Skip to Main content Skip to Navigation
Journal articles

Optimization and stabilization of a kilohertz laser-plasma accelerator

Abstract : Laser–plasma acceleration at kilohertz repetition rates has recently been shown to work in two different regimes with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two laser–plasma accelerator (LPA) processes can be distinguished, where beams of the highest quality, with a charge of 5.4 pC and a spectrum peaked at 2–2.5 MeV, are obtained with short pulses propagating at moderate plasma densities. Through particle-in-cell (PIC) simulations, the two different acceleration processes are thoroughly explained. Finally, we proceed to show the results of a 5-h continuous and stable run of our LPA accelerator accumulating more than 18 × 10 6 consecutive shots, with a charge of 2.6 pC and a peaked 2.5 MeV spectrum. A parametric study of the influence of the laser driver energy through PIC simulations underlines that this unprecedented stability was obtained thanks to micro-scale density gradient injection. Together, these results represent an important step toward stable laser–plasma accelerated electron beams at kilohertz repetition rates.
Complete list of metadata
Contributor : Inspire Hep Connect in order to contact the contributor
Submitted on : Tuesday, February 9, 2021 - 10:33:26 PM
Last modification on : Tuesday, January 4, 2022 - 6:32:56 AM

Links full text




L. Rovige, J. Huijts, I.A. Andriyash, A. Vernier, M. Ouillé, et al.. Optimization and stabilization of a kilohertz laser-plasma accelerator. Phys.Plasmas, 2021, 28 (3), pp.033105. ⟨10.1063/5.0040926⟩. ⟨hal-03136776⟩



Les métriques sont temporairement indisponibles