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a b s t r a c t 

In the framework of the theory of mixture, the dynamic behaviour of solid cylinder bundles submitted 

to external hydrodynamic load exerted by surrounding viscous fluid flow is described. Mass conservation 

and momentum balance formulated on an elementary domain made of a given volume of mixture give 

rise to a system of coupled equations governing solid space-averaged displacement, fluid velocity and 

pressure provided that near-wall hydrodynamic load on each vibrating cylinder is expressed as a function 

of both fluid and solid space-averaged velocity fields. 

Then, the ability of the macroscopic model to reproduce over time an averaged flow surrounding vi- 

brating cylinders in a large array in the context of small magnitude displacements is pointed out. Nu- 

merical solutions obtained on a two-dimensional configuration involving an array of several hundreds 

of cylinders subjected to an impulsional load are compared to those provided by averaged well-resolved 

microscopic-scale solutions. The relative error is less than 3% in terms of displacement magnitude and 

5% for frequency delay. 

The proposed macroscopic model does not include any assumption on relative effect contributions to 

mechanical exchanges occurring in the full domain. Therefore it features interesting properties in terms 

of fluid solid interaction prediction capabilities. Moreover it contributes to a significant gain in terms of 

computational time and resources. Further developments are now required in order to extent the formu- 

lation to large magnitude displacements including three-dimensional effects. This could be recommended 

for investigations on fuel assembly vibration risk assessment in Pressure Water, Fast Breeder reactors at 

a whole core scale or any other large-scale mechanical system involving some kind of periodic geometry. 

1. Introduction 

Modeling mechanical interaction between fluid and solid in a 

large array of vibrating slender-bodies is a matter of design and 

safety assessment in nuclear installations. A detailed microscopic- 

scale representation of interstitial flow patterns may be compu- 

tationally unreachable for size purposes. Therefore an alternative 

consists in describing each cylinder dynamic behaviour from a 

global point of view by “forgetting” phenomena occurring below 
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is paid to the description of each cylinder motion and associated 

interstitial fluid dynamics. 

According to the theory of mixture, the purpose is to formu- 

late a macroscopic model for both fluid and solid phase dynamics 

at a larger scale than the microscopic scale. In the present article 

it is developed in a two-dimensional context [4,9] . One considers 

an elementary volume � of mixture defined such that it contains 

only one cylinder ( Fig. 1 ). Each cylinder displacement magnitude 

is strictly limited within the boundary of � and the model is built 
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he scale of interest [3,6,20,24] . In the present work, one consid-

rs a multi-phase fluid-solid system made of a periodic arrange-

ent of cylinders submitted to a single-phase viscous unsteady

uid flow inducing external load and vibration. A specific attention
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uch that the hydrodynamic load arising at fluid solid interface is

elated to macroscopic scale quantities, namely the averaged flow

elds and the averaged solid response over �. 

Within � the solid phase domain is denoted by �s (of volume

 s ) of boundary ∂�s (of area S s ) and the fluid phase domain by

f (of volume V f ) of boundary ∂�f (of area S f ). Therefore, one gets

= �s ∪ � f as displayed on Fig. 1 . At microscopic scale space and

ime evolution of any point belonging to � may be described by

ocal mass density ρ( x , t) and velocity v ( x , t) . In the framework of
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Fig. 1. One discrete element within a square arrangement of cylinders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

b

n  

t  

t  

t  

S

T  

p  

e(
 

E  

a

2

 

m

w  

m  

n  

t

r

D  

b  

i  

O

 

E  

f

2

2

∫

theory of mixture, assumptions are required to formulate balance

laws on the volume of fluid solid mixture. α-phase represents ei-

ther solid or fluid phase such that α ∈ { s ; f }. 

Theory of mixture is used to describe mechanical behaviour

and transport in multi-phase system such as porous media or

flow of immiscible fluid. Such a system consists of several con-

tinuous media interlinked to each other by sharp interfaces. Each

phase is characterized by its usual material patterns so that in

the framework of classical continuum media theory, a solution

for its mechanical behaviour, together with interfacial conditions,

can be obtained at a space scale referred to as the microscopic

scale [7,8,22,23] . If information at microscopic scale is not required,

multi-phase solution at such a small space scale is not necessary.

In this way theory of mixture provides an averaged description of

the multi-phase system within a volume whose size is much larger

than the microscopic scale referred to as the macroscopic scale.

This yields to macroscopic governing equations for system to be

considered over a given volume where balance laws have to be

satisfied. This approach represents an extension of classical balance

laws in the context of continuum mechanics [2,19] . 

2. Theory of mixture in cylinder array 

2.1. Assumptions 

Volume of mixture � is a fixed open system whose boundary

∂� is not time-dependent. Volume (resp. area) fraction φα = 

V α

V 

(resp. ε α = 

S α

S 
) of α-phase within � is constant for each cell since

corresponding cylinder displacement is bounded by ∂�. Therefore

in each cell physical quantities associated with each phase may be

defined as follows : 

ρα = 

1 

V α

∫ 
�α

ρ( x , t) dv , 

v α(t) = 

1 

V α

∫ 
�α

v ( x , t ) dv and v m 

(t ) = 

1 

V 

∫ 
�

v ( x , t ) dv 

�⇒ v m 

(t) = φ f v f (t) + φs v s (t) . 

Similarly time-related stress vectors of α-phase at macroscopic

scale are defined as : 

T α(t) = 

1 

S 

∫ 
∂�α

T ( x , t ) ds and T m 

(t ) = 

1 

S 

∫ 
∂�

T ( x , t ) ds

�⇒ T m 

(t) = ε f T f (t) + ε s T s (t) . 

In what follows, mass conservation and momentum balance are

formulated for a given volume of fluid solid mixture and lead to

a set of constitutive equations for the singular behaviour of each

fluid and solid phases [5,14,25,27–29] . 
.2. Conservation equations 

.2.1. Mass conservation 

For an open system change of mass m in the mixture is given

y : 

dm 

dt 
= 

d 

dt 

∫ 
�

ρ( x , t) dv = −
∫ 
∂�

ρ( x , t) ( v m 

(t) · n ) ds 

 is the unit outward vector normal to surface ∂�. As the con-

rol volume is fixed, total time-derivative and partial-time deriva-

ive are equivalent, the divergence theorem may be applied and in-

egration term may be split into two parts over both subdomains.

ince time-derivatives of ρ f and ρs are zero, this yields: 

∂ 

∂t 

∫ 
� f 

ρ f d v + 

∂ 

∂t 

∫ 
�s 

ρs d v = −
∫ 
�

∇ · (ρ( x , t) v m 

(t)) dv = 0 . 

he mixture mean velocity v m 

is constant over � and it only de-

ends on time. One finally gets the following mass conservation

quation : 

ρ f 

∫ 
� f 

dv + ρs 

∫ 
�s 

dv 
)

∇ · v m 

(t) = 0 

�⇒ ∇ · (φ f v f (t)) + ∇ · (φs v s (t)) = 0 (1)

q. (1) is the mass conservation equation of the model formulated

t the macroscopic scale to be considered. 

.2.2. Momentum balance 

For an open system change of momentum quantity q in the

ixture may be given by : 

dq 

dt 
= 

d 

dt 

∫ 
�

ρ( x , t) v ( x , t) dv 

= 

∫ 
∂�

[ T ( x , t) − ρ( x , t) v ( x , t ) ( v m 

(t ) · n ) ] ds + 

∫ 
�

b ( x , t) dv , 

here T ( x , t) is the stress vector per surface unit, b ( x , t) the volu-

etric force vector per volume unit and n the unit outward vector

ormal to surface ∂�. The divergence theorem may be applied and

he integration over � may be split into two terms over �f and �s 

espectively as follows : 

∂ 

∂t 

∫ 
� f 

ρ f v ( x , t) dv + 

∂ 

∂t 

∫ 
�s 

ρs v ( x , t) dv 

= −
∫ 
�

∇ · (ρ( x , t) v ( x , t) � v m 

(t)) dv 

+ 

∫ 
∂�

T ( x , t) ds + 

∫ 
�

b ( x , t) dv 

ensity quantities ρα are homogeneously defined over �α . This

rings out the averaged velocity fields v α(t) and then, after divid-

ng by V = 

∫ 
�

dv , brings also out its associated volume fraction φα .

ne finally gets the following momentum equation : 

∂ 

∂t 

[
φ f ρ f v f (t) 

]
+ 

∂ 

∂t 
[ φs ρs v s (t) ] 

= −∇ · (φ f ρ f v f (t) � v m 

(t)) − ∇ · (φs ρs v s (t) � v m 

(t)) 

+ 

1 

V 

∫ 
∂�

T ( x , t) ds + 

1 

V 

∫ 
�

b ( x , t) dv (2)

q. (2) represents the momentum balance equation of the model

ormulated at the macroscopic scale to be considered. 

.3. Closure problem 

.3.1. Stress vector 

According to previous assumptions, one can write : 
 

T ( x , t) ds = 

∫ 
T m 

(t) ds = 

∫ 
(ε f T f (t) + ε s T s (t)) ds 
∂� ∂� ∂�
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∫ 
∂�

T f (t) ds. 

he fluid stress vector is related to mean hydrostatic pressure p f ( t )

nd mean deviatoric tensor τ f ( t ), both over �f . The flow is as-

umed to be incompressible and the viscosity μf to be homoge-

eous over �f . Therefore, in the context of classical newtonian

uid dynamics formulation, the stress vector satisfies : 
 

∂�
T ( x , t) ds = 

∫ 
∂�

[
−p f (t) I + τ f (t) 

]
· n ds 

= 

∫ 
∂�

[
−p f (t) I + μ f 

(∇ v f (t) + 

t ∇ v f (t) 
) ]

· n ds 

here I is the unit tensor. The divergence theorem combined with

he homogeneous features of both averaged pressure and fluid ve-

ocity quantities finally leads to : 
 

∂�
T ( x , t) ds = 

[
−∇p f (t) + ∇ · μ f 

(∇ v f (t) + 

t ∇ v f (t) 
) ] ∫ 

�
dv 

.3.2. Volumetric force 

No volumetric force acts over the volume of fluid material.

owever the cylinder included into the mixture gives rise to a

esistance in response to the applied external load according to

ts oscillating behaviour. Indeed, the cylinder belonging to a given

ixture � is assumed to be flexibly mounted. Its motion is gov-

rned by the following dynamics equation : 

 

∂ 2 u s 

∂t 2 
(t) + K u s (t) = F (t) , (3)

here u s (t) designates the cylinder displacement from its equilib-

ium position within � and F (t) the fluid load arising on outer

ylinder interface. M and K are the mass and effective stiffness of

he cylinder respectively. The resistance level is characterized by

he effective stiffness K whose nature is volumetric and which is

ssumed to be homogeneous over �s . Therefore, the volumetric

orce of a given fluid-cylinder mixture � satisfies : 
 

�
b ( x , t) dv = 

∫ 
�

−K 

V 

u s (t) dv = − K 

V 

u s (t) 

∫ 
�

dv 

.3.3. Resulting momentum equation 

According to previous derivations the resulting momentum

quation within a given volume of fluid-cylinder mixture is such

hat : 

∂ 

∂t 

[
φ f ρ f v f (t) 

]
= −∇ · (φ f ρ f v f (t) � φ f v f (t)) − ∇ · (φs ρs v s (t) � φ f v f (t)) 

−∇ · (φ f ρ f v f (t) � φs v s (t)) − ∇ · (φs ρs v s (t) � φs v s (t)) 

−∇p f (t) + ∇ · μ f 

(∇ v f (t) + 

t ∇ v f (t) 
)

− 1 

V 
F (t) (4) 

he set of Eqs. (1), (3) and (4) constitutes the macroscopic

odel. It displays 8 scalar unknowns and 5 scalar equations in a

wo-dimensional configuration. Therefore this system needs to be

losed. 

In what follows, one introduces a hydrodynamic load formula-

ion involving others unknowns, namely averaged fluid and solid

elocity fields. 

. Hydrodynamic load model 

.1. Load model formulation 

The dynamical response of a beam under fluid flow may be sig-

ificantly affected by surrounding viscous fluid. Therefore accurate

stimates for near-wall fluid load and associated flow perturba-

ion are required for prediction of dynamical response, especially

n presence of large size cylinder arrangement. Moreover a consis-

ent model of hydrodynamic effects must be suitable for vibrating
ylinders as well as for fixed ones, i.e. in a dynamic and in a static

ontexts. Indeed, a robust estimate of fluid load exerted on a fixed

ylinder (friction effects) anywhere in the large array, is required

o enable a good flow prediction elsewhere in the array made up

f both vibrating and fixed cylinders. [21] or [15] models should be

dapted since formulations they are relying on are linear with the

tructure velocity and acceleration, and thus only concern moving

ylinders. 

In [12] one introduces an extension of Morison’s equation

13] to predict hydrodynamic effects acting on moving offshore

lender structures, by adding to this equation two additional terms

epending on the moving solid variables. Inspired by this ap-

roach, one replaces the propagation wave velocity by the aver-

ged flow velocity surrounding the cylinder : 

F (t) 

	z 
= ρ f (1 + C m f ) 

πD 

2 

4 

∂ v f (t) 

∂t 
− ρ f C ms 

πD 

2 

4 

∂ v s (t) 

∂t 

+ 

1 

2 

ρ f DV 

∗(C df v f (t) − C ds v s (t) 
)

+ 

1 

2 

ρ f DC d0 V 

2 
∞ 

n f (5) 

here 	z is the length cylinder, D the diameter, f s the oscillation

requency in vacuum, V ∞ 

the inlet cross flow velocity, n f the unit

ector following the inlet cross flow direction, V ∗ = max { f s D ;V ∞ 

}
he characteristic velocity of the system, C mf the inertia coefficient

or fluid oscillation, C sf the inertia coefficient for cylinder oscilla-

ion, C df the drag coefficient for fluid oscillation, C sf the drag coeffi-

ient for cylinder oscillation and C d 0 the drag coefficient for steady

ross flow. Eq. (5) involves 5 coefficients C mf , C df , C ms , C ds and C d 0 
hich are unknown and must be evaluated for closure of the hy-

rodynamic load model. In what follows, one proposes a numerical

losure method for evaluating these coefficients. 

.2. Numerical closure method 

The present work involves a multi-physics multi-scale approach.

he computational procedure to be proposed for evaluating the

losure coefficients relies on numerical simulations performed at

he microscopic scale on a reduced size domain involving a small

umber of moving and non-moving cylinders. Therefore the full

omputational procedure involves a coupling between macroscopic

nd microscopic computations performed in static and dynamic

ontexts. 

tep 1 : Microscopic-scale computation 

One defines a reduced-size domain assumed to be representa-

ive of fluid structure interaction occurring within a large cylinder

rray. This domain includes at least one non-moving cylinder and

ne moving cylinder. The numerical simulation to be performed on

his domain at microscopic-scale provides flow fields in the vicin-

ty of both cylinders. 

A specific attention is paid to near-wall mesh refinement as de-

icted by Fig. 2 . Initial and boundary conditions must be represen-

ative of those encountered in large-size arrangement for macro-

copic scale simulation. Periodic boundary conditions are used in

resence of an initial still fluid. In this way, microscopic-scale sim-

lation provides accurate estimate of space distribution and time

volution of fluid load acting on both fixed and moving cylinders,

s well as space-averaged flow fields and cylinder kinematics over

ach macroscopic cell. 

In the present work these microscale solutions are used on one

and for closure of the macroscopic model, on the other hand

or its validation by performing comparisons between macroscopic

nd space-averaged microscopic fields. 

tep 2 : Closure coefficient evaluation 

In order to determine the set of 5 unknown coefficients, two

ultiple linear regressions by a least-square method of hydrody-



Fig. 2. Near-wall mesh refinement of some region of the computational domain 

involved for microscopic numerical simulation. 

Fig. 3. Closure coefficient estimation procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Relative error on coefficients over the full-size domain. 

Coefficient C mf C df C ms C ds 

Small-size domain 1,46 4,70 1,41 5,13 

Full-size averaging 1,65 5,08 1,42 4,88 

Relative error (%) 13,01 8,09 0,71 4,90 
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f df f i ds si f d0 ∞ 

f i 
 

namic load evaluated at microscopic-scale are successively per-

formed. From microscopic-scale solution, averaged fluid and solid

velocities over each discrete element are computed. Then fluid

contribution including drag and inertia coefficients, C d 0 , C df and

C mf , are estimated from fluid load applied to the fixed cylinder.

Next, C ds and C ms are estimated from fluid load on the moving

cylinder. Finally one gets an evaluation of all closure coefficients

to be introduced into the hydrodynamic load model. 

In the present work the reduced domain involves one fixed

cylinder and one moving cylinder embedded into a periodic cell

simulating surrounding cylinders as depicted in Fig. 3 . Depend-

ing on mechanical exchanges to be involved between fluid and

solid in cylinder array, these 5 coefficients may be evaluated as
 space tensor potentially time-dependent for possible bifurcation

nd transient modeling. 

tep 3 : Correction step is needed 

With the proposed method the reference reduced-scale domain

equired for coefficient estimation may be chosen differently de-

ending on the problem. Therefore it is important to check the

alidity of coefficient distribution over the whole domain in or-

er to introduce a correction if required. An example of coefficient

pace distribution over the whole domain is displayed in Fig. 4 ;

ell-space averaged coefficients deduced from a microscopic com-

utation over the whole domain are compared to estimates coming

rom a computation over the reduced-size domain. 

Relative errors on coefficients C mf , C df in the external area and

 ms , C ds in the center part are provided by Table 1 . 

According to these results, if one excludes the interface area be-

ween static and dynamic parts, a relative homogeneous distribu-

ion of coefficients is ensured in the full domain. Therefore in the

resent configuration, the reduced-size domain is appropriate for

oefficient computation. However in the presence of stronger dy-

amical effects, it may be required to rely on a larger and more

epresentative domain. 

.3. Full macroscopic model 

.3.1. Space discretization 

Mass conservation and momentum balance are established for

 given volume of fluid solid mixture referred to as a discrete ele-

ent of the whole cylinder arrangement. The mechanical exchange

etween solids and surrounding flow is written in terms of space-

iscrete equations. By this way, let us consider the cylinder array to

e divided into n elt identical discrete elements �i , ∀ integer i ∈ [1;

 elt ]. In what follows, the set of equations of the full macroscopic

odel is formulated. Time indice ( t ) is omitted for sake of clarity.

herefore the fully coupled system is provided by Eqs. (6) to (9) . 

• Mass conservation within �i 

∇ · (φ f v f i ) = −∇ · (φs v si ) (6)

• Momentum balance within �i 

∂ 

∂t 

(
φ f ρ f v f i 

)
− ∇ · (φ f ρ f v f i � φ f v f i ) 

= −∇p f i + ∇ · μ f 

(∇ v f i + 

t ∇ v f i 

)
− 1 

V 

F i 

−∇ · (φ f ρ f v f i � φs v si ) − ∇ · (φs ρs v si � φs v si ) 

−∇ · (φs ρsi v si � φ f v f i ) (7)

• Solid displacement within �i 

M 

∂ 2 u si 

∂t 2 
+ K u si = F i (8)

• Hydrodynamic load modeling 

F i 
	z 

= ρ f (1 + C m f ) 
πD 

2 

4 

∂ v f i 

∂t 
− ρ f C ms 

πD 

2 

4 

∂ v si 

∂t 

+ 

1 

ρ D V 

∗(C v − C v 
)

+ 

1 

ρ D C V 

2 n (9)

2 2 



Fig. 4. Instantaneous space distribution of force coefficients after cell-space averaging: coefficients C mf and C df in the external zone with fixed cylinders (1st and 2nd figures 

respectively) and coefficients C ms and C ds in the central region where cylinders are moving (3rd and 4th figures respectively). 
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Fig. 5. Cylinder arrangement involving fixed (outside) and moving (inside) cylin- 

ders. 

Table 2 

System parameters. 

Variable Value Unit 

D 10,0 mm 

P 14,0 mm 

f 1,1 Hz 

ρs 3, 0.10 3 kg.m 

−3 

ρ f 1, 0.10 3 kg.m 

−3 

μf 1 , 0 . 10 −3 kg.m 

−1 .s −1 

V ∞ 0 , 28 . 10 −2 m.s −1 

Table 3 

Estimated coefficients. 

C mf C ms C df C ds C d0 

1, 67 1, 47 5, 34 4, 94 −1 , 2 

fi  

s  

c  

a  

p  

d  

T  

t  
.3.2. Time discretization 

Both macroscopic and microscopic scale computations are per-

ormed by using the same solver 1 computing Navier-Stokes equa-

ions involving a cell-centered colocated finite volume method. In

he present work time discretization is based on an implicit Euler

cheme. Variables are supposed to be known at time t n and have

o be computed at time t n +1 . At each time step 	t = t n +1 − t n , ve-

ocity and pressure fields are computed in two steps: 

– a prediction step in which the momentum equation is solved

to compute the predicted velocity ̃  v n +1 
i and pressure is taken

explicit. 

– a correction step in which 

˜ v n +1 
i is corrected to obtain v n +1 

i 
according to mass conservation equation. 

All terms including a solid part contribution, mass and/or mo-

entum source terms, are considered as explicit. Moreover micro-

copic scale computations rely on a moving grid method [1,10,11] ,

rovided that grid dynamics involved in microscopic simulation

s limited by each macroscopic cell boundary for space-averaging

urposes. Finally, the single-degree-of-freedom rigid solid dynam-

cs equation is solved by using an unconditionaly stable Newmark

cheme. 

. Macroscopic numerical prediction of flow-induced vibration 

.1. Configuration 

The macroscopic model is evaluated on a configuration involv-

ng an array of 361 vibrating cylinders subjected to the same brief

xternal load. Fluid and solid motions are considered in the cross-

ection plane of cylinders. The initial excitation drives cylinder os-

illation only in the cross direction. The numerical solution pro-

ided by the macroscopic model is compared to the one given by

he space-averaged microscopic-scale solution. Fig. 5 displays the

ystem to be considered. At each time, the cylinder array is sub-

itted to an inlet cross flow such that, in steady configuration, the

nterstitial flow Reynolds number and reduced velocity are respec-

ively Re = 100 and V R = 0 . 91 . Numerical periodic conditions are

ssigned to both top and bottom boundaries to simulate a large

omputational domain, and also to prevent possible numerical per-

ubations related to wall boundary layer development. Table 2

ummarizes material and geometrical parameters and Table 3 ex-

ibits the set of estimated coefficients obtained according to the

reviously-mentioned computational procedures. 

.2. Flow fields and solid response 

In each cell the macroscopic-scale model provides the time evo-

ution of space-averaged flow velocity, flow pressure and, depend-

ng on the location within the array, cylinder displacement. These
1 http://code-saturne.org/cms/ . 

m  

p  

t  
elds are compared to those obtained by averaging microscopic-

cale solutions over material volumes corresponding to these dis-

rete elements. Table 4 shows instantaneous space distribution of

veraged pressure and fluid velocity. The macro-scale solution re-

roduces with good agreement the space distribution of fields de-

uced from the micro-scale solution. In several macroscopic cells

able 5 shows time history of macro-scale solution compared to

hose obtained by micro-scale simulation. Figures focus on 4 ele-

ents, each one being associated with one moving cylinder. Each

lot starts at the end of the initialization process. In each element

he macroscopic-scale model reproduces with good agreement the

http://code-saturne.org/cms/


Table 4 

Comparison between averaged-microscopic (left) and macroscopic (right) solutions in terms of fluid velocity (top) and pressure 

(bottom). 
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s  

p  
damping effect due to the surrounding viscous flow. No structural

damping is included here. According to results the estimated er-

ror between microscopic and macroscopic solutions rises 3%. For a

same cell, the averaged fluid velocity after 6 periods may arise a

phase delay but this does not significantly affect the cylinder dis-

placement estimate. 
.3. Computing performances 

For the calculations involved in the present article, the

icroscopic-scale computation over the large array on 144 proces-

ors requires a computational time of 8 hours for 20 oscillation

eriods, whereas the macroscopic-scale computation on a single



Table 5 

Time evolutions of the macroscopic-scale solution, compared with those of the microscopic-scale solution for 4 discrete elements (from left to right) in terms of displace- 

ment (top), fluid velocity (middle) and pressure (bottom). 

Fig. 6. Velocity field magnitude in the full domain computed through a microscopic (left) or a macroscopic (right) formulation. 
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rocessor requires a computational time of 50 minutes over the

ame period. Therefore the gain in CPU time provided by the pro-

osed macroscopic model is evaluated to 99.9% provided that the

educed-size domain micro-scale computation CPU time required

or the model closure may be neglected. One can find in Fig. 6 a

omparison between instantaneous velocity field magnitudes com-

uted at micro and macro scales in the full-size domain. According

o these results, one can see that the macroscopic scale simulation

s sufficient as far as one is interested in the energy transfer be-

ween the fluid and solids in order to account for a kind of solid

ffect distribution in the fluid domain. 
. Concluding remarks 

Theory of mixture enables the derivation of a set of cou-

led equations describing fluid solid interaction in a large array

f cylinders [16–18,26,30] . The formulated macroscopic model is

uilt without any assumption on physical phenomena to be in-

olved. In the present article the formulation is proposed in a two-

imensional small magnitude motion context. Each macroscopic

ell is referred to as a mixture including one cylinder with its sur-

ounding fluid flow. Mechanical exchanges in fluid in solid and

etween fluid and solid are described both in a static and in a
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dynamic frameworks. The resulting set of equations involve fluid

load acting on wall cylinders to be incorporated into the macro-

scopic model for closure. The closure consists in the evaluation

of a set of 5 coefficients by using micro-scale reduced-size do-

main numerical simulations. This way the model developed and

validated in the present work combines multi-physics (fluid-solid)

and multi-scale (macro-microscopic) approaches. The validation is

proposed on a configuration involving an array made up of 361

cylinders. The reference solution is the numerical one provided

by a fully microscopic-scale computation performed on the same

array. The macroscopic model reproduces the time history of the

space-averaged solution with good agreement. The hydrodynamic

load formulation involved in the model for closure seems to be

appropriate for such cylinder array configurations. Further devel-

opments are now investigated in order to extend this formulation

to three-dimensional configurations involving large magnitude dis-

placements by using moving grid formulations. 
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