holds
at step t + 1;

3) model F; is learned from &;. Denoting ) ( respectively
U) the response or state space (resp. the action space),

Fi:VYxU—TR

where F;(y,u) is expected to be positive if selecting
action wu in state y leads to satisfy the sought property.
4) controller itV is defined as:

T (o) = arg min{F(y, u)} 3)



Compared to the state of the art, the originality of the
IL4AMRC approach is twofold. On the one hand, the command
law based on Eq. (3) is simple and computationally frugal,
with complexity O(|U|). On the other hand, the stress is put
on visiting the (state, action) space based on the current model
and gradually learning where this model needs to be refined.
The complexity thus is shifted from the optimization task
to the learning task, and from the learning task to the data
acquisition task. A main benefit is that the model trained
from the data reflects by construction the various sources
of uncertainty and biases of the task at hand, either due to
command imprecision, or to non-deterministic aspects of the
system, or related to the inaccuracies of the current model.

IV. A PROOF OF PRINCIPLE OF IL4MRC: APPLICATION TO
QUADROTORS CONTROL

This section presents a proof of principle of IL4MRC,!
applied to the control of a set of quadrotors. After describing
the position of the problem, the algorithmic pipeline (data
acquisition phase, training of the model, exploitation of the
model) is detailed.

A. Position of the problem

Considering a set of quadrotors with two leaders and several
followers, the goal is to gradually build a controller for each
follower, knowing that each follower has very minimal sensing
capabilities, such as measuring the distance to its neighbors.
The controller should enable the follower to autonomously
follow the leader, such that all the quadrotors are able to
collectively preserve their initial geometric pattern.

The objective of this controller is not to achieve flocking or
swarming for the followers. Instead, the objective of this study
is to establish a proof of principle for a controller that preserve
the initial geometrical pattern. This work can be considered as
a first block towards achieving the flocking behavior based on
extreme minimal sensing capacity for the studied agent.

The idea behind this study is the cost of the sophisticated
sensors. Since it is a key issue for multi-agent system in both
terms of energy consumption (to carry e.g. heavy cameras
or GPS) and algorithmic complexity (to exploit fine-grained
information). Consider a pilot with a set of a cheap COTS
(Commercial off-the-shelf) quadrotors with no communication
at all among them. Today, it is practically impossible to allow
for this pilot to control the entire set of quadrotors at the
same time for a specific application. Therefore, to control such
a system, the pilot can have direct communication with the
two leaders and the remaining followers are equipped with
the trained controller and the small sensing capacities.

In the following, each quadrotor is only endowed with WiFi
sensors. Such sensors measure the signal strength of the radio
link between robots. The distance to a neighbor robot can thus
be estimated from the signal strength via a propagation model
given by [41]:

PL(d, f) = 10alog;o(d) + B + 10y1logo(f) + N(0,0)

Thttps://github.com/shrit/MagicFlock

where, f is the radio link frequency, d is the direct 3D distance
between the transmitter and the receiver. « is related to the
increase of the path loss with distance, while ~ is related to
the increase of the path loss with frequency. 3 is the offset
value, N(0,0) is a gaussian random variable with a standard
deviation of o

It is known that signal strength of the radio link can be noisy,
thus to reduce the effect of the noise we apply a first-order
infinite impulse response filter known as exponential weighted
moving average filter, given by [42]:

:t=0

s =407
K cust—l—(l—cu)s,{l1 >0

Where s; is the signal strength measured at the receiver.
stf is the smoothed value by the filter, and 0 < o < 1 is the
smoothing coefficient. The quadrotors only sense the received
signal strength, there is no exchange of information between
quadrotors.

One might think that these sensors make the problem of
maintaining the initial geometrical pattern an algorithmically
easy task. Indeed our first attempt was to directly write the
algorithm. Complementary experiments (Table 1) however
show that the distance traveled by the quadrotor significantly
varies depending on its direction. A first lesson learned from
these experiments is that coding common sense geometric
reasoning based on in sifu sensor data is a deceptive task. A
second lesson is that synthetic data sets (e.g., generated from
models) hardly capture the actual behavior of the system.

Formally, two settings are defined to test the scalability of
the approach.

a) 3-quadrotor settings: In the first setting, the formation
includes two leaders, remotely operated using a same random
controller and one follower. The goal is to train the follower
controller which is embedded on the follower and to enable
it to maintain the initial shape of the formation, set to a
equilateral triangle.

b) 4-quadrotor settings: In the second setting, the for-
mation includes two leaders likewise remotely operated using
a same random controller; and two independent followers.
The goal is to train an embedded controller for each one
of the true followers, enabling both of them to maintain
with the true leaders the initial shape of the formation, set
to a parallelogram (rhombus). Both leaders are respectively
situated at the extreme north and south of the rhombus.

B. Data acquisition

During the data acquisition, the state of each follower is
recorded along a set of episodes. Each episode starts with
quadrotors taking off in the initial shape pattern (equilateral
triangle in 3-quadrotor, and rhombus in 4-quadrotor). The
episode ends when the current geometric pattern of the for-
mation is too far from the initial one (see below).

The action space U/ is made of 7 actions: Forward, Back-
ward, Left, Right, Up, Down, NoMove.

At time ¢ = 0, the leaders uniformly select a same action
uy in U and keep it constant for 10 time steps; another action



is selected at time ¢ = 10 and kept for 10 time steps, and so
forth.

At each time step t > 0, each follower independently and
uniformly selects an action u; in U.

For each follower, its state y, at time ¢ is the 2-dimensional
vector made of its distance to each one of the two leaders.
Eventually, the data set attached to each follower reports 1,500
episodes, where each episode is a varying length sequence
(Yo, %0,¥1,---,¥,) and y, is a terminal state iff ||y, —y,|| > ¢,
with € > 0 a tolerance parameter. On average, 1,500 episodes
correspond to 7,000 pairs g,y ;.

C. Forward model

The data set is exploited to learn a forward model, estimat-
ing the next state of the quadrotor based on its two last states
and actions.

Formally, the data set is decomposed as a set of pairs (X =
(Ys—1,ue—1,¥4,ut); Z = ¥;41) and a mainstream supervised
learning algorithm is used to train a function F such that
F(X) = Z from 80% of the data.

The quality of the learned model F is estimated on the
remaining 20% of the data. Further work will be focused on
self-adapting the € tolerance parameter depending on the mean
square error of F.

D. ILAMRC controller

At production time, model F is used to support a controller,
defined as:

upy = argmin {||¥o = F(¥eo1, w1, Yo ur) | }

More precisely, the quadrotor uses its initial state y, to define
the target property to be preserved (section III-B). Based on
its past state and action, and its current state, it determines
the best action according to the forward model F, that is, the
action more amenable to bring it in the target state.

It is emphasized that each quadrotor is associated to a
specific forward model, inducing a specific controller. This
strategy is meant to address the fact that actual quadrotors
might have slightly different behaviors, e.g. due to fatigue
effects.

The quadrotors are operated at production time very sim-
ilarly as in the data acquisition phase. In each episode, the
quadrotors take off, the leaders are randomly operated (with
their action persisting for 10 consecutive time steps) and
the episode ends when the current geometric pattern of the
formation is too far from the target one, that is, when at least
one follower is too far from its target state. The difference
is that in each time step, each follower executes the action
according to its own controller (as opposed to, a random action
in the data acquisition phase).

V. EXPERIMENTAL SETTING

This section describes the goal of experiments and the
experimental setting used to validate the IL4AMRC approach.

A. Goals of experiments

As said, an episode starts with the quadrotors taking off in
the target geometric pattern (equilateral triangle in setting 1,
and rhombus in settings 2).

The straightforward performance indicator is the average
number of time steps this geometric pattern is preserved up to
the tolerance €. A high variability of the quadrotors behavior
was however observed, due to several factors: the random
moves of the leaders; the drifting noise of each quadrotor and
the variability of the traveled distance by each quadrotor (see
Table I).

A more reliable performance indicator is thus retained,
namely the cumulative distribution of the episode length,
reporting for each number of time steps ¢ the fraction z(t)
of the episodes with a length less than ¢.

B. Baselines

The performance of IL4AMRC is assessed comparatively to
two baselines. The simplest baseline is the random controller
(as used during the data set acquisition). A refined baseline is
based on a k-nearest neighbor. Formally, this baseline exploits
the same data set £ as the one used to train the forward
model. To each triplet (y,_;,ut—1,y;) is associated its k-
nearest neighbors (with & = 4 in the experiments), where
the distance is set to the Euclidean distance on the state
space and the Hamming distance on the action space. Letting
(yﬁ)l, ugljl,ygz), ugz),ygﬁl) respectively denote the fragments
of trajectories including these nearest neighbors, the selected
action is uil) such that it brings the quadrotor in state YEQO
as close as possible to the target state:

up = arg min {IlyO - Y§Z+)1||}

C. Simulation platform

In the first (respectively, second) setting, the system includes
three (resp. four) robots of same type, the IRIS quadrotor
designed by 3DR?, with height 0.11m, width 0.47m and weight
1.5 kg.

The quadrotors are simulated using the software in the loop
simulation (SITL) [13] integrating the Gazebo simulator 3.
Each quadrotor uses PX4 # as an autopilot software.

The velocity of each robot is 1m/s, the duration of one time
step and the duration of each action both are 1 second. The
take-off altitude is 25 m. The tolerance € on the deviation from
the target pattern is 2. Roughly speaking, the pattern is broken
if one of the quadrotors stays motionless for 3 time steps while
the leaders move.

D. Learning of the forward model

As said, the training data set records 1,500 episodes, totaling
circa 7,000 time steps on average. The forward model is
implemented as a neural net, using mlpack [43]. The neural
architecture is a 2-hidden layers, with 200 neurons on each

Zhttps://3dr.com/
3http://gazebosim.org/
“https://px4.io/
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Figure 1. Performance of IL4AMRC on the 3-quadrotor setting (top) and

the 4-quadrotor setting (bottom), compared to the random and the k-nearest
neighbor baselines. For each controller and each time step ¢ on the horizontal
axis, is indicated the fraction z(t) of the episodes terminated before ¢ time
steps (see text).

layer, with Leaky ReLU as activation function [44]. The
training uses Glorot initialization [45], with .5 Dropout and
batch size 32; the hyper-parameters are adjusted using Adam
[46] with B = 0.9, B2 = 0.999, ¢ = 1078, and initial learning
rate o = 0.001.

VI. EMPIRICAL VALIDATION

The performance of IL4MRC is displayed in Fig. 1, re-
porting the cumulative distribution of the episode lengths in
the 3-quadrotor (Fig. 1, top) and 4-quadrotor (Fig. 1, button)
settings. The difficulty of the problems is evidenced as the
random controller loses track of the leaders after 10 time
steps on circa 90% of the episodes in the 3-quadrotor setting,
and almost 100% of the episodes in the 4-quadrotor setting.
The k-nn controller significantly improves on the random
controller: circa 10% of the episodes last more than 20
time steps. Surprisingly, its performances are quite similar in
both settings. Complementary experiments (omitted for space
limitations) show that the performance of the k-nn can be
improved by increasing the size of the data set, although this

adversely affects the controller speed and increases the latency
among the quadrotors.

Finally, ILAMRC significantly improves on the k-nn con-
troller: 60% (respectively 30%) of the trajectories last more
than 40 time steps in the 3-quadrotor (resp. the 4-quadrotor)
setting. The enhanced performance of IL4AMRC compared to
the k-nn can be easily understood from the generalization
effect: the k-nn model cannot provide reliable estimates in
regions which have not been visited in the training set and
more generally its accuracy is limited by the size of the
data set. Qn the opposite, under the assumption that the
target behavior is sufficiently smooth, the IL4MRC model can
estimate the behavior of the quadrotor in regions which have
been rarely visited in the training set.

VII. CONCLUSION

Inspired from the Model Predictive Control setting, this
paper presents a new approach for controller design, under
two assumptions: the fact that the target behavior can be cast
as a property-preserving task on the one hand, and the fact
that the action space is discrete on the other hand.

Under these assumptions, the burden of controller design
is shifted toward data acquisition: the gathered data enables
to learn a simple and short-sighted forward model, and this
forward model i) enables the fast optimization of the next
action; ii) seamlessly handles the uncertainty about the current
state and the actual behavior of the agent.

A proof of principle is presented to illustrate the approach,
on the difficult task of maintaining a swarm with neither
sophisticated sensors (e.g. GPS or collision detector) nor
extensive computational resources. The empirical evidence on
this task suggests that a somewhat sophisticated behavior can
be achieved by learning offline and exploiting online a basic
forward model.

Further research should develop the transfer of the neural
controller from the simulated environment to real quadrotors.
The distance between the agents will be estimated using the
signal strength of any radio link between them, using the
appropriate propagation model. A most interesting question
concerns the adaptation of the presented approach to learn
and adjust a simplified propagation model.
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