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Abstract

We prove existence and uniqueness of Crandall-Lions viscosity solutions of Hamilton-
Jacobi-Bellman equations in the space of continuous paths, associated to the optimal
control of path-dependent SDEs. This seems the first uniqueness result in such a con-
text. More precisely, similarly to the seminal paper [43], the proof of our core result,
that is the comparison theorem, is based on the fact that the value function is bigger
than any viscosity subsolution and smaller than any viscosity supersolution. Such a
result, coupled with the proof that the value function is a viscosity solution (based
on the dynamic programming principle, which we prove), implies that the value func-
tion is the unique viscosity solution to the Hamilton-Jacobi-Bellman equation. The
proof of the comparison theorem in [43] relies on regularity results which are missing
in the present infinite-dimensional context, as well as on the local compactness of the
finite-dimensional underlying space. We overcome such non-trivial technical difficul-
ties introducing a suitable approximating procedure and a smooth gauge-type function,
which allows to generate maxima and minima through an appropriate version of the
Borwein-Preiss generalization of Ekeland’s variational principle on the space of contin-
uous paths.

Mathematics Subject Classification (2020): 93E20, 49L25, 35R15.

Keywords: path-dependent SDEs, dynamic programming principle, pathwise derivatives,
functional Itô calculus, path-dependent HJB equations, viscosity solutions.

∗University of Bologna, Department of Mathematics, Piazza di Porta San Donato 5, 40126 Bologna, Italy;

andrea.cosso@unibo.it.
†Luiss University, Department of Economics and Finance, Rome, Italy; fgozzi@luiss.it.
‡Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi”, 73100 Lecce, Italy;

mauro.rosestolato@unisalento.it.
§ENSTA Paris, Institut Polytechnique de Paris, Unité de Mathématiques Appliquées, 828, bd. des

Maréchaux, F-91120 Palaiseau, France; francesco.russo@ensta-paris.fr.

1



Contents

1 Introduction 2

2 Path dependent stochastic optimal control problems 4
2.1 Notations and basic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Assumptions and state equation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Dynamic programming principle . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Path Dependent HJB equations and viscosity solutions 14
3.1 Definition of path-dependent viscosity solutions . . . . . . . . . . . . . . . . 14
3.2 The value function solves the path-dependent HJB equation . . . . . . . . . 16

4 Uniqueness 18
4.1 Smooth variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Comparison theorem and uniqueness . . . . . . . . . . . . . . . . . . . . . . 21

A Pathwise derivatives and functional Itô’s
formula 30

B Cylindrical approximations 32
B.1 The deterministic calculus via regularization . . . . . . . . . . . . . . . . . . 32
B.2 Cylindrical approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction

The optimal control of path-dependent SDEs arises frequently in applications (for instance
in Economics and Finance) where the dynamics are non-Markovian. Such non-Markovianity
makes difficult to apply the dynamic programming approach to those problems. Indeed, the
standard dynamic programming approach is designed when the state equation is Markovian
hence it cannot be applied to such problems as it is.
More precisely, consider the following SDE on a complete probability space (Ω,F ,P) where
a m-dimensional Brownian motion B = (Bt)t≥0 is defined. Let T > 0, t ∈ [0, T ], x ∈
C([0, T ];Rd), and consider a progressively measurable process α : [0, T ] × Ω → A (with A
being a Polish space), where x is the initial path and α the control process. Let the state
process X : [0, T ]× Ω → R

d satisfy the following controlled path-dependent SDE:

{

dXs = b(s,X, αs) ds+ σ(s,X, αs) dBs, s ∈ (t, T ],

Xs = x(s), s ∈ [0, t].
(1.1)

Here X denotes the whole path, which, under mild assumptions, belongs to C([0, T ];Rd).
We assume b : [0, T ]× C([0, T ];Rd)×A → Rd (as well as σ) to be non-anticipative, namely,
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for all s ∈ [0, T ], a ∈ A, b(s, x, a) and σ(s, x, a) depend on the path x ∈ C([0, T ];Rd) only
up to time s.
The stochastic optimal control problem consists in maximizing the reward functional

J(t, x, α) = E

[
∫ T

t

f
(

s,X t,x,α, αs

)

ds+ g
(

X t,x,α
)

]

,

with f being non-anticipative, as b and σ above. In the above formula, X t,x,α denotes the
solution to (1.1). The value function is then defined as

v(t, x) = sup
α

J(t, x, α), ∀ (t, x) ∈ [0, T ]× C([0, T ];Rd),

where the supremum is taken over all progressively measurable control processes α.
We see that the value function is defined on the infinite-dimensional space of continuous
paths C([0, T ];Rd), hence it is related to some Hamilton-Jacobi-Bellman equation (HJB
equation for short) in infinite dimension.

The “standard” approach to study such problems consists in changing state space trans-
forming the path-dependent SDE into a Markovian SDE, formulated on an infinite-dimensional
space H, typically C([0, T ];Rd) or Rd × L2(0, T ;Rd). In this case the associated Hamilton-
Jacobi-Bellman equation is a PDE in infinite dimension (see for instance [19, 31]) which
contains “standard” Fréchet derivatives in the space H. Some results on the viscosity solu-
tion approach are given for instance in [32, 33, 51]; however, uniqueness results seems not
available up to now, see the discussion in [31, Section 3.14, pages 363-364]).

More recently, another approach has been developed after the seminal work of Dupire [23],
which is based on the introduction of a different notion of “finite-dimensional” derivatives
(known as horizontal/vertical derivatives) which allows to write the associated Hamilton-
Jacobi-Bellman equation without using the derivatives in the space H. We call such an
equation a path-dependent Hamilton-Jacobi-Bellman equation (see equation (3.5) below),
which belongs to the more general class of path-dependent partial differential equations,
that is PDEs where the unknown depends on the paths and the involved derivatives are the
Dupire horizontal and vertical derivatives. The definitions of these derivatives will be re-
called in Appendix A. There are also other approaches, similar to that introduced by Dupire,
but based on slightly different notions of derivatives, see in particular [1, 44, 36].
The theory of path-dependent PDEs is very recent, yet there are already many papers on
this subject, see for instance [7, 21, 22, 52, 45, 10, 46, 25, 26, 27, 34, 47, 13, 14, 50, 49, 48,
3, 11, 4, 15].
One stream in the literature (starting with [25] and further developed in [26, 27, 47, 50, 49,
11]) looks at such equations using a modified definition of viscosity solution where maxima
and minima are taken in expectation. In this way, roughly speaking, the amount of test
functions increases and, hence, uniqueness is easier to prove.
Another stream in the literature looks at path-dependent PDEs using the “standard” def-
inition of viscosity solution adapted to the new derivatives. We call such a definition the
“Crandall-Lions” one, recalling for instance their papers [17, 18]. In such a context there are
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only two papers, namely [15], which only address the path-dependent heat equation, and
[53]. This last paper uses an approach different from ours in the proof of uniqueness, the
“classical” approach of doubling variables; while, as we explain below, we use a direct com-
parison with the value function. The results are hence somehow different and with different
assumptions.

In the present paper we look at this last stream proving existence and uniqueness of
Crandall-Lions viscosity solutions of HJB equations associated to the optimal control of
path-dependent SDEs. This seems the first uniqueness result in such a context. The proof
of uniqueness (or, more precisely, of the comparison theorem, from which uniqueness is
derived) is difficult due to the fact that the usual approach adopted in the theory of viscosity
solutions relies on fine properties of functions on Rd, as for instance Aleksandrov’s theorem
and Jensen’s lemma (see on this [16, Appendix, pages 56-58]). The extension of those
results to functions defined on the space of continuous paths seems however impracticable
(this is probably the reason why, to circumvent such a problem, other notions of solutions
have been introduced in the literature). The proposed methodology is instead built on
refinements of the original approach developed in [43] and is based on the existence of the
candidate solution v, which is shown to be bigger than any subsolution and smaller than
any supersolution. The latter is traditionally based on regularity results which are missing
in the present context as well as on the local compactness of the underlying space in order
to generate maxima or minima. We overcome those non-trivial technical difficulties firstly
relying on suitable approximating procedures, see Lemmas B.3-B.4-B.5 and Theorem B.7
of Appendix B. Moreover, concerning the existence of maxima or minima, instead of the
missing local compactness of the underlying space, we exploit its completeness relying on a
novel variational principle on [0, T ]× C([0, T ];Rd), based on a smooth gauge-type function
introduced in [53] (see Lemma 4.2) and on a variant of the Borwein-Preiss generalization of
Ekeland’s variational principle.

Once the comparison theorem is proved, we deduce from our existence result (Theo-
rem 3.4) that the value function v is the unique Crandall-Lions viscosity solution of the
path-dependent HJB equation. The existence result is based, as usual, on the dynamic
programming principle, which is proved rigorously in the present paper, see Theorem 2.9.

The rest of the paper is organized as follows. In Section 2 we formulate the stochastic opti-
mal control problem of path-dependent SDEs and prove the dynamic programming principle.
In Section 3 we introduce the notion of Crandall-Lions viscosity solution and prove that the
value function v solves in the viscosity sense the path-dependent Hamilton-Jacobi-Bellman
equation. In Section 4 we state the smooth variational principle on [0, T ]×C([0, T ];Rd) and
prove the comparison theorem, from which the uniqueness result follows. In Appendix A we
recall the definitions of horizontal and vertical derivatives together with the functional Itô
formula. Finally, in Appendix B we report all the results concerning the approximation of
the value function needed in the proof of the comparison theorem.

2 Path dependent stochastic optimal control problems

4



2.1 Notations and basic setting

Let (Ω,F ,P) be a complete probability space on which a m-dimensional Brownian motion
B = (Bt)t≥0 is defined. Let F = (Ft)t≥0 denote the P-completion of the filtration generated
by B. Notice that F is right-continuous, so that it satisfies the usual conditions. Furthermore,
let T > 0 and let A be a Polish space, with B(A) being its Borel σ-algebra. We denote by A
the family of all F-progressively measurable processes α : [0, T ]× Ω → A. Finally, for every
p ≥ 1, we denote by Sp(F) the set of d-dimensional continuous F-progressively measurable
processes X : [0, T ]× Ω → R

d such that

‖X‖Sp := E

[

sup
0≤t≤T

|Xt|p
]1/p

< ∞. (2.1)

The state space of the stochastic optimal control problem is the set C([0, T ];Rd) of continuous
d-dimensional paths on [0, T ]. For every x ∈ C([0, T ];Rd) and t ∈ [0, T ], we denote by x(t)
or xt the value of x at time t and we set x(· ∧ t) := (x(s∧ t))s∈[0,T ] or x·∧t := (x(s∧ t))s∈[0,T ].
Observe that x(t) (or xt) is an element of Rd, while x(· ∧ t) (or x·∧t) belongs to C([0, T ];Rd).
We endow C([0, T ];Rd) with the supremum norm ‖ · ‖T (also denoted by ‖ · ‖∞) defined as

‖x‖T = sup
s∈[0,T ]

|x(s)|, x ∈ C([0, T ];Rd),

where |x(s)| denotes the Euclidean norm of x(s) in R
d. We remark that (C([0, T ];Rd), ‖ · ‖T )

is a Banach space and we denote by B its Borel σ-algebra. We also define, for every t ∈ [0, T ],
the seminorm ‖ · ‖t as

‖x‖t = ‖x·∧t‖T , x ∈ C([0, T ];Rd).

Finally, on [0, T ]× C([0, T ];Rd) we define the pseudometric d∞ : ([0, T ]× C([0, T ];Rd))2 →
[0,∞) as

d∞
(

(t, x), (t′, x′)
)

:= |t− t′|+
∥

∥x(· ∧ t)− x′(· ∧ t′)
∥

∥

T
.

We refer to [15, Section 2.1] for more details on such a pseudometric. On [t0, T ]×C([0, T ];Rd),
with t0 ∈ [0, T ), we consider the restriction of d∞, which we still denote by the same symbol.

Definition 2.1. We say that w : [0,∞) → [0,∞) is a modulus of continuity if w is continu-
ous, increasing, subadditive, and w(0) = 0.

We refer to [31, Appendix D] for more details on the notion of modulus of continuity.

2.2 Assumptions and state equation

We consider the coefficients

b, σ, f : [0, T ]× C([0, T ];Rd)× A −→ R
d, Rd×m, R, g : C([0, T ];Rd) −→ R,

on which we impose the following assumptions.
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Assumption (A).

(i) The maps b, σ, f, g are continuous.

(ii) There exist a constant K ≥ 0 such that

|b(t, x, a)− b(t, x′, a)|+ |σ(t, x, a)− σ(t, x′, a)|+ |f(t, x, a)− f(t, x′, a)| ≤ K‖x− x′‖t,
|g(x)− g(x′)| ≤ K‖x− x′‖T ,

|b(t, x, a)|+ |σ(t, x, a)|+ |f(t, x, a)|+ |g(x)| ≤ K,

for all a ∈ A, (t, x), (t′, x′) ∈ [0, T ]×C([0, T ];Rd), with |σ(t, x, a)| := (tr(σσ⊺)(t, x, a))1/2

= (
∑

i,j |σi,j(t, x, a)|2)1/2 denoting the Frobenius norm of σ(t, x, a).

Assumption (B). The maps b, σ, f are uniformly continuous in t, uniformly with respect
to the other variables. In particular, there exists a modulus of continuity w such that

|b(t, x, a)− b(s, x, a)| + |σ(t, x, a)− σ(s, x, a)|+ |f(t, x, a)− f(s, x, a)| ≤ w(|t− s|),

for all t, s ∈ [0, T ], x ∈ C([0, T ];Rd), a ∈ A.

Assumption (C).

(i) There exist d̄ ∈ N and σ̄ : [0, T ] × Rdd̄ × A → Rd×m satisfying, for all (t, x, a) ∈
[0, T ]× C([0, T ];Rd)× A,

σ(t, x, a) = σ̄

(

t,

∫

[0,t]

ϕ1(s) d
−x(s), . . . ,

∫

[0,t]

ϕd̄(s) d
−x(s), a

)

,

for some continuously differentiable maps ϕ1, . . . , ϕd̄ : [0, T ] → R, where the above de-
terministic forward integrals are defined as in Definition B.1 with T replaced by t (see
also Remark 2.3).

(ii) There exists a constant K ≥ 0 such that

|σ̄(t, y, a)− σ̄(t′, y′, a)| ≤ K |y − y′|,
|σ̄(t, y, a)| ≤ K,

for all (t, a) ∈ [0, T ]×A, y, y′ ∈ Rdd̄, with |y−y′| denoting the Euclidean norm of y−y′

in Rdd̄.

(iii) For every a ∈ A, the map σ̄(·, ·, a) is C1,2([0, T ]×Rdd̄). Moreover, there exist constants
K ≥ 0 and q ≥ 0 such that

∣

∣∂tσ̄(t, y, a)
∣

∣+
∣

∣∂yσ̄(t, y, a)
∣

∣+
∣

∣∂2
yyσ̄(t, y, a)

∣

∣ ≤ K
(

1 + |y|
)q
,

for all (t, y, a) ∈ [0, T ]× Rdd̄ × A.
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Remark 2.2. Notice that Assumptions (C)-(i)-(ii) imply the validity of (A)-(ii) for the
function σ (namely, Lipschitzianity in x and boundedness). As a matter of fact, boundedness
is obvious, while the Lipschitz property follows from the Lipschitz property of σ̄ and the
integration by parts formula (2.2).

Remark 2.3. Since the functions ϕ1, . . . , ϕd̄ appearing in Assumption (C)-(i) are continu-
ously differentiable, we can use the integration by parts formula (B.1) to rewrite the forward
integrals as follows:

∫

[0,t]

ϕi(s) d
−x(s) = ϕi(t) x(t)−

∫ t

0

x(s)
dϕi

ds
(s) ds, (2.2)

for every i = 1, . . . , d̄, where we have used that the Lebesgue-Stieltjes integral
∫

(0,t]
x(s)dϕ(s)

is equal to the Lebesgue integral
∫ t

0
x(s)dϕi

ds
(s)ds.

Remark 2.4. By the Lipschitz continuity of b, σ, f , we deduce that they satisfy the following
non-anticipativity condition:

b(t, x, a) = b(t, x·∧t, a), σ(t, x, a) = σ(t, x·∧t, a), f(t, x, a) = f(t, x·∧t, a),

for every (t, x, a) ∈ [0, T ]× C([0, T ];Rd)× A.

For every t ∈ [0, T ], ξ ∈ S2(F), α ∈ A, the state process satisfies the following system of
controlled stochastic differential equations:

{

dXs = b(s,X, αs) ds+ σ(s,X, αs) dBs, s ∈ (t, T ],

Xs = ξs, s ∈ [0, t].
(2.3)

Proposition 2.5. Suppose that Assumption (A) holds. Then, for every t ∈ [0, T ], ξ ∈
S2(Ft), α ∈ A, there exists a unique solution X t,ξ,α ∈ S2(F) to equation (2.3). Moreover, it
holds that

lim
r→t+

sup
α∈A

E

[

sup
0≤s≤T

∣

∣X t,ξ,α
s∧r − ξs∧t

∣

∣

2
]

= 0. (2.4)

Proof. See [12, Proposition 2.8] for the existence and uniqueness result. Concerning (2.4)
we refer to [12, Remark 2.9].

2.3 Value function

Given t ∈ [0, T ] and x ∈ C([0, T ];Rd), the stochastic optimal control problem consists in
finding α ∈ A maximizing the following functional:

J(t, x, α) = E

[
∫ T

t

f
(

s,X t,x,α, αs

)

ds+ g
(

X t,x,α
)

]

.

Finally, the value function is defined as

v(t, x) = sup
α∈A

J(t, x, α), ∀ (t, x) ∈ [0, T ]× C([0, T ];Rd). (2.5)
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Proposition 2.6. Suppose that Assumption (A) holds. Then, the value function v is
bounded, continuous on ([0, T ]×C([0, T ];Rd), d∞), and there exists a constant c ≥ 0 (depending
only on T and K) such that

|v(t, x)− v(t′, x′)| ≤ c
(

|t− t′|1/2 + ‖x(· ∧ t)− x′(· ∧ t′)‖T
)

, (2.6)

for all (t, x), (t′, x′) ∈ [0, T ]× C([0, T ];Rd).

Proof. The boundedness of v follows directly from the boundedness of f and g. Moreover,
the proof of estimate (2.6) can be done proceeding as in the non-path-dependent case and
follows from the Lipschitz continuity and boundedness of the coefficients.

2.4 Dynamic programming principle

In Section 3, Theorem 3.4, we prove that the value function v is a viscosity solution of a
suitable path-dependent Hamilton-Jacobi-Bellman equation. The proof of this property is
standard and it is based, as usual, on the dynamic programming principle which is stated
below. We prove it relying on [12, Theorem 3.4] and on the two next technical Lemmata
2.7 and 2.8. For other rigorous proofs of the dynamic programming principle in the path-
dependent case we refer to [28, 29].

We begin introducing some notations. For every t ∈ [0, T ], let Ft = (F t
s)s∈[0,T ] be the

P-completion of the filtration generated by (Bs∨t − Bt)s∈[0,T ]. Let also Prog(Ft) denote the
σ-algebra of [t, T ]×Ω of all (F t

s)s∈[t,T ]-progressive sets. Finally, let At be the subset of A of
all Ft-progressively measurable processes.

Lemma 2.7. Suppose that Assumption (A) holds. Then, the value function defined by (2.5)
satisfies

v(t, x) = sup
α∈At

J(t, x, α), ∀ (t, x) ∈ [0, T ]× C([0, T ];Rd). (2.7)

Proof. Fix (t, x) ∈ [0, T ]×C([0, T ];Rd). Since At ⊂ A, we see that v(t, x) ≥ supα∈At
J(t, x, α).

It remains to prove the reverse inequality

v(t, x) ≤ sup
α∈At

J(t, x, α). (2.8)

We split the proof of (2.8) into four steps.

Step I. Additional notations. We firstly fix some notations. Let (Rm)[0,t] be the set of func-
tions from [0, t] to Rd, endowed with the product σ-algebra B(Rm)[0,t] generated by the finite-
dimensional cylindrical sets of the form: Ct1,...,tn(H) = {y ∈ (Rm)[0,t] : (y(t1), . . . , y(tn)) ∈
H}, for some ti ∈ [0, t], H = Ht1 × · · · × Htn, Hti ∈ B(Rm). Now, consider the map
B

t : Ω → (Rm)[0,t] defined as follows:

B
t : ω 7−→ (Bs(ω))0≤s≤t.
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Such a map is measurable with respect to Ft, as a matter of fact the counterimage through
B

t of a finite-dimensional cylindrical set Ct1,...,tn(H) clearly belongs to Ft. In addition, the
σ-algebra generated by B

t coincides with Gt := σ(Bs, 0 ≤ s ≤ t). Notice that

Ft = Gt ∨ N ,

where N is the family of P-null sets.
Finally, let (Et, E t) be the measurable space given by Et = [t, T ] × Ω and E t = Prog(Ft).
Then, we denote by It : Et → Et the identity map.

Step II. Representation of α. Given α ∈ A, let us prove that there exists a map a
t : [t, T ]×

Ω× (Rm)[0,t] → A such that:

1) a
t is measurable with respect to the product σ-algebra Prog(Ft)⊗ B(Rm)[0,t];

2) the processes α|[t,T ] (denoting the restriction of α to [t, T ]) and (at(s, ·,Bt))s∈[t,T ] are
indistinguishable.

In order to prove the existence of such a map a
t, we begin noticing that the following holds:

Fs = Ft ∨ F t
s = Gt ∨ F t

s, ∀ s ∈ [t, T ],

where the second equality follows from the fact that N , the family of P-null sets, is contained
in both Ft and F t

s. Recalling that α is F-progressively measurable, we have that α|[t,T ] is
progressively measurable with respect to the filtration

σ
(

Gt ∨ F t
s

)

s∈[t,T ]
.

In other words, the map α|[t,T ] : [t, T ] × Ω → A is Prog(Ft) ∨ ({∅, [t, T ]} ⊗ Gt)-measurable,
with {∅, [t, T ]} denoting the trivial σ-algebra on [t, T ].

Now, recall the definitions of It and B
t from Step I, and let denote still by the same

symbol Bt the canonical extension of Bt to [t, T ] × Ω (or, equivalently, to Et), defined as
B

t : [t, T ] × Ω → (Rm)[0,t] with (t, ω) 7→ B
t(ω). Then, the σ-algebra generated by the pair

(It,Bt) : [t, T ] × Ω → Et × (Rm)[0,t] coincides with Prog(Ft) ∨ ({∅, [t, T ]} ⊗ Gt). Therefore,
by Doob’s measurability theorem (see for instance [38, Lemma 1.13]) it follows that the
restriction of α to [t, T ] can be represented as follows: α|[t,T ] = a

t(It,Bt), for some map
a
t : [t, T ]× Ω× (Rm)[0,t] → A satisfying items 1)-2) above.

Step III. The stochastic process X t,x,Bt
. Given α ∈ A, let a

t be as in Step II. For every
y ∈ (Rm)[0,t], let X t,x,y be the unique solution in S2(F) to the following equation:

{

dXs = b(s,X, at(s, ·, y)) ds+ σ(s,X, at(s, ·, y)) dBs, s ∈ (t, T ],

Xs = x(s), s ∈ [0, t].
(2.9)

From the proof (see [12, Proposition 2.8]) of the existence of a solution to equation (2.9),
based on a fixed point argument, we can also deduce that the random field X : [0, T ]× Ω×
(Rm)[0,t] → Rd is measurable with respect to the product σ-algebra Prog(Ft) ⊗ B(Rm)[0,t].
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As a consequence, we can consider the composition of X t,x,y and B
t, denoted X t,x,Bt

. Using
the independence of Gt = σ(Bt) and F t

T , we deduce that the process X t,x,Bt
satisfies the

following equation:

{

dXs = b(s,X, at(s, ·,Bt)) ds+ σ(s,X, at(s, ·,Bt)) dBs, s ∈ (t, T ],

Xs = x(s), s ∈ [0, t].
(2.10)

As a matter of fact, we have

E

[

sup
s∈[t,T ]

∣

∣

∣

∣

X t,x,Bt

s − x(t)−
∫ s

t

b(r,X t,x,Bt

, at(r, ·,Bt))dr −
∫ s

t

σ(r,X t,x,Bt

, at(r, ·,Bt))dBr

∣

∣

∣

∣

]

= E

[

E

[

sup
s∈[t,T ]

∣

∣

∣

∣

X t,x,Bt

s − x(t)−
∫ s

t

b(r,X t,x,Bt

, at(r, ·,Bt))dr

−
∫ s

t

σ(r,X t,x,Bt

, at(r, ·,Bt))dBr

∣

∣

∣

∣

∣

∣

∣

∣

Gt

]]

= E

[

E

[

sup
s∈[t,T ]

∣

∣

∣

∣

X t,x,y
s − x(t)−

∫ s

t

b(r,X t,x,y, at(r, ·, y))dr

−
∫ s

t

σ(r,X t,x,y, at(r, ·, y))dBr

∣

∣

∣

∣

]

y=Bt

]

,

where the last equality follows from the so-called freezing lemma, see for instance [2, Lemma
4.1]. Since X t,x,y solves equation (2.9), we have

E

[

sup
s∈[t,T ]

∣

∣

∣

∣

X t,x,y
s − x(t)−

∫ s

t

b(r,X t,x,y, at(r, ·, y))dr−
∫ s

t

σ(r,X t,x,y, at(r, ·, y))dBr

∣

∣

∣

∣

]

= 0.

Hence

E

[

sup
s∈[t,T ]

∣

∣

∣

∣

X t,x,Bt

s −x(t)−
∫ s

t

b(r,X t,x,Bt

, at(r, ·,Bt))dr−
∫ s

t

σ(r,X t,x,Bt

, at(r, ·,Bt))dBr

∣

∣

∣

∣

]

= 0.

This shows that X t,x,Bt
solves equation (2.10).

Now, recalling from Step II that α|[t,T ] and (at(s, ·,Bt))s∈[t,T ] are indistinguishable, and
noticing that the solution to equation (2.11) below depends on α only through its values on
[t, T ] (namely, it depends only on α|[t,T ]), we conclude that X t,x,Bt

solves the same equation
of X t,x,α, namely

{

dXs = b(s,X, αs) ds+ σ(s,X, αs) dBs, s ∈ (t, T ],

Xs = x(s), s ∈ [0, t].
(2.11)

From pathwise uniqueness for equation (2.11), we get that X t,x,Bt
and X t,x,α are also indis-

tinguishable.
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Step IV. The stochastic process X t,x,Bt
. Given α ∈ A, let a

t be as in Step II and X t,x,Bt

as in Step III. Then, we have

J(t, x, α) = E

[
∫ T

t

f
(

s,X t,x,α, αs

)

ds+ g
(

X t,x,α
)

]

= E

[
∫ T

t

f
(

s,X t,x,Bt

, at(s, ·,Bt)
)

ds+ g
(

X t,x,Bt)
]

.

Denoting by µt the probability distribution of Bt on ((Rm)[0,t],B(Rm)[0,t]), and recalling the
independence of Gt = σ(Bt) and F t

T , by Fubini’s theorem we obtain

E

[
∫ T

t

f
(

s,X t,x,Bt

, at(s, ·,Bt)
)

ds+ g
(

X t,x,Bt)
]

=

∫

(Rm)[0,t]
E

[
∫ T

t

f
(

s,X t,x,y, at(s, ·, y)
)

ds+ g
(

X t,x,y
)

]

µt(dy).

Now, fix some a0 ∈ A and, for every y ∈ (Rm)[0,t], denote

βy
s := a0 1[0,t)(s) + a

t(s, ·, y) 1[t,T ], ∀ s ∈ [0, T ].

Notice that βy ∈ At. Moreover, recalling that X t,x,y solves equation (2.9), we see that it
solves the same equation of X t,x,βy

. Then, by pathwise uniqueness, X t,x,y and X t,x,βy
are

indistinguishable. In conclusion, we obtain
∫

(Rm)[0,t]
E

[
∫ T

t

f
(

s,X t,x,y, at(s, ·, y)
)

ds+ g
(

X t,x,y
)

]

µt(dy)

=

∫

(Rm)[0,t]
E

[
∫ T

t

f
(

s,X t,x,βy

, βy
s

)

ds+ g
(

X t,x,βy)
]

µt(dy)

=

∫

(Rm)[0,t]
J(t, x, βy)µt(dy) ≤

∫

(Rm)[0,t]
sup
γ∈At

J(t, x, γ)µt(dy) = sup
γ∈At

J(t, x, γ).

This proves that J(t, x, α) ≤ supγ∈At
J(t, x, γ), for every α ∈ A. Then, inequality (2.8)

follows from the arbitrariness of α.

Next lemma expresses in terms of v the value of the optimal control problem formulated
at time t, with random initial condition ξ ∈ S2(F). In order to state such a lemma, we
introduce the function V : [0, T ]× S2(F) → R defined as follows:

V (t, ξ) = sup
α∈A

E

[
∫ T

t

f
(

s,X t,ξ,α, αs

)

dr + g
(

X t,ξ,α
)

]

, (2.12)

for every t ∈ [0, T ], ξ ∈ S2(F). Clearly, when ξ ≡ x ∈ C([0, T ];Rd) we have V (t, x) = v(t, x).

Lemma 2.8. Suppose that Assumption (A) holds. Let t ∈ [0, T ] and ξ ∈ S2(F), then

V (t, ξ) = E
[

v(t, ξ)
]

. (2.13)
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Proof. We begin noting that for t = 0 it is clear that equality (2.13) holds true, as a matter
fact F0 is the family of P-null sets, therefore ξ is a.s. equal to a constant and (2.13) follows
from the fact that V (t, x) = v(t, x), for every x ∈ C([0, T ];Rd). For this reason, in the sequel
we suppose that t > 0. We split the rest of the proof into four steps.

Step I. Additional notations. Firstly, we fix some notations. For a fixed t ∈ (0, T ], let
Gt = (Gt

s)s≥0 be given by
Gt
s := Ft ∨ F t

s, ∀ s ≥ 0.

Moreover, let S2(G
t) (resp. S2(Ft)) be the set of d-dimensional continuous Gt-progressively

measurable (resp. B([0, T ]) ⊗ Ft-measurable) processes X : [0, T ] × Ω → Rd satisfying the
integrability condition (2.1). Notice that Proposition 2.5 extends to the case with initial
condition ξ ∈ S2(Ft) rather than ξ ∈ S2(F). In particular, given ξ ∈ S2(Ft) and α ∈ A,
equation (2.3) admits a unique solution X t,ξ,α ∈ S2(G

t). Then, for ξ ∈ S2(Ft) we define
V (t, ξ) as in (2.12).

Step II. Preliminary remarks. We begin noting that X t,ξ,α = X t,ξ·∧t,α, so that it is enough
to prove equality (2.13) with ξ·∧t in place of ξ. More generally, we shall prove the validity of
(2.13) in the case when ξ ∈ S2(Ft).

Now, recall that v is Lipschitz in the variable x (see Proposition 2.6) and observe that,
by the same arguments, V is also Lipschitz in its second argument. Furthermore, both v and
V are bounded. Notice also that given ξ ∈ S2(Ft) there exists a sequence {ξk}k ⊂ S2(Ft)
converging to ξ, with ξk taking only a finite number of values. As a consequence, from the
continuity of v and V , it is enough to prove (2.13) with ξ ∈ S2(Ft) taking only a finite
number of values. Then, from now on, let us suppose that

ξ =
n

∑

i=1

xi 1Ei
, (2.14)

for some n ∈ N, xi ∈ C([0, T ];Rd), Ei ∈ Ft, with {Ei}i=1,...,n being a partition of Ω.

Step III. Proof of the inequality V (t, ξ) ≤ E[v(t, ξ)]. Since ξ ∈ S2(F) takes only a finite
number of values, by [12, Lemma B.3] (here we use that t > 0, so in particular Ft has the
property required by [12, Lemma B.3], namely there exists a Ft-measurable random variable
having uniform distribution on [0, 1]) there exists a Ft-measurable random variable U : Ω →
R, having uniform distribution on [0, 1] and being independent of ξ. As a consequence, from
[12, Lemma B.2] it follows that, for every α ∈ A, there exists a measurable function

a:
(

[0, T ]× Ω× C([0, T ];Rd)× [0, 1], P rog(Ft)⊗ B(C([0, T ];Rd))⊗ B([0, 1])
)

−→ (A,B(A))

such that
βs := αs 1[0,t)(s) + as(ξ, U) 1[t,T ](s), ∀ s ∈ [0, T ]

belongs to A and

(

ξ, (as(ξ, U))s∈[t,T ], (Bs −Bt)s∈[t,T ]

)

L
=

(

ξ, (αs)s∈[t,T ], (Bs −Bt)s∈[t,T ]

)

,
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where
L
= means equality in law. Then, by the same arguments as in [31, Proposition 1.137],

we get
(

X t,ξ,α
s , αs

)

s∈[0,T ]

L
=

(

X t,ξ,β
s , βs

)

s∈[0,T ]
.

Moreover, recalling (2.14), define

βi,s := αs 1[0,t)(s) + as(xi, U) 1[t,T ](s), ∀ s ∈ [0, T ], i = 1, . . . , n.

Since X t,ξ,β and X t,x1,β1 1E1+· · ·+X t,xn,βn 1En solve the same equation, they are P-indistinguishable.
Hence

E

[
∫ T

t

f
(

s,X t,ξ,α, αs

)

ds+ g
(

X t,ξ,α
)

]

= E

[
∫ T

t

f
(

s,X t,ξ,β, βs

)

ds+ g
(

X t,ξ,β
)

]

= E

[ n
∑

i=1

(
∫ T

t

f
(

s,X t,xi,βi, βi,s

)

ds+ g
(

X t,xi,βi
)

)

1Ei

]

.

Recalling that both {X t,xi,βi}i and {βi}i are independent of {Ei}i, we have

E

[ n
∑

i=1

(
∫ T

t

f
(

s,X t,xi,βi, βi,s

)

ds+ g
(

X t,xi,βi
)

)

1Ei

]

= E

[ n
∑

i=1

E

[
∫ T

t

f
(

s,X t,xi,βi, βi,s

)

ds+ g
(

X t,xi,βi
)

]

1Ei

]

=

n
∑

i=1

E

[

E

[
∫ T

t

f
(

s,X t,xi,βi, βi,s

)

ds+ g
(

X t,xi,βi
)

]

1Ei

]

≤
n

∑

i=1

E

[

v(t, xi) 1Ei

]

= E
[

v(t, ξ)
]

.

Then, the inequality V (t, ξ) ≤ E[v(t, ξ)] follows from the arbitrariness of α.

Step IV. Proof of the inequality V (t, ξ) ≥ E[v(t, ξ)]. Take ξ ∈ S2(Ft) as in (2.14). Then,
from equality (2.7) of Lemma 2.7, for every ε > 0 and i = 1, . . . , n, there exists βε

i ∈ At such
that

v(t, xi) ≤ E

[
∫ T

t

f
(

s,X t,xi,βε
i , βε

i,s

)

ds+ g
(

X t,xi,βε
i
)

]

+ ε.

Let

βε :=
n

∑

i=1

βi 1Ei
.

We have βε ∈ A, moreover X t,ξ,βε
and X t,x1,βε

1 1E1 + · · ·+X t,xn,βε
n 1En solve the same equa-

tion, therefore they are P-indistinguishable. Therefore (exploiting the independence of both
{X t,xi,β

ε
i }i and {βε

i }i from {Ei}i)

E
[

v(t, ξ)
]

=

n
∑

i=1

E

[

v(t, xi) 1Ei

]
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≤
n

∑

i=1

E

[

E

[
∫ T

t

f
(

s,X t,xi,βε
i , βε

i,s

)

ds+ g
(

X t,xi,βε
i
)

]

1Ei

]

+ ε

= E

[ n
∑

i=1

E

[
∫ T

t

f
(

s,X t,xi,β
ε
i , βε

i,s

)

ds+ g
(

X t,xi,β
ε
i
)

]

1Ei

]

+ ε

= E

[ n
∑

i=1

(
∫ T

t

f
(

s,X t,xi,βε
i , βε

i,s

)

ds+ g
(

X t,xi,βε
i
)

)

1Ei

]

+ ε

= E

[
∫ T

t

f
(

s,X t,ξ,βε

, βε
s

)

ds+ g
(

X t,ξ,βε)
]

+ ε ≤ V (t, ξ) + ε.

From the arbitrariness of ε, the inequality E[v(t, ξ)] ≤ V (t, ξ) follows.

Theorem 2.9. Suppose that Assumption (A) holds. Then the value function v satisfies
the dynamic programming principle: for every t, s ∈ [0, T ], with t ≤ s, and every
x ∈ C([0, T ];Rd) it holds that

v(t, x) = sup
α∈A

E

[
∫ s

t

f
(

r,X t,x,α, αr

)

dr + v
(

s,X t,x,α
)

]

.

Proof. This follows directly from [12, Theorem 3.4] and Lemma 2.8. As a matter of fact, let
V be the function given by (2.12). From [12, Theorem 3.4] we get the dynamic programming
principle for V :

V (t, x) = sup
α∈A

{

E

[
∫ s

t

f
(

r,X t,x,α, αr

)

dr

]

+ V
(

s,X t,x,α
)

}

.

Moreover, by Lemma 2.8 we know that

V (s,X t,x,α) = E
[

v
(

s,X t,x,α
)]

,

from which the claim follows.

3 Path Dependent HJB equations and viscosity solutions

3.1 Definition of path-dependent viscosity solutions

In the present paper we adopt the standard definitions of pathwise (or functional) deriva-
tives of a map u : [t0, T ] × C([0, T ];Rd) → R, t0 ∈ [0, T ), as they were introduced in the
seminal paper [23], and further developed by [8, 9] and [15, Section 2]. We report in
Appendix A a coincise presentation of these tools. Just to fix notations, we recall here
that the pathwise derivatives of a map u : [t0, T ] × C([0, T ];Rd) → R are given by the
horizontal derivative ∂H

t u : [t0, T ] × C([0, T ];Rd) → R and the vertical derivatives of first
and second-order ∂V

x u : [t0, T ] × C([0, T ];Rd) → R
d and ∂V

xxu : [t0, T ] × C([0, T ];Rd) →
Rd×d. We also refer to Definition A.4 (resp. Definition A.6) for the definition of the class
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C1,2([t0, T ] × C([0, T ];Rd)) (resp. C1,2
pol([t0, T ] × C([0, T ];Rd))). The reason for which we

consider C1,2([t0, T ]× C([0, T ];Rd)) rather than simply C1,2([0, T ]× C([0, T ];Rd)) is due to
the definition of viscosity solution adopted, for more details see Remark 3.3. Finally, we
recall that for a map u ∈ C1,2([t0, T ] × C([0, T ];Rd)) the so-called functional Itô’s formula
holds, see Theorem A.7.

Now, consider the following second-order path-dependent partial differential equation:






∂H
t u(t, x) = F

(

t, x, u(t, x), ∂V
x u(t, x), ∂

V
xxu(t, x)

)

, (t, x) ∈ [0, T )× C([0, T ];Rd),

u(T, x) = g(x), x ∈ C([0, T ];Rd),
(3.1)

with F : [0, T ]×C([0, T ];Rd)×R×Rd×S(d) → R, where S(d) is the set of symmetric d×d
matrices.

Definition 3.1. We say that a function u : [0, T ]×C([0, T ];Rd) → R is a classical solution
of equation (3.1) if it belongs to C1,2

pol([0, T ]× C([0, T ];Rd)) and satisfies (3.1).

Definition 3.2. We say that an upper semicontinuous function u : [0, T ]×C([0, T ];Rd) → R

is a (path-dependent) viscosity subsolution of equation (3.1) if:

• u(T, x) ≤ g(x), for all x ∈ C([0, T ];Rd);

• for any (t, x) ∈ [0, T )× C([0, T ];Rd) and ϕ ∈ C1,2
pol([t, T ]× C([0, T ];Rd)), satisfying

(u− ϕ)(t, x) = sup
(t′,x′)∈[t,T ]×C([0,T ];Rd)

(u− ϕ)(t′, x′),

with (u− ϕ)(t, x) = 0, we have

− ∂H
t ϕ(t, x) + F

(

t, x, u(t, x), ∂V
x ϕ(t, x), ∂

V
xxϕ(t, x)

)

≤ 0. (3.2)

We say that a lower semicontinuous function u : [0, T ] × C([0, T ];Rd) → R is a (path-
dependent) viscosity supersolution of equation (3.1) if:

• u(T, x) ≥ g(x), for all x ∈ C([0, T ];Rd);

• for any (t, x) ∈ [0, T )× C([0, T ];Rd) and ϕ ∈ C1,2
pol([t, T ]× C([0, T ];Rd)), satisfying

(u− ϕ)(t, x) = inf
(t′,x′)∈[t,T ]×C([0,T ];Rd)

(u− ϕ)(t′, x′),

with (u− ϕ)(t, x) = 0, we have

− ∂H
t ϕ(t, x) + F

(

t, x, u(t, x), ∂V
x ϕ(t, x), ∂

V
xxϕ(t, x)

)

≥ 0. (3.3)

We say that a continuous map u : [0, T ]×C([0, T ];Rd) → R is a (path-dependent) viscosity
solution of equation (3.1) if u is both a (path-dependent) viscosity subsolution and a (path-
dependent) viscosity supersolution of (3.1).
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Remark 3.3. Differently from the standard definition of viscosity solution usually adopted
in the non-path-dependent case (see for instance [16]), notice that in Definition 3.2 the
maxima/minima are taken on [t, T ]×C([0, T ];Rd) with the right-time interval [t, T ] in place
of [0, T ] (i.e. the maxima/minima are “one-sided”).
In the non-path-dependent case it is known that, even in infinite dimension, our “one-sided”
definition is equivalent to the standard “two-sided” one (see e.g. [31, Lemma 3.39]). In
addition, notice that the value function (say v) of our stochastic control problem is a viscosity
solution of the HJB equation in both senses. As a matter of fact, the DPP, which is the main
tool in order to prove the viscosity properties of the value function, only involves the values
of v = v(s, y) for s ≥ t.

We observe that the fact of taking the maxima/minima on the right-time interval is
generally adopted in the literature on viscosity solutions of path-dependent PDEs, as for
instance in [25, 26, 27, 47, 50, 49, 11], where the notion of viscosity solution introduced
involves the maxima/minima of an expectation of future (that is on [t, T ]) values of a suitable
underlying process.
In our case, the reason for considering [t, T ]×C([0, T ];Rd) rather than [0, T ]×C([0, T ];Rd)
is due to the proof of the comparison Theorem 4.5. In particular, it is due to the gauge-
type function implemented in that proof, which is introduced in Lemma 4.2 and denoted by
κ∞. More precisely, given a fixed point (t, x) ∈ [0, T ] × C([0, T ];Rd), the map (s, y) 7→
κ∞((s, y), (t, x)) is smooth only for (s, y) ∈ [t, T ] × C([0, T ];Rd). However, if we would be
able to find another gauge-type function Ψ: ([0, T ] × C([0, T ];Rd))2 → [0,+∞) such that,
for every fixed (t, x), the map (s, y) 7→ Ψ((s, y), (t, x)) is smooth on the entire space [0, T ]×
C([0, T ];Rd), then the same proof of the comparison theorem would work for the more usual
notion of viscosity solution where maxima/minima are taken on [0, T ]× C([0, T ];Rd).

3.2 The value function solves the path-dependent HJB equation

Now, we focus on the path-dependent Hamilton-Jacobi-Bellman equation, namely on equa-
tion (3.1) with

F (t, x, r, p,M) = − sup
a∈A

{

〈

b(t, x, a), p
〉

+
1

2
tr
[

(σσ⊺)(t, x, a)M
]

+ f(t, x, a)

}

. (3.4)

Therefore, equation (3.1) becomes































∂H
t u(t, x) + supa∈A

{

〈

b(t, x, a), ∂V
x u(t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxu(t, x)

]

+ f(t, x, a)

}

= 0, (t, x) ∈ [0, T )× C([0, T ];Rd),

u(T, x) = g(x), x ∈ C([0, T ];Rd).

(3.5)

We now prove that the value function v is a viscosity solution to equation (3.5).
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Theorem 3.4. Suppose that Assumptions (A) and (B) hold. The value function v, defined
by (2.5), is a viscosity solution to equation (3.5).

Proof. Recall from Proposition 2.6 that v is continuous, moreover v(T, ·) ≡ g(·). Then it
remains to prove both the subsolution and the supersolution property on [0, T )×C([0, T ];Rd).

Subsolution property. Let (t, x) ∈ [0, T ) × C([0, T ];Rd) and ϕ ∈ C1,2
pol([t, T ] × C([0, T ];Rd))

be such that
(v − ϕ)(t, x) = sup

(t′,x′)∈[t,T ]×C([0,T ];Rd)

(v − ϕ)(t′, x′) = 0.

From Theorem 2.9 we know that, for every h > 0 sufficiently small,

0 = sup
α∈A

{

E

[

1

h

∫ t+h

t

f(r,X t,x,α, αr) dr +
1

h

(

v(t+ h,X t,x,α)− v(t, x)
)

]}

.

Then, there exists αh ∈ A such that

−h ≤ E

[

1

h

∫ t+h

t

f(r,X t,x,αh

, αh
r ) dr +

1

h

(

v(t+ h,X t,x,αh

)− v(t, x)
)

]

≤ E

[

1

h

∫ t+h

t

f(r,X t,x,αh

, αh
r ) dr +

1

h

(

ϕ(t + h,X t,x,αh

)− ϕ(t, x)
)

]

,

where the above inequality follows from the fact that v(t, x) = ϕ(t, x) and v ≤ ϕ on [t, T ]×
C([0, T ];Rd). By the functional Itô formula (A.1), we obtain

0 ≤ h+
1

h

∫ t+h

t

E
[

∂H
t ϕ(r,X t,x,αh

)
]

dr +
1

h

∫ t+h

t

E
[

〈b(r,X t,x,αh

, αh
r ), ∂

V
x ϕ(r,X

t,x,αh

)〉
]

dr

+
1

h

∫ t+h

t

1

2
E
[

tr
[

(σσ⊺)(r,X t,x,αh

, αh
r )∂

V
xxϕ(r,X

t,x,αh

)
]]

dr +
1

h

∫ t+h

t

E
[

f(r,X t,x,αh

)
]

dr.

Recalling that b, σ, f are uniformly continuous in their first two arguments, uniformly with
respect to a, using (2.4), we get

1

h

∫ t+h

t

E
[

∂H
t ϕ(r,X t,x,αh

)
]

dr +
1

h

∫ t+h

t

E

[

〈b(r,X t,x,αh

, αh
r ), ∂

V
x ϕ(r,X

t,x,αh

)〉

+
1

2
tr
[

(σσ⊺)(r,X t,x,αh

, αh
r )∂

V
xxϕ(r,X

t,x,αh

)
]

+ f(r,X t,x,αh

, αh
r )

]

dr

= ∂H
t ϕ(t, x) +

1

h

∫ t+h

t

E

[

〈b(t, x, αh
r ), ∂

V
x ϕ(t, x)〉

+
1

2
tr
[

(σσ⊺)(t, x, αh
r )∂

V
xxϕ(t, x)

]

+ f(t, x, αh
r )

]

dr + ρ(h),

where ρ(h) → 0 as h → 0+. Then, we obtain

0 ≤ h + ρ(h) + ∂H
t ϕ(t, x) +

1

h

∫ t+h

t

sup
a∈A

{

〈b(t, x, a), ∂V
x ϕ(t, x)〉
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+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxϕ(t, x)

]

+ f(t, x, a)
}

dr.

Sending h → 0+, we conclude that (3.2) holds (with F given by (3.4)).

Supersolution property. Let (t, x) ∈ [0, T )×C([0, T ];Rd) and ϕ ∈ C1,2
pol([t, T ]×C([0, T ];Rd))

be such that
(v − ϕ)(t, x) = inf

(t′,x′)∈[t,T ]×C([0,T ];Rd)
(v − ϕ)(t′, x′) = 0.

From Theorem 2.9 we have, for every h > 0 sufficiently small, and for every constant control
strategy α ≡ a ∈ A,

0 ≥ E

[

1

h

∫ t+h

t

f(r,X t,x,a, a) dr +
1

h

(

v(t+ h,X t,x,a)− v(t, x)
)

]

≥ Ē

[

1

h

∫ t+h

t

f(r,X t,x,a, a) dr +
1

h

(

ϕ(t+ h,X t,x,a)− ϕ(t, x)
)

]

,

where the above inequality follows from the fact that v(t, x) = ϕ(t, x) and v ≥ ϕ on [t, T ]×
C([0, T ];Rd). Now, by the functional Itô formula (A.1), we obtain

0 ≥ 1

h

∫ t+h

t

E
[

∂H
t ϕ(r,X t,x,a)

]

dr +
1

h

∫ t+h

t

E
[

〈b(r,X t,x,a, a), ∂V
x ϕ(r,X

t,x,a)〉
]

dr

+
1

h

∫ t+h

t

1

2
E
[

tr
[

(σσ⊺)(r,X t,x,a, a)∂V
xxϕ(r,X

t,x,a)
]]

dr +
1

h

∫ t+h

t

E
[

f(r,X t,x,a, a)
]

dr.

Letting h → 0+, exploiting the regularity of ϕ and the continuity of b, σ, f , we find

0 ≥ ∂H
t ϕ(t, x) +

〈

b(t, x, a), ∂V
x ϕ(t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxϕ(t, x)

]

+ f(t, x, a).

From the arbitrariness of a, we conclude that (3.3) holds (with F given by (3.4)).

4 Uniqueness

4.1 Smooth variational principle

This section is devoted to state a smooth variational principle on [0, T ]×C([0, T ];Rd) which
will be an essential tool in the proof of the comparison theorem (Theorem 4.5). Notice that
such a smooth variational principle is obtained from [41, Theorem 1] (see also [6, Theorem
2.5.2]), which is a generalization of the Borwein-Preiss variant ([5]) of Ekeland’s variational
principle ([24]). More precisely, [41, Theorem 1] extends Ekeland’s principle to the concept
of gauge-type function, that we now introduce.

Definition 4.1. A map Ψ: ([0, T ]×C([0, T ];Rd))2 → [0,+∞] is called a gauge-type func-
tion if it satisfies the following properties.
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a) (t, x) 7→ Ψ((t, x), (t0, x0)) is lower semi-continuous on [0, T ]×C([0, T ];Rd), for every fixed
(t0, x0) ∈ [0, T ]× C([0, T ];Rd).

b) Ψ((t, x), (t, x)) = 0, for every (t, x) ∈ [0, T ]× C([0, T ];Rd).

c) For every ε > 0 there exists η > 0 such that, for all (t′, x′), (t′′, x′′) ∈ [0, T ]×C([0, T ];Rd),
the inequality Ψ((t′, x′), (t′′, x′′)) ≤ η implies d∞((t′, x′), (t′′, x′′)) ≤ ε.

In the proof of the comparison theorem we need a gauge-type function Ψ such that (t, x) 7→
Ψ((t, x), (t0, x0)) is smooth on [t0, T ]× C([0, T ];Rd), for every fixed (t0, x0). Notice that d∞
is obviously a gauge-type function, however it is not smooth enough. The following lemma
provides a smooth gauge-type function and it is due to [53, Section 3].

Lemma 4.2. Define the map κ∞ : ([0, T ]× C([0, T ];Rd))2 → [0,+∞) as

κ∞
(

(t, x), (t′, x′)
)

= (4.1)

=











(‖x·∧t − x′
·∧t′‖2T − |x(t)− x′(t′)|2)3
‖x·∧t − x′

·∧t′‖4T
+ 3|x(t)− x′(t′)|2, ‖x·∧t − x′

·∧t′‖T 6= 0,

0, ‖x·∧t − x′
·∧t′‖T = 0,

for all (t, x), (t′, x′) ∈ [0, T ]×C([0, T ];Rd). Then, κ∞ is continuous and satisfies the following
inequalities:

∥

∥x·∧t − x′
·∧t′

∥

∥

2

T
≤ κ∞

(

(t, x), (t′, x′)
)

≤ 3
∥

∥x·∧t − x′
·∧t′

∥

∥

2

T
. (4.2)

Moreover, for every fixed (t′, x′) ∈ [0, T ] × C([0, T ];Rd), the map [t′, T ] × C([0, T ];Rd) ∋
(t, x) 7→ κ∞((t, x), (t′, x′)) belongs to C1,2([t′, T ]×C([0, T ];Rd)) and its horizontal derivative
is identically equal to zero. Its vertical derivatives of first-order are bounded by

∣

∣∂V
xi
κ∞

(

(t, x), (t′, x′)
)
∣

∣ ≤ c
∥

∥x·∧t − x′
·∧t′

∥

∥

T
, (4.3)

for some constant c > 0, for every i = 1, . . . , d. Finally, its vertical derivatives of second-
order are bounded by some constant c > 0.

Proof. The claim follows from [53, Lemma 3.1]. More precisely, let Υm,M be the function
defined at the beginning of [53, Section 3]. Then, notice that κ∞ corresponds to Υ1,3. As a
consequence, (4.2) follows from inequalities (3.1) in [53]. In addition, the fact that, for every
fixed (t′, x′) ∈ [0, T ]×C([0, T ];Rd), the map [t′, T ]×C([0, T ];Rd) ∋ (t, x) 7→ κ∞((t, x), (t′, x′))
belongs to C1,2([t′, T ]×C([0, T ];Rd)) follows from [53, Lemma 3.1]. Moreover, the fact that
its horizontal derivative is identically equal to zero is proved at the beginning of the proof
of [53, Lemma 3.1]. Concerning estimate (4.3), this follows from the explicit expressions of
the first-order vertical derivatives of κ∞ reported in (3.8) of [53]. Finally, from the explicit
expressions of the second-order vertical derivatives of κ∞ given in (3.14) of [53], we deduce
that they are bounded.
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Next result provides a gauge-type function with bounded derivatives, built starting from κ∞
in (4.1).

Corollary 4.3. Let ρ∞ : ([0, T ]× C([0, T ];Rd))2 → [0,+∞] be defined as

ρ∞
(

(t, x), (t′, x′)
)

=











|t− t′|2 + κ∞
(

(t, x), (t′, x′)
)

1 + κ∞
(

(t, x), (t′, x′)
) , t ≥ t′,

+∞, t < t′,

for all (t, x), (t′, x′) ∈ [0, T ]× C([0, T ];Rd). Then, ρ∞ is a gauge-type function. In addition,
for every fixed (t′, x′) ∈ [0, T ] × C([0, T ];Rd), the map [t′, T ] × C([0, T ];Rd) ∋ (t, x) 7→
ρ∞((t, x), (t′, x′)) belongs to C1,2([t′, T ]× C([0, T ];Rd)) and it has bounded derivatives.

Proof. The claim follows directly from Lemma 4.2. As a matter of fact, from the con-
tinuity of κ∞ we deduce that, for every fixed (t0, x0) ∈ [0, T ] × C([0, T ];Rd), the map
(t, x) 7→ ρ∞((t, x), (t0, x0)) is lower semi-continuous on [0, T ] × C([0, T ];Rd) This proves
item a) of Definition 4.1. Moreover, item b) is obvious, while item c) follows from inequal-
ities (4.2). Finally, the fact that, for every fixed (t′, x′) ∈ [0, T ] × C([0, T ];Rd), the map
[t′, T ]× C([0, T ];Rd) ∋ (t, x) 7→ ρ∞((t, x), (t′, x′)) belongs to C1,2([t′, T ]× C([0, T ];Rd)) and
it has bounded derivatives follows from the regularity of κ∞ and the estimates on its deriva-
tives stated in Lemma 4.2.

We can finally state the smooth variational principle on [0, T ]× C([0, T ];Rd).

Theorem 4.4. Let δ ∈ (0, 1) and G : [0, T ]×C([0, T ];Rd) → R be an upper semicontinuous
map, bounded from above. Let also (tδ, xδ) ∈ [0, T ]× C([0, T ];Rd) satisfy

G(tδ, xδ) ≥ supG− δ2.

Then, there exist {(ti, xi)}i ⊂ [0, T ] × C([0, T ];Rd) converging to some (t̄, x̄) ∈ [0, T ] ×
C([0, T ];Rd) and ϕ : [0, T ]× C([0, T ];Rd) → [0,+∞] given by

ϕ(t, x) :=
+∞
∑

i=0

1

2i
ρ∞

(

(t, x), (ti, xi)
)

, ∀ (t, x) ∈ [0, T ]× C([0, T ];Rd), (4.4)

fulfilling the following properties.

i) ρ∞((t̄, x̄), (ti, xi)) ≤ δ/2i, for every i ≥ 1, and ρ∞((t̄, x̄), (tδ, xδ)) ≤ δ; in particular, by
(4.2) it holds that

|t̄− tδ| ≤
√
δ,

∥

∥x̄(· ∧ t̄)− xδ(· ∧ tδ)
∥

∥

T
≤

√

δ/(1− δ). (4.5)

ii) G(tδ, xδ) ≤ G(t̄, x̄)− δϕ(t̄, x̄).
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iii) For every (t, x) 6= (t̄, x̄), G(t, x)− δϕ(t, x) < G(t̄, x̄)− δϕ(t̄, x̄).

iv) It holds that tδ ≤ t̄ and ti ≤ t̄, for every i ≥ 1.

In addition, the restriction of ϕ to [t̄, T ]×C([0, T ];Rd) belongs to C1,2([t̄, T ]×C([0, T ];Rd))
and its derivatives are bounded by some constant c > 0, independent of δ.

Proof. Items i)-ii)-iii) follow from the variational principle [41, Theorem 1], which applies
to a generic gauge-type function Ψ (just observe that [41, Theorem 1] is formulated on a
complete metric space, while [0, T ]×C([0, T ];Rd) is a complete pseudometric space; however,
this does not affect the result). Notice that the quantities ε and δi appearing in [41, Theorem
1] here are taken equal respectively to δ2 and δ/2i, for i ≥ 0.

Concerning item iv), this is a consequence of the fact that we set ρ∞((t, x), (t′, x′)) equal
to +∞ for t < t′. More precisely, item iv) can be deduced looking at the proof of [41,
Theorem 1] (see in particular formula (18) in [41] where (t1, x1) is introduced and, more
generally, formula (21) where (ti, xi) is introduced), from which we get the inequalities tδ ≤
t1 ≤ t2 ≤ · · · ≤ ti ≤ · · · ≤ t̄.

Finally, the properties of ϕ follows from the properties of ρ∞ stated in Corollary 4.3 and
from item iv).

4.2 Comparison theorem and uniqueness

Theorem 4.5. Suppose that Assumptions (A), (B), (C) hold. Let u1, u2 : [0, T ]×C([0, T ];Rd) →
R be bounded and uniformly continuous functions. Suppose that u1 (resp. u2) is a (path-
dependent) viscosity subsolution (resp. supersolution) of equation (3.5). Then u1 ≤ u2 on
[0, T ]× C([0, T ];Rd).

Proof. The proof consists in showing that u1 ≤ v and v ≤ u2 on [0, T ]×C([0, T ];Rd), with
v given by (2.5).

Step I. Proof of u1 ≤ v. We proceed by contradiction and assume that sup(u1 − v) > 0.
Then, there exists (t0, x0) ∈ [0, T ]× C([0, T ];Rd) such that

(u1 − v)(t0, x0) > 0.

Notice that t0 < T , since u1(T, x0) ≤ g(x0) = v(T, x0). Now, consider the sequences {bn}n,
{fn}n, {gn}n in (B.18). Moreover, for every n and any ε ∈ (0, 1), consider the functions
vn,ε ∈ C1,2

pol([0, T ] × C([0, T ];Rd)) and v̄n,ε ∈ C1,2([0, T ] × Rd) introduced in Theorem B.7,
with vn,ε classical solution of the following equation:































∂H
t vn,ε(t, x) +

1

2
ε2tr

[

∂yy v̄n,ε(t, y
t,x
n )

]

+ supa∈A

{

〈

bn(t, x, a), ∂
V
x vn,ε(t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxvn,ε(t, x)

]

+ fn(t, x, a)

}

= 0, (t, x) ∈ [0, T )× C([0, T ];Rd),

vn,ε(T, x) = gn(x), x ∈ C([0, T ];Rd),
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where yt,xn is given by (B.9). Notice that the term 1
2
ε2tr[∂yy v̄n,ε(t, y

t,x
n )] depends on the

function v̄n,ε rather than on vn,ε, see Remark B.6.
We split the rest of the proof of Step I into four substeps.

Substep I-a. Let Φ: R → (0, 2) be a strictly increasing map, belonging to C1, such that
Φ(0) = 1 and Φ′(1) > 4. An example of such a map is the following:

Φ(t) :=
2

π
arctan

(

t13
)

+ 1, ∀ t ∈ R. (4.6)

Let

β :=
1

√

(u1 − v)(t0, x0)
. (4.7)

Given k ∈ N, we set ũ1(t, x) := Φ(βk(t − t0)) u1(t, x), for all (t, x) ∈ [0, T ] × C([0, T ];Rd),
and we define similarly ṽn,ε, f̃ , f̃n. We also define g̃(x) := Φ(βk(T − t0)) g(x) and g̃n(x) :=
Φ(βk(T − t0)) gn(x), for all x ∈ C([0, T ];Rd). Notice that ũ1 is a (path-dependent) viscosity
subsolution of the following path-dependent partial differential equation:































∂H
t ũ1(t, x) + supa∈A

{

〈

b(t, x, a), ∂V
x ũ1(t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxũ1(t, x)

]

+ f̃(t, x, a)

}

= βk
Φ′(βk(t− t0))

Φ(βk(t− t0))
ũ1(t, x), (t, x) ∈ [0, T )× C([0, T ];Rd),

ũ1(T, x) = g̃(x), x ∈ C([0, T ];Rd).

(4.8)

Similarly, ṽn,ε ∈ C1,2
pol([0, T ]×C([0, T ];Rd)) and is a classical solution of the following equation:















































∂H
t ṽn,ε(t, x) +

1

2
ε2Φ(βk(t− t0))tr

[

∂yy v̄n,ε(t, y
t,x
n )

]

+ supa∈A

{

〈

bn(t, x, a), ∂
V
x ṽn,ε(t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxṽn,ε(t, x)

]

+ f̃n(t, x, a)

}

= βk
Φ′(βk(t− t0))

Φ(βk(t− t0))
ṽn,ε(t, x), (t, x) ∈ [0, T )× C([0, T ];Rd),

ṽn,ε(T, x) = g̃n(x), x ∈ C([0, T ];Rd).

(4.9)

Substep I-b. Since vn,ε is bounded uniformly in n, ε, moreover u1 and Φ are bounded, we
deduce that there exists a constant M > 0, independent of n, ε, k, such that the map

(t, x) 7−→
(

ũ1 − ṽn,ε
)

(t, x)−
(

ũ1 − ṽn,ε
)

(t0, x0)

is bounded by M on [0, T ]× C([0, T ];Rd). Then, given k, ℓ ∈ N, define

Gn,ε,k,ℓ(t, x) := ũ1(t, x)− ṽn,ε(t, x)− k2|t− t0|2 − (ℓ2 + 3M)χ∞(t, x), (4.10)
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for every (t, x) ∈ [0, T ]× C([0, T ];Rd), with

χ∞(t, x) :=
κ∞((t, x), (t0, x0))

1 + κ∞((t, x), (t0, x0))
. (4.11)

For every δ > 0, let (tδ, xδ) ∈ [0, T ]× C([0, T ];Rd) be such that

Gn,ε,k,ℓ(tδ, xδ) ≥ Gn,ε,k,ℓ(t0, x0), Gn,ε,k,ℓ(tδ, xδ) ≥ supGn,ε,k,ℓ − δ2, (4.12)

Notice that, by the first of (4.12) we get

k2|tδ − t0|2 + (ℓ2 + 3M)
κ∞((tδ, xδ), (t0, x0))

1 + κ∞((tδ, xδ), (t0, x0))
≤ M.

Therefore

|tδ − t0| ≤
√
M

k
, ‖xδ(· ∧ tδ)− x0(· ∧ t0)‖T ≤

√
M

ℓ
, (4.13)

where the second inequality follows from (4.2). Indeed we get, from (4.2),

‖xδ(· ∧ tδ)− x0(· ∧ t0)‖2T
1 + 3‖xδ(· ∧ tδ)− x0(· ∧ t0)‖2T

≤ κ∞((tδ, xδ), (t0, x0))

1 + κ∞((tδ, xδ), (t0, x0))
≤ M

ℓ2 + 3M

which gives
1

3 + ‖xδ(· ∧ tδ)− x0(· ∧ t0)‖−2
T

≤ 1

M−1ℓ2 + 3

and so the claim.
Now we exploit again the first of (4.12) to get

k2|tδ − t0|2 ≤
(

ũ1 − ṽn,ε
)

(tδ, xδ)−
(

ũ1 − ṽn,ε
)

(t0, x0)

=
[

Φ(βk(tδ − t0))− 1
]

(

u1 − vn,ε
)

(t0, x0)

+ Φ(βk(tδ − t0))
[

(

u1 − vn,ε
)

(tδ, xδ)−
(

u1 − vn,ε
)

(t0, x0)
]

≤
∣

∣

(

u1 − vn,ε
)

(t0, x0)
∣

∣+ 2η
(

|tδ − t0|+ ‖xδ(· ∧ tδ)− x0(· ∧ t0)‖T
)

, (4.14)

where we have used that Φ ≤ 2, and where η is a modulus of continuity of u1 − vn,ε, whose
existence follows from the uniform continuity of u1 and item 5) of Theorem B.7. Now we
plug (4.13) into (4.14) and use the fact that η is monotone increasing (according to Definition
2.1), getting:

|tδ − t0| ≤ 1

k

(

∣

∣(u1 − vn,ε)(t0, x0)
∣

∣ + 2η

(

√
M

k
+

√
M

ℓ

))1/2

. (4.15)

Substep I-c. Notice that Gn,ε,k,ℓ is upper semicontinuous and bounded. Then, by (4.12) and
the smooth variational principle (Theorem 4.4) with G := Gn,ε,k,ℓ, we deduce that for every
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δ ∈ (0, 1) there exist (t̄, x̄) ∈ [0, T ]× C([0, T ];Rd) and ϕ : [0, T ]× C([0, T ]× R
d) → [0,+∞]

in (4.4) satisfying items i)-ii)-iii)-iv) of Theorem 4.4. Moreover, the restriction of ϕ to
[t̄, T ]×C([0, T ];Rd) belongs to C1,2([t̄, T ]×C([0, T ];Rd)) and its derivatives are bounded by
some constant c > 0, independent of δ. Notice that, by (4.5) and (4.13), we have

|t̄− t0| ≤
√
δ +

√
M

k
, ‖x̄(· ∧ t̄)− x0(· ∧ t0)‖T ≤

√

δ/(1− δ) +

√
M

ℓ
. (4.16)

Similarly, by (4.5) and (4.15), we have

|t̄− t0| ≤
√
δ +

1

k

(

∣

∣(u1 − vn,ε)(t0, x0)
∣

∣+ 2η

(

√
M

k
+

√
M

ℓ

))1/2

. (4.17)

In particular, recalling that t0 < T , by the first inequality in (4.16) we deduce that there
exists δ0 ∈ (0, 1) and k0 ∈ N such that

t̄ < T,

whenever δ ≤ δ0 and k ≥ k0. In the sequel, we always suppose that δ ≤ δ0 and k ≥ k0.

Substep I-d. By the definition of viscosity subsolution of (4.8) applied to ũ1 at the point
(t̄, x̄) with test function (t, x) 7→ ṽn,ε(t, x) + k2|t − t0|2 + (ℓ2 + 3M)χ∞(t, x) + δϕ(t, x), we
obtain
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Φ′(βk(t̄− t0))

Φ(βk(t̄− t0))
ũ1(t̄, x̄)
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]

+ f̃(t̄, x̄, a)

}

.

Recalling that ṽn,ε is a classical solution of equation (4.9), we find
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Φ′(βk(t̄− t0))

Φ(βk(t̄− t0))
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〈
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+ f̃(t̄, x̄, a)− f̃n(t̄, x̄, a)
}

, (4.18)

where y t̄,x̄n is given by (B.9) with t and x replaced respectively by t̄ and x̄. By Gn,ε,k,ℓ(t0, x0) =
(u1 − vn,ε)(t0, x0), inequality (4.12), item ii) of Theorem 4.4, and the fact (coming from the
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definition of Gn,ε,k,ℓ in (4.10) and from the positivity of ϕ) that Gn,ε,k,ℓ − δϕ ≤ ũ1 − ṽn,ε, we
obtain

(u1 − vn,ε)(t0, x0) = Gn,ε,k,ℓ(t0, x0) ≤ Gn,ε,k,ℓ(tδ, xδ)

≤
(

Gn,ε,k,ℓ − δϕ
)

(t̄, x̄) ≤
(

ũ1 − ṽn,ε
)

(t̄, x̄).

In addition, using the boundedness of b and σ, the boundedness of the derivatives of ϕ
and χ∞, we deduce that there exists a constant Λ ≥ 0, independent of n, ε, k, ℓ, δ, such that
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xxϕ(t̄, x̄)

]

}

+ 2k2|t̄− t0|+ (ℓ2 + 3M) sup
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〈
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〉
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}
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∣
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,

where in the above inequality we have used (4.17). Plugging the last two estimates into
(4.18) we get, using also estimates (B.33) and (B.34),
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(4.19)

+ Φ(βk(t̄− t0))
{

L̄ sup
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∣
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∣

∣

}

+ sup
a∈A

{
∣
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∣

∣
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.

Recall that y t̄,x̄n is given by (B.9). Then, from (B.11)-(B.12) we see that there exists a
constant c ≥ 0, independent of n, ε, β, k,m, δ, such that
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∥

∥
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where the last inequality follows from (4.16). Hence, from (4.19) we obtain
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+ Λ(δ + ℓ2 + 3M) + 2k2
√
δ + 2k

(

∣

∣(u1 − vn,ε)(t0, x0)
∣
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∣

∣
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∣

∣
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.

Now, notice that
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where the last inequality follows from (4.16). Then, using also estimate (B.16) with h and
hn replaced respectively by b and bn or f and fn, we get
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,

where we recall that w is the modulus of continuity of b and f with respect to the time
variable. Now, from (4.17), the upper bound of Φ and its concavity on the positive semiaxis,
we have
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.

Set an,ε,k,ℓ,δ := k
√
δ +

(
∣

∣(u1 − vn,ε)(t0, x0)
∣

∣+ 2η
(

√
M
k

+
√
M
ℓ

))1/2
. Hence
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Now we pass to the limit. First, we send ε → 0+ so the second line above goes to zero.
Second, we send n → +∞ so the fourth line above goes to zero. Third we send δ → 0+,
obtaining

(u1 − v)(t0, x0)

≤
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Fourth, we send k → +∞ getting,
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Fifth, we send ℓ → +∞ finding

(u1 − v)(t0, x0) ≤ 4
√

(u1 − v)(t0, x0)

βΦ′
(

β
√

(u1 − v)(t0, x0)
) .

Recalling from (4.7) that β = 1/
√

(u1 − v)(t0, x0), we obtain

Φ′(1) ≤ 4.

Since Φ′(1) = 13
π
> 4, we find a contradiction.

Step II. Proof of v ≤ u2. It is enough to show that

u2(t, x) ≥ sup
s∈[t,T ],a∈A

E

[
∫ s

t

f
(

r,X t,x,a, a
)

dr + v
(

s,X t,x,a
)

]

, (4.20)

for every (t, x) ∈ [0, T ] × C([0, T ];Rd), where X t,x,a corresponds to the process X t,x,α with
α ≡ a. As a matter of fact, it holds that

sup
s∈[t,T ],a∈A

E

[
∫ s

t

f
(

r,X t,x,a, a
)

dr + v
(

s,X t,x,a
)

]

≥ v(t, x),

where the validity of the above inequality can be shown simply taking s = t in the left-hand
side. For every fixed s ∈ [0, T ], a ∈ A, set

vs,a(t, x) := E

[
∫ s

t

f
(

r,X t,x,a, a
)

dr + v
(

s,X t,x,a
)

]

, ∀ (t, x) ∈ [0, s]× C([0, T ];Rd).

27



Notice that applying Proposition 2.6 with g, T, A replaced by v(s, ·), s, {a}, respectively, we
deduce that vs,a is bounded, jointly continuous on [0, s] × C([0, T ];Rd), and there exists a
constant ĉ ≥ 0 (depending only on T and K) such that

|vs,a(t, x)− vs,a(t′, x′)| ≤ ĉ
(

|t− t′|1/2 + ‖x(· ∧ t)− x′(· ∧ t′)‖T
)

,

for all (s, a) ∈ [0, T ]× A, (t, x), (t′, x′) ∈ [0, s]× C([0, T ];Rd). By the boundedness of f and
(2.6), we also have

|vs,a(t, x)− vs
′,a(t, x)| ≤ K|s′ − s|+ c|s′ − s|1/2, (4.21)

for all a ∈ A, s, s′ ∈ [0, T ], (t, x) ∈ [0, s ∧ s′]× C([0, T ];Rd), with c being the same constant
appearing in (2.6).

In order to prove (4.20), we proceed by contradiction and suppose that there exist
(t0, x0) ∈ [0, T ]× C([0, T ];Rd), s0 ∈ [t0, T ], a0 ∈ A, such that

(vs0,a0 − u2)(t0, x0) > 0.

It holds that t0 < T , otherwise t0 = s0 = T and u2(T, x0) ≥ g(x0) = vT,a0(T, x0). Moreover,
we can suppose, without loss of generality, that t0 < s0. As a matter of fact, by (4.21) and
the fact that t0 < T , there exists s1 ∈ (t0, T ] such that (vs1,a0 − u2)(t0, x0) > 0. Therefore, it
is enough to consider s1 in place of s0. For this reason, in the sequel we assume that t0 < s0.

Now, consider the sequences {bn}n, {fn}n, {v̂n(s0, ·)}n, {vs0,a0n }n introduced in Theorem
B.8, with vs0,a0n being a classical solution of equation (B.35).

Let Φ as in (4.6) and

β :=
1

√

(vs0,a0 − u2)(t0, x0)
.

Given k ∈ N, we set ũ2(t, x) := Φ(βk(t−t0)) u2(t, x), for all (t, x) ∈ [0, T ]×C([0, T ];Rd), and
we define similarly ṽs0,a0n , f̃ , f̃n. We also define g̃(x) := Φ(βk(T − t0)) g(x) and ṽn(s0, x) :=
Φ(βk(s0 − t0)) v̂n(s0, x), for all x ∈ C([0, T ];Rd). Notice that ũ2 is a (path-dependent)
viscosity supersolution of the following path-dependent partial differential equation:



























∂H
t ũ2(t, x) +

〈

b(t, x, a0), ∂
V
x ũ2(t, x)

〉
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tr
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(σσ⊺)(t, x, a0)∂
V
xxũ2(t, x)

]

+ f̃(t, x, a0) = βk
Φ′(βk(t− t0))

Φ(βk(t− t0))
ũ2(t, x), (t, x) ∈ [0, T )× C([0, T ];Rd),

ũ2(T, x) = g̃(x), x ∈ C([0, T ];Rd).

Similarly, ṽs0,a0n ∈ C1,2
pol([0, T ] × C([0, T ];Rd)) and is a classical solution of the following

equation:
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t ṽs0,a0n (t, x) +
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x ṽ
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n (t, x)

〉

+
1

2
tr
[
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V
xxṽ

s0,a0
n (t, x)

]

+ f̃n(t, x, a0) = βk
Φ′(βk(t− t0))

Φ(βk(t− t0))
ṽs0,a0n (t, x), (t, x) ∈ [0, s0)× C([0, T ];Rd),

ṽs0,a0n (s0, x) = ṽn(s0, x), x ∈ C([0, T ];Rd).
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Since vs0,a0n is bounded uniformly in n, moreover u2 and Φ are bounded, we deduce that there
exists a constant M > 0, independent of n, k, such that the map

(t, x) 7−→
(

ṽs0,a0n − ũ2

)

(t, x)−
(

ṽs0,a0n − ũ2

)

(t0, x0)

is bounded by M on [0, s0]× C([0, T ];Rd). Then, given k, ℓ ∈ N, define

Gn,k,ℓ(t, x) := ṽs0,a0n (t, x)− ũ2(t, x)− k2|t− t0|2 − (ℓ2 + 3M)χ∞(t, x),

for every (t, x) ∈ [0, s0] × C([0, T ];Rd), with χ∞ given by (4.11). For every δ > 0, let
(tδ, xδ) ∈ [0, s0]× C([0, T ];Rd) be such that

Gn,k,ℓ(tδ, xδ) ≥ Gn,k,ℓ(t0, x0), Gn,k,ℓ(tδ, xδ) ≥ supGn,k,ℓ − δ2,

Proceeding as in Substep I-b, we deduce that (4.13) holds. Moreover, we have

|tδ − t0| ≤ 1

k

(

∣

∣(vs0,a0n − u2)(t0, x0)
∣

∣+ 2η

(

√
M

k
+

√
M

ℓ

))1/2

, (4.22)

where η is a modulus of continuity of vs0,a0n − u2, whose existence follows from the uniform
continuity of u2 and item 4) of Theorem B.8.

Notice that Gn,k,ℓ is upper semicontinuous and bounded. Then, by (4.12) and the smooth
variational principle (Theorem 4.4) on [0, s0]×C([0, T ];Rd) with G := Gn,k,ℓ, we deduce that
for every δ ∈ (0, 1) there exist (t̄, x̄) ∈ [0, s0] × C([0, T ];Rd) and ϕ as in (4.4) satisfying
items i)-ii)-iii)-iv) of Theorem 4.4. Moreover, the restriction of ϕ to [t̄, T ] × C([0, T ];Rd)
belongs to C1,2([t̄, T ]×C([0, T ];Rd)) and its derivatives are bounded by some constant c > 0,
independent of δ. By (4.5) and (4.13), we deduce that (4.16) holds. Moreover, by (4.5) and
(4.22), we have

|t̄− t0| ≤
√
δ +

1

k

(

∣

∣(vs0,a0n − u2)(t0, x0)
∣

∣ + 2η

(

√
M

k
+

√
M

ℓ

))1/2

.

In particular, recalling that t0 < s0, by the first inequality in (4.16) we deduce that there
exists δ0 ∈ (0, 1) and k0 ∈ N such that

t̄ < s0,

whenever δ ≤ δ0 and k ≥ k0. Now, we can proceed along the same lines as in Substep

I-d to get a contradiction and conclude the proof. We only notice that in order to use
the viscosity supersolution property of ũ2 at the point (t̄, x̄) we need to extend vs0,a0n from
[0, s0]×C([0, T ];Rd) to [0, T ]×C([0, T ];Rd) in such a way that the extension is still smooth.
We can do this extending by reflection (see [37]), namely defining the function

v1,s0,a0n (t, x) =

{

vs0,a0n (t, x), (t, x) ∈ [0, s0]× C([0, T ];Rd),

4vs0,a0n ((3s0 − t)/2, x)− 3vs0,a0n (2s0 − t, x), (t, x) ∈ [s0, 2s0]× C([0, T ];Rd).

Notice that v1,s0,a0n is non-anticipative. If 2s0 ≥ T we have finished, otherwise we extend
again v1,s0,a0n and after a finite number of extensions we find a map defined on the entire
space [0, T ]× C([0, T ];Rd).

29



Finally, we can state the following uniqueness result.

Corollary 4.6. Suppose that Assumptions (A), (B), (C) hold. Then, the value function v
in (2.5) is the unique bounded and uniformly continuous (path-dependent) viscosity solution
of equation (3.5).

Proof. If u is another bounded and uniformly continuous (path-dependent) viscosity solu-
tion of equation (3.5), then, by Theorem 4.5, we get the two following inequalities:

u ≤ v, v ≤ u,

from which the claim follows.

Appendix A Pathwise derivatives and functional Itô’s

formula

In the present appendix, we briefly recall the definitions of pathwise (or functional) deriva-
tives following [15, Section 2], for which we refer for more details.
As we follow the standard approach (as it was introduced in the seminal paper [23]), in order
to introduce the pathwise derivatives for a map u : [t0, T ] × C([0, T ];Rd) → R, t0 ∈ [0, T ),
we firstly define them for a map û : [t0, T ] × D([0, T ];Rd) → R, with D([0, T ];Rd) be-
ing the set of càdlàg paths, endowed with the supremum norm ‖x̂‖T = sups∈[0,T ] |x̂(s)|,
for every x̂ ∈ D([0, T ];Rd). We also define on [0, T ] × D([0, T ];Rd) the pseudometric
d̂∞ : ([0, T ]×D([0, T ];Rd))2 → [0,∞) as

d̂∞
(

(t, x̂), (t′, x̂′)
)

:= |t− t′|+
∥

∥x̂(· ∧ t)− x̂′(· ∧ t′)
∥

∥

T
.

On [t0, T ]×D([0, T ];Rd) we consider the restriction of d̂∞, which we still denote by the same
symbol.

Definition A.1. Consider a map û : [t0, T ]×D([0, T ];Rd) → R, t0,∈ [0, T ).

(i) For every (t, x̂) ∈ [t0, T ] × D([0, T ];Rd), with t < T , the horizontal derivative of û at
(t, x̂) is defined as (if the limit exists)

∂H
t û(t, x̂) := lim

δ→0+

û(t+ δ, x̂(· ∧ t))− û(t, x̂(· ∧ t))

δ
.

At t = T , it is defined as

∂H
t û(T, x̂) := lim

t→T−

∂H
t û(t, x̂).

(ii) For every (t, x̂) ∈ [t0, T ]×D([0, T ];Rd), the vertical derivatives of first and second-order
of û at (t, x̂) are defined as (if the limits exist)

∂V
xi
û(t, x̂) := lim

h→0

û(t, x̂+ hei1[t,T ])− û(t, x̂)

h
,
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∂V
xixj

û(t, x̂) := ∂V
xj
(∂V

xi
û)(t, x̂),

where e1, . . . , ed is the standard orthonormal basis of Rd. We also denote ∂V
x û =

(∂V
x1
û, . . . , ∂V

xd
û) and ∂V

xxû = (∂V
xixj

û)i,j=1,...,d.

Definition A.2. C1,2([t0, T ]×D([0, T ];Rd)), t0,∈ [0, T ), is the set of continuous real-valued
maps û defined on ([t0, T ] × D([0, T ];Rd), d̂∞), such that ∂H

t û, ∂V
x û, ∂V

xxû exist everywhere
on ([t0, T ]×D([0, T ];Rd), d̂∞) and are continuous.

We can now define the pathwise derivatives for a map u : [t0, T ]×C([0, T ];Rd) → R. To this
end, the following consistency property plays a crucial role.

Lemma A.3. If û1, û2 ∈ C1,2([t0, T ]×D([0, T ];Rd)) coincide on continuous paths, namely

û1(t, x) = û2(t, x), ∀ (t, x) ∈ [t0, T ]× C([0, T ];Rd),

then the same holds for their pathwise derivatives: for every (t, x) ∈ [t0, T ]× C([0, T ];Rd),

∂H
t û1(t, x) = ∂H

t û2(t, x),

∂V
x û1(t, x) = ∂V

x û2(t, x),

∂V
xxû1(t, x) = ∂V

xxû2(t, x).

Proof. See [15, Lemma 2.1].

We can now given the following definition.

Definition A.4. C1,2([t0, T ]×C([0, T ];Rd)), t0,∈ [0, T ), is the set of continuous real-valued
maps u defined on ([t0, T ] × C([0, T ];Rd), d∞), for which there exists û ∈ C1,2([t0, T ] ×
D([0, T ];Rd)) such that

u(t, x) = û(t, x), ∀ (t, x) ∈ [t0, T ]× C([0, T ];Rd).

We also define, for every (t, x) ∈ [t0, T ]× C([0, T ];Rd),

∂H
t u(t, x) := ∂H

t û(t, x),

∂V
x u(t, x) := ∂V

x û(t, x),

∂V
xxu(t, x) := ∂V

xxû(t, x).

Remark A.5. Thanks to the consistency property stated in Lemma A.3, the definition of
pathwise derivatives of u does not depend on the map û appearing in Definition A.4.

In the present paper we also need to consider the following subset of C1,2([t0, T ]×C([0, T ];Rd)).

Definition A.6. We denote by C1,2
pol([t0, T ] × C([0, T ];Rd)) the set of u ∈ C1,2([t0, T ] ×

C([0, T ];Rd)) such that u, ∂H
t u, ∂V

x u, ∂V
xxu satisfy a polynomial growth condition: there exist

constants M ≥ 0 and q ≥ 0 such that
∣

∣∂H
t u(t, x)

∣

∣+
∣

∣∂V
x u(t, x)

∣

∣+
∣

∣∂V
xxu(t, x)

∣

∣ ≤ M
(

1 + ‖x‖qt
)

,

for all (t, x) ∈ [t0, T ]× C([0, T ];Rd).

31



Finally, we state the so-called functional Itô formula.

Theorem A.7 (Functional Itô’s formula). Let u ∈ C1,2([t0, T ] × C([0, T ];Rd)). Let also
(Ω,F , (Ft)t∈[t0,T ],P) be a filtered probability space, with (Ft)t∈[t0,T ] satisfying the usual condi-
tions, on which a d-dimensional continuous semimartingale X = (Xt)t∈[t0,T ] is defined, with
X = (X1, . . . , Xd). Then, it holds that

u(t, X) = u(t0, X) +

∫ t

t0

∂H
t u(s,X) ds+

1

2

d
∑

i,j=1

∫ t

t0

∂V
xixj

u(s,X) d[X i, Xj]s (A.1)

+

d
∑

i=1

∫ t

t0

∂V
xi
u(s,X) dX i

s, for all t0 ≤ t ≤ T, P-a.s.

Proof. See [15, Theorem 2.2].

Appendix B Cylindrical approximations

B.1 The deterministic calculus via regularization

In the present appendix, we need to consider “cylindrical” maps defined on C([0, T ];Rd),
namely maps depending on a path x ∈ C([0, T ];Rd) only through a finite number of integrals
with respect to x. An integral with respect to x can be formally written as “

∫

[0,T ]
ϕ(s)dx(s)”.

In order to give a meaning to the latter notation, it is useful to notice that we look for
a deterministic integral which coincides with the Itô integral when x is replaced by an Itô
process (such a property will be exploited in the sequel). This is the case if we interpret
“
∫

[0,T ]
ϕ(s)dx(s)” as the deterministic version of the forward integral, which we now introduce

and denote by
∫

[0,T ]
ϕ(s)d−x(s). For more details on such an integral and, more generally, on

the deterministic calculus via regularization we refer to [20, Section 3.2] and [13, Section 2.2].
The only difference with respect to [20] and [13] being that here we consider d-dimensional
paths (with d possibly greater than 1), even though, as usual, we work component by com-
ponent, therefore relying on the one-dimensional theory.

Definition B.1. Let x : [0, T ] → Rd and ϕ : [0, T ] → R be càdlàg functions. When the
following limit

∫

[0,T ]

ϕ(s) d−x(s) := lim
ε→0+

∫ T

0

ϕ(s)
x(T ∧ (s+ ε))− x(s)

ε
ds

exists and it is finite, we denote it by
∫

[0,T ]
ϕ(s) d−x(s) and call it forward integral of ϕ

with respect to x.

When ϕ is continuous and of bounded variation, an integration by parts formula provides
an explicit representation of the forward integral of ϕ with respect to x.
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Proposition B.2. Let x : [0, T ] → R
d be a càdlàg function and let ϕ : [0, T ] → R be contin-

uous and of bounded variation. The following integration by parts formula holds:
∫

[0,T ]

ϕ(s) d−x(s) = ϕ(T ) x(T )−
∫

(0,T ]

x(s) dϕ(s), (B.1)

where
∫

(0,T ]
x(s) dϕ(s) is a Lebesgue-Stieltjes integral on (0, T ].

Proof. We have

∫ T

0

ϕ(s)
x(T ∧ (s+ ε))− x(s)

ε
ds =

∫ T−ε

0

ϕ(s)
x(s+ ε)− x(s)

ε
ds+

∫ T

T−ε

ϕ(s)
x(T )− x(s)

ε
ds

Notice that
∫ T−ε

0

ϕ(s)x(s+ ε) ds =

∫ T

ε

ϕ(s− ε)x(s) ds =

∫ T

0

ϕ(s− ε)x(s) ds,

where in the last equality we set ϕ(s) := ϕ(0) for s < 0. Hence

∫ T

0

ϕ(s)
x(T ∧ (s+ ε))− x(s)

ε
ds

=

∫ T

0

ϕ(s− ε)− ϕ(s)

ε
x(s) ds+

1

ε

∫ T

T−ε

ϕ(s)x(s) ds+
1

ε

∫ T

T−ε

ϕ(s)
(

x(T )− x(s)
)

ds

=

∫ T

0

ϕ(s− ε)− ϕ(s)

ε
x(s) ds+

1

ε

∫ T

T−ε

ϕ(s)x(T ) ds.

Since ϕ is continuous, we have

1

ε

∫ T

T−ε

ϕ(s)x(T ) ds
ε→0+−→ ϕ(T )x(T ). (B.2)

On the other hand, by Fubini’s theorem, we have

∫ T

0

ϕ(s− ε)− ϕ(s)

ε
x(s) ds =

∫ T

0

(

1

ε

∫

(s−ε,s]

dϕ(r)

)

x(s) ds

=

∫

(0,T ]

(

1

ε

∫ r+ε

r

x(s) ds

)

dϕ(r).

Since x is right-continuous we have that 1
ε

∫ r+ε

r
x(s) ds → x(r) as ε → 0+. Moreover, since

x is bounded (being a càdlàg function), by Lebesgue’s dominated convergence theorem we
conclude that

∫

(0,T ]

(

1

ε

∫ r+ε

r

x(s) ds

)

dϕ(r)
ε→0+−→

∫

(0,T ]

x(r) dϕ(r). (B.3)

From (B.2) and (B.3) we see that (B.1) follows.
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B.2 Cylindrical approximations

Lemma B.3. Let h : [0, T ]× C([0, T ];Rd)× A → R be continuous and satisfying, for some
constant K ≥ 0, items a)-b)-d) or, alternatively, items a)-c)-d):

a) |h(t, x, a)− h(t, x′, a)| ≤ K ‖x− x′‖t, for all t ∈ [0, T ], x, x′ ∈ C([0, T ];Rd), a ∈ A;

b) |h(t, 0, a)| ≤ K, for all (t, a) ∈ [0, T ]×A;

c) |h(t, x, a)| ≤ K, for all (t, x, a) ∈ [0, T ]× C([0, T ];Rd)× A;

d) h is uniformly continuous in t, uniformly with respect to the other variables, namely there
exists a modulus of continuity w : [0,∞) → [0,∞) such that

|h(t, x, a)− h(s, x, a)| ≤ w(|t− s|), (B.4)

for all t, s ∈ [0, T ], x ∈ C([0, T ];Rd), a ∈ A.

Then, there exists a sequence {hn}n with hn : [0, T ]×C([0, T ];Rd)×A → R continuous and
satisfying the following.

1) hn converges pointwise to h uniformly with respect to a, namely: for every (t, x) ∈ [0, T ]×
C([0, T ];Rd), it holds that

lim
n→+∞

sup
a∈A

∣

∣hn(t, x, a)− h(t, x, a)
∣

∣ = 0.

More precisely, (B.16) holds.

2) If h satisfies items a) and b) (resp. a) and c)) then hn also satisfies the same items. In
particular, hn satisfies item a) with constant 2K and item b) with a constant Ǩ ≥ 0,
depending only on K (resp. item c) with the same constant K).

3) For every n, there exist dn ∈ N, a continuous function h̄n : [0, T ] × Rddn × A → R, and
some continuously differentiable functions φn,1, . . . , φn,dn : [0, T ] → R such that

hn(t, x, a) = h̄n

(

t,

∫

[0,t]

φn,1(s) d
−x(s), . . . ,

∫

[0,t]

φn,dn(s) d
−x(s), a

)

,

for every (t, x, a) ∈ [0, T ] × C([0, T ];Rd) × A. Moreover, dn and φn,1, . . . , φn,dn do not
depend on h. In addition, yt,xn given by (B.9) is such that (B.11) and (B.12) hold.

4) If h satisfies items a) and b) (resp. a) and c)) then h̄n satisfies items i) and ii) (resp. i)
and iii)) below:

i) |h̄n(t, y, a)− h̄n(t, y
′, a)| ≤ K |y − y′|, for all t ∈ [0, T ], y, y′ ∈ Rddn , a ∈ A;

ii) |h̄n(t, 0, a)| ≤ Ǩ, for all (t, a) ∈ [0, T ]×A, for some constant Ǩ ≥ 0, depending only
on K;
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iii) |h̄n(t, y, a)| ≤ K, for all (t, y, a) ∈ [0, T ]× R
ddn × A.

5) For every n and any a ∈ A, the function h̄n(·, ·, a) is C1,2([0, T ]×Rddn). Moreover, there
exist constants Kn ≥ 0 and q ∈ {0, 1} such that

∣

∣∂th̄n(t, y, a)
∣

∣+
∣

∣∂yh̄n(t, y, a)
∣

∣+
∣

∣∂2
yyh̄n(t, y, a)

∣

∣ ≤ Kn

(

1 + |y|
)q
, (B.5)

for all (t, y, a) ∈ [0, T ] × Rddn × A. The constant q is equal to 1 if h satisfies item b),
while it is equal to 0 if h satisfies item c).

Proof. We split the proof into six steps.

Step I. Definitions of xpol
n,y and xt,pol

n . For every n ∈ N, consider the n-th dyadic mesh of
the time interval [0, T ], that is

0 = tn0 < tn1 < . . . < tn2n = T, with tnj :=
j

2n
T, for every j = 0, . . . , 2n.

For every y = (y0, . . . , y2n) ∈ Rd·(2n+1), we consider the corresponding n-th polygonal, de-
noted xpol

n,y, which is an element of C([0, T ];Rd) and is characterized by the following prop-
erties:

• xpol
n,y(t

j
n) = yj , for every j = 0, . . . , 2n;

• xpol
n,y is linear on every interval [tnj−1, t

n
j ], for any j = 1, . . . , 2n.

So, in particular, xpol
n,y is given by the following formula:

xpol
n,y(s) =

yj − yj−1

tnj − tnj−1

s+
tnj yj−1 − tnj−1 yj

tnj − tnj−1

,

for every s ∈ [tnj−1, t
n
j ] and any j = 1, . . . , 2n.

Now, given t ∈ [0, T ] and x ∈ C([0, T ];Rd), we denote

xt,pol
n := xpol

n,ŷt,xn
,

with

ŷt,xn :=
(

x(tn0 ∧ t), . . . , x(t2n ∧ t)
)

=

(
∫

[0,t]

1[0,tn0 ](s) d
−x(s), . . . ,

∫

[0,t]

1[0,tn
2n

](s) d
−x(s)

)

,

where the second inequality follows from the integration by parts formula (B.1).
It is easy to see that (in the following formulae we use the same symbol, that is | · |, to denote
the Euclidean norms on Rd and Rd·(2n+1))

‖xpol
n,y‖T ≤ max

j
|yj| ≤ |y|, ‖xpol

n,y − xpol

n,ỹ‖T ≤ max
j

|yj − ỹj| ≤ |y − ỹ|, (B.6)
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for every y = (y0, . . . , y2n), ỹ = (ỹ0, . . . , ỹ2n) ∈ R
d·(2n+1). Similarly, we have

‖xt,pol
n ‖t ≤ ‖x‖t, ‖xt,pol

n −x‖t ≤ sup
|r−s|≤2−n

|x(r∧t)−x(s∧t)| ≤ sup
|r−s|≤2−n

|x(r)−x(s)|. (B.7)

Step II. Definitions of φn,j and yt,xn . Let χ : R → R be given by

χ(r) =























0, r ≤ 0,

1

1 + e1/r

e1/(1−r)

, 0 < r < 1,

1, r ≥ 1.

Notice that χ belongs to C∞(R) and is strictly increasing on [0, 1]. Then, for every n ∈ N,
we define the functions φn,0, . . . , φn,2n : [0, T ] → R as follows:

φn,j(r) =

{

1, 0 ≤ r < tnj ,

1− χ(22n(r − tnj )), tnj ≤ r ≤ T,
(B.8)

for j = 0, . . . , 2n; so, in particular,

φn,0(r) = 1− χ(22nr), 0 ≤ r ≤ T.

Moreover, for every (t, x) ∈ [0, T ]× C([0, T ];Rd), let yt,xn ∈ Rd·(2n+1) be defined as

yt,xn :=

(
∫

[0,t]

φn,0(s) d
−x(s), . . . ,

∫

[0,t]

φn,2n(s) d
−x(s)

)

. (B.9)

In the rest of this step we prove that the following estimate holds:
∥

∥xpol

n,yt,xn
− xt,pol

n

∥

∥

t
≤ 2 sup

|r−s|≤2−2n

|x(r ∧ t)− x(s ∧ t)| ≤ 2 sup
|r−s|≤2−n

|x(r)− x(s)|. (B.10)

We begin noting that
∥

∥xpol

n,yt,xn
− xt,pol

n

∥

∥

t
= max

j=0,...,2n

∣

∣(yt,xn )j − x(tnj ∧ t)
∣

∣.

where yt,xn = ((yt,xn )0, . . . , (y
t,x
n )2n) ∈ Rd·(2n+1). By the integration by parts formula (B.1), we

have

(yt,xn )j − x(tnj ∧ t) =

∫

[0,t]

φn,j(s) d
−x(s)− x(tnj ∧ t)

=

∫

[0,(tnj +2−2n)∧t]
φn,j(s) d

−x(s)− x(tnj ∧ t)

= φn,j((t
n
j + 2−2n) ∧ t) x((tnj + 2−2n) ∧ t)− x(tnj ∧ t)−

∫ (tnj +2−2n)∧t

0

x(s)φ′
n,j(s) ds.

Notice that φn,j(s) = 1 and φ′
n,j(s) = 0, for 0 ≤ s ≤ tnj . Now, we distinguish two cases.

36



1. If t ≤ tnj , we have
(yt,xn )j − x(tnj ∧ t) = 0. (B.11)

2. If t > tnj , we have

(yt,xn )j − x(tnj ∧ t) = φn,j((t
n
j + 2−2n) ∧ t) x((tnj + 2−2n) ∧ t)− x(tnj )

−
∫ (tnj +2−2n)∧t

tnj

x(s)φ′
n,j(s) ds.

Observe that
∫ (tnj +2−2n)∧t
tnj

φ′
n,j(s) ds = φn,j((t

n
j + 2−2n) ∧ t)− 1, then

(yt,xn )j − x(tnj ∧ t) = x((tnj + 2−2n) ∧ t)− x(tnj )

+

∫ (tnj +2−2n)∧t

tnj

(

x((tnj + 2−2n) ∧ t)− x(s)
)

φ′
n,j(s) ds

≤ sup
|r−s|≤2−2n

|x(r ∧ t)− x(s ∧ t)|
(

1 +

∫ (tnj +2−2n)∧t

tnj

∣

∣φ′
n,j(s)

∣

∣ ds

)

≤ sup
|r−s|≤2−n

|x(r ∧ t)− x(s ∧ t)|
(

1 +

∫ (tnj +2−2n)∧t

tnj

∣

∣φ′
n,j(s)

∣

∣ ds

)

.

Since
∫ (tnj +2−2n)∧t
tnj

|φ′
n,j(s)| ds = −

∫ (tnj +2−2n)∧t
tnj

φ′
n,j(s) ds = 1 − φn,j((t

n
j + 2−2n) ∧ t) and

1− φn,j((t
n
j + 2−2n) ∧ t) ≤ 1, we get

∣

∣(yt,xn )j−x(tnj ∧ t)
∣

∣ ≤ 2 sup
|r−s|≤2−n

|x(r∧ t)−x(s∧ t)| ≤ 2 sup
|r−s|≤2−n

|x(r)−x(s)|. (B.12)

From (B.11) and (B.12) we conclude that (B.10) holds.

Step III. Definitions of h̄n, hn and proof of item 3). For every n ∈ N, let ηn : R → R

be given by

ηn(s) =
2n√
2π

e−
n2

2
s2 , ∀ s ∈ R.

Notice that
∫∞
0

ηn(s)ds = 1. Moreover, for every n ∈ N, let ζn : R
d·(2n+1) → R be the prob-

ability density function of the multivariate normal distribution N (0, (d(2n + 1))−2 Id(2n+1)),
where Id(2n+1) denotes the identity matrix of order d(2n + 1):

ζn(z) =
(d(2n + 1))d(2

n+1)

(2π)d(2n+1)/2
e−

(d(2n+1))2

2
|z|2, ∀ z ∈ R

d·(2n+1).

Now, define h̄n : [0, T ]× R
d·(2n+1) ×A → R as follows:

h̄n(t, y, a) =

∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z) h
(

(t + s) ∧ T, xpol
n,y+z, a

)

ds dz,
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for all (t, y, a) ∈ [0, T ]×R
d·(2n+1)×A. Finally, let hn : [0, T ]×C([0, T ];Rd)×A → R be given

by

hn(t, x, a) = h̄n

(

t,

∫

[0,t]

φn,0(s) d
−x(s), . . . ,

∫

[0,t]

φn,2n(s) d
−x(s), a

)

,

with φn,j as in (B.8). From the continuity of h, we see that both hn and h̄n are continuous.

Step IV. Proof of item 1). For every (t, x) ∈ [0, T ]×C([0, T ];Rd), let yt,xn ∈ Rd·(2n+1) be
given by (B.9). Then, we have (using also the equality h(t, x, a) = h(t, x·∧t, a))

|hn(t, x, a)− h(t, x, a)|

≤
∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z)
∣

∣h
(

(t + s) ∧ T, xpol

n,yt,xn +z
, a
)

− h(t, x·∧t, a)
∣

∣ ds dz

≤
∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z)
∣

∣h
(

(t + s) ∧ T, xpol

n,yt,xn +z
, a
)

− h
(

(t+ s) ∧ T, x·∧t, a
)
∣

∣ ds dz

+

∫ ∞

0

ηn(s)
∣

∣h
(

(t + s) ∧ T, x·∧t, a
)

− h(t, x·∧t, a)
∣

∣ ds

≤ K

∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z)
∥

∥xpol

n,yt,xn +z
− x·∧t

∥

∥

(t+s)∧T ds dz

+

∫ ∞

0

ηn(s)
∣

∣h
(

(t + s) ∧ T, x·∧t, a
)

− h(t, x·∧t, a)
∣

∣ ds.

Since both paths xpol

n,yt,xn +z
and x·∧t are constant after time t, moreover recalling (B.6), (B.7)

and the linearity of the map y 7→ xpol
n,y, we obtain

∥

∥xpol

n,yt,xn +z
− x·∧t

∥

∥

(t+s)∧T =
∥

∥xpol

n,yt,xn
+ xpol

n,z − x·∧t
∥

∥

t
≤

∥

∥xpol

n,yt,xn
− x·∧t

∥

∥

t
+ |z|

≤
∥

∥xpol

n,yt,xn
− xpol

n

∥

∥

t
+ ‖xpol

n − x‖t + |z|.

Then, by (B.7) and (B.10), we get

|hn(t, x, a)− h(t, x, a)| ≤ 3K sup
|r−s|≤2−n

|x(r)− x(s)|+K

∫

Rd·(2n+1)

ζn(z) |z| dz (B.13)

+

∫ ∞

0

ηn(s)
∣

∣h
(

(t+ s) ∧ T, x·∧t, a
)

− h(t, x·∧t, a)
∣

∣ ds.

Now, by (B.4) we have

∫ ∞

0

ηn(s)
∣

∣h
(

(t+ s) ∧ T, x·∧t, a
)

− h(t, x·∧t, a)
∣

∣ ds

≤
∫ ∞

0

ηn(s)w
(

(t + s) ∧ T − t
)

ds =

∫ ∞

0

2√
2π

e−
1
2
r2 w

(

(t + r/n) ∧ T − t
)

dr. (B.14)

Finally, consider the integral
∫

Rd·(2n+1) ζn(z) |z| dz. Since the integrand is a radial function,
it is more convenient to rewrite it in terms of spherical coordinates (see for instance [30,
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Appendix C.3]). In particular, denoting by Sd(2n+1)−1(R) the surface area of the sphere
{|z| = R}, which is equal to 2πd(2n+1)/2Rd(2n+1)−1/Γ(d(2n+1)/2), with Γ(·) being the Gamma
function, we get

∫

Rd·(2n+1)

ζn(z) |z| dz =

∫

Rd·(2n+1)

(d(2n + 1))d(2
n+1)

(2π)d(2n+1)/2
e−

(d(2n+1))2

2
|z|2 |z| dz

=
1

d(2n + 1)

∫

Rd·(2n+1)

1

(2π)d(2n+1)/2
e−

1
2
|y|2 |y| dy

=
1

d(2n + 1)

1

(2π)(d(2n+1)−1)/2

∫ ∞

0

1√
2π

e−
1
2
R2

RSd(2n+1)−1(R) dR

=
1

d(2n + 1)

2πd(2n+1)/2

(2π)(d(2n+1)−1)/2

1

Γ(d(2n + 1)/2)

∫ ∞

0

1√
2π

e−
1
2
R2

Rd(2n+1) dR.

Since
∫∞
0

1√
2π

e−
1
2
R2
Rd(2n+1)dR = 2d(2

n+1)/2−1Γ((d(2n + 1) + 1)/2)/
√
π, we find

∫

Rd·(2n+1)

ζn(z) |z| dz =
√
2

Γ((d(2n + 1) + 1)/2)

d(2n + 1) Γ(d(2n + 1)/2)
.

By [39] we know that the following inequality holds:

Γ(z + 1/2)

Γ(z)
≤

(

z +

√
3

2

)1/2

≤ 2
√
z, ∀ z >

1

2
.

Hence
∫

Rd·(2n+1)

ζn(z) |z| dz ≤ 2
√

d(2n + 1)
. (B.15)

In conclusion, plugging (B.14) and (B.15) into (B.13), we obtain

|hn(t, x, a)− h(t, x, a)| ≤ 3K sup
|r−s|≤2−n

|x(r)− x(s)|+ 2K
√

d(2n + 1)
(B.16)

+

∫ ∞

0

2√
2π

e−
1
2
r2 w

(

(t + r/n) ∧ T − t
)

dr.

Then, letting n → ∞ in (B.16), using Lebesgue’s dominated convergence theorem, we deduce
that item 1) holds.

Step V. Proof of items 2) and 4). It is clear that hn (resp. h̄n) satisfies item c) (resp.
4)-iii)) with the same constant K. If h satisfies item b) then |h(t, x, a)| ≤ K(1 + ‖x‖t),
therefore, by (B.6),

|h̄n(t, y, a)| ≤ K

∫

Rd·(2n+1)

ζn(z)
(

1 +
∥

∥xpol
n,y+z

∥

∥

t

)

dz

≤ K (1 + |y|) +K

∫

Rd·(2n+1)

ζn(z) |z| dz = K (1 + |y|) + 2K
√

d(2n + 1)
,
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where the last equality follows from (B.15). Since d(2n + 1) ≥ 1, we get

|h̄n(t, y, a)| ≤ K (1 + |y|) + 2K,

which proves item 4)-ii). Concerning hn, we have

|hn(t, x, a)| ≤ K
(

1 +
∥

∥yt,xn
∥

∥

t

)

+ 2K

≤ K
(

1 +
∥

∥yt,xn − xt,pol
n

∥

∥

t
+
∥

∥xt,pol
n

∥

∥

t

)

+ 2K

By (B.10) and (B.7), we obtain

|hn(t, x, a)| ≤ K
(

1 + 2 sup
|r−s|≤2−n

|x(r ∧ t)− x(s ∧ t)|+ ‖x‖t
)

+ 2K

≤ K
(

1 + 3‖x‖t
)

+ 2K,

which proves that hn satisfies item b) with a constant Ǩ, depending only on K.
Let us now prove that hn and h̄n satisfy respectively item a) and item 4)-i). We have

|h̄n(t, y, a)− h̄n(t, ỹ, a)|

≤
∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z)
∣

∣h
(

(t+ s) ∧ T, xpol
n,y+z, a

)

− h
(

(t+ s) ∧ T, xpol
n,ỹ+z, a

)
∣

∣ ds dz

≤ K

∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z)
∥

∥xpol
n,y+z − xpol

n,ỹ+z

∥

∥

(t+s)∧T ds dz

= K

∫ ∞

0

ηn(s)
∥

∥xpol
n,y − xpol

n,ỹ

∥

∥

(t+s)∧T ds,

where the last equality follows from the linearity of the map y 7→ xpol
n,y. Hence, recalling

(B.6), we obtain

|h̄n(t, y, a)− h̄n(t, ỹ, a)| ≤ Kmax
j

|yj − ỹj| ≤ K |y − ỹ|, (B.17)

which proves that h̄n satisfies item 4)-i). Let us now prove that hn satisfies item a). From
(B.17) we have

|hn(t, x, a)− hn(t, x̃, a)| ≤ Kmax
j

∣

∣(yt,xn )j − (yt,x̃n )j
∣

∣.

By the integration by parts formula (B.1), we get

(yt,xn )j − (yt,x̃n )j =

∫

[0,t]

φn,j(s) d
−x(s)−

∫

[0,t]

φn,j(s) d
−x̃(s)

= φn,j(t)
(

x(t)− x̃(t)
)

−
∫ t

0

(

x(s)− x̃(s)
)

φ′
n,j(s) ds.

Hence
∣

∣(yt,xn )j − (yt,x̃n )j
∣

∣ ≤ |x(t)− x̃(t)|+ ‖x− x̃‖t
∫ t

0

|φ′
n,j(s)| ds.
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Since
∫ t

0
|φ′

n,j(s)| ds = −
∫ t

0
φ′
n,j(s) ds = 1− φn,j(t) and 1− φn,j(t) ≤ 1, we conclude that

|hn(t, x, a)− hn(t, x̃, a)| ≤ 2K‖x− x̃‖t,

which proves that hn satisfies item a) with constant 2K.

Step VI. Proof of item 5). Recall that

h̄n(t, y, a) =

∫ ∞

0

∫

Rd·(2n+1)

ηn(s) ζn(z) h
(

(t+ s) ∧ T, xpol
n,y+z, a

)

ds dz

=

∫ ∞

t

∫

Rd·(2n+1)

ηn(s− t) ζn(z − y) h
(

s ∧ T, xpol
n,z, a

)

ds dz,

for all (t, y, a) ∈ [0, T ]× R
d·(2n+1) × A. Then, it is clear that, for every a ∈ A, the function

h̄n(·, ·, a) ∈ C1,2([0, T ]× Rddn). Moreover, by direct calculation, we have

∂th̄n(t, y, a) = −
∫ ∞

t

∫

Rd·(2n+1)

η′n(s− t) ζn(z − y) h
(

s ∧ T, xpol
n,z, a

)

ds dz

−
∫

Rd·(2n+1)

ηn(0) ζn(z − y) h
(

t ∧ T, xpol
n,z, a

)

dz,

∂yh̄n(t, y, a) = −
∫ ∞

t

∫

Rd·(2n+1)

ηn(s− t) ∂yζn(z − y) h
(

s ∧ T, xpol
n,z, a

)

ds dz,

∂2
yyh̄n(t, y, a) =

∫ ∞

t

∫

Rd·(2n+1)

ηn(s− t) ∂2
yyζn(z − y) h

(

s ∧ T, xpol
n,z, a

)

ds dz.

By item b) or, alternatively, item c), we conclude that (B.5) holds.

Under Assumptions (A) and (B), the coefficients b, f , g satisfy items a), c), d) of Lemma
B.3, therefore from this lemma we get sequences {bn}n, {fn}n, {gn}n, with

bn, fn : [0, T ]× C([0, T ];Rd)× A −→ R
d, R, gn : C([0, T ];Rd) −→ R, (B.18)

satisfying items 1)-2)-3)-4)-5) of Lemma B.3. We also recall from Lemma B.3 that dn and
φn,1, . . . , φn,dn are the same for b, f , g.
Finally, let

vn : [0, T ]× C([0, T ];Rd) −→ R (B.19)

denote the value function of the optimal control problem with coefficients bn, σ, fn, gn.

Lemma B.4. Let Assumptions (A), (B), (C) hold. Consider the sequences {bn}n, {fn}n,
{gn}n, {vn}n in (B.18)-(B.19). Then, vn converges pointwise to v in (2.5) as n → +∞.

Proof. For every n ∈ N, t ∈ [0, T ], x ∈ C([0, T ];Rd), α ∈ A, let Xn,t,x,α ∈ S2(F) be the
unique solution to the following system of controlled stochastic differential equations:

{

dXs = bn(s,X, αs) ds+ σ(s,X, αs) dBs, s ∈ (t, T ],

Xs = x(s), s ∈ [0, t].

41



Then

|vn(t, x)− v(t, x)|

≤ sup
α∈A

E

[
∫ T

t

∣

∣fn
(

s,Xn,t,x,α, αs

)

− f
(

s,X t,x,α, αs

)
∣

∣ ds+
∣

∣gn
(

Xn,t,x,α
)

− g
(

X t,x,α
)
∣

∣

]

≤ sup
α∈A

{

K (T + 1)
∥

∥Xn,t,x,α −X t,x,α
∥

∥

S2
+ E

[
∫ T

t

∣

∣fn
(

s,X t,x,α, αs

)

− f
(

s,X t,x,α, αs

)
∣

∣ ds

]

+ E
[
∣

∣gn
(

X t,x,α
)

− g
(

X t,x,α
)
∣

∣

]

}

.

By standard calculations (as for instance in [40, Theorem 2.5.9]), we find

∥

∥Xn,t,x,α −X t,x,α
∥

∥

2

S2
≤ CKT eCKT

E

[
∫ T

t

∣

∣bn
(

s,X t,x,α, αs

)

− b
(

s,X t,x,α, αs

)
∣

∣

2
ds

]

.

for some constant CK , depending only on the constant K. It remains to prove that

sup
α∈A

{

E

[
∫ T

t

∣

∣bn
(

s,X t,x,α, αs

)

− b
(

s,X t,x,α, αs

)
∣

∣

2
ds

]

+ E

[
∫ T

t

∣

∣fn
(

s,X t,x,α, αs

)

− f
(

s,X t,x,α, αs

)
∣

∣ ds

]

+ E
[
∣

∣gn
(

X t,x,α
)

− g
(

X t,x,α
)
∣

∣

]

}

n→+∞−→ 0.

Let us address the term with f and fn, the other three terms can be treated in a similar
way. From the proof of Lemma B.3, and in particular from estimate (B.16) with h and hn

replaced respectively by f and fn, we get

E

[
∫ T

t

∣

∣fn
(

s,X t,x,α, αs

)

− f
(

s,X t,x,α, αs

)
∣

∣ ds

]

≤ 3KT E

[

sup
|r−s|≤2−n

∣

∣X t,x,α
r −X t,x,α

s

∣

∣

]

+
2KT

√

d(2n + 1)
+

∫ T

t

(
∫ ∞

0

2√
2π

e−
1
2
r2 w

(

(s+ r/n) ∧ T − s
)

dr

)

ds, (B.20)

where we recall that w is the modulus of continuity of f with respect to the time variable.
By Lebesgue’s dominated convergence theorem, we see that the last integral in (B.20) goes
to zero as n → +∞. Moreover, by standard calculations, we get

E

[

sup
|r−s|≤2−n

∣

∣X t,x,α
r −X t,x,α

s

∣

∣

2
]

≤ sup
|r−s|≤2−n

|x(r ∧ t)− x(s ∧ t)|2 + CK,T 2−n
(

1 + ‖x‖2t
)

,

for some constant CK,T ≥ 0, depending only on K and T . This allows to prove that right-
hand side of (B.20) goes to zero as n → +∞ and concludes the proof.

Lemma B.5. Let Assumptions (A), (B), (C) hold. Suppose also that there exist d̂ ∈ N

and functions

b̄, σ̄, f̄ : [0, T ]× R
dd̂ × A −→ R

d, Rd×m, R, ḡ : Rdd̂ −→ R,
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satisfying the following conditions. (Notice that items i)-ii)-iii) below are not true assump-
tions for σ, since Assumption (C) holds. Indeed here we are only assuming, without loss of
generality, that d̄ from Assumption (C) coincides with d̂ and that the functions ϕ1, . . . , ϕd̄

appearing in (C)-(i) coincide with φ1, . . . , φd̂.)

i) There exist some continuously differentiable functions φ1, . . . , φd̂ : [0, T ] → R such that:

b(t, x, a) = b̄

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s), a

)

,

σ(t, x, a) = σ̄

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s), a

)

,

f(t, x, a) = f̄

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s), a

)

,

g(x) = ḡ

(
∫

[0,T ]

φ1(s) d
−x(s), . . . ,

∫

[0,T ]

φd̂(s) d
−x(s)

)

,

for every (t, x, a) ∈ [0, T ]× C([0, T ];Rd)× A.

ii) There exist a constant K̂ ≥ 0 such that

|b̄(t, y, a)− b̄(t, y′, a)|+ |σ̄(t, y, a)− σ̄(t, y′, a)|+
+ |f̄(t, y, a)− f̄(t, y′, a)|+ |ḡ(y)− ḡ(y′)| ≤ K̂ |y − y′|,

|b̄(t, y, a)|+ |σ̄(t, y, a)|+ |f̄(t, y, a)|+ |ḡ(y)| ≤ K̂,

for all (t, a) ∈ [0, T ]×A, y, y′ ∈ R
dd̂.

iii) For every a ∈ A, the functions b̄(·, ·, a), σ̄(·, ·, a), f̄(·, ·, a), ḡ(·) are C1,2([0, T ] × Rdd̂).
Moreover, there exist constants K̄ ≥ 0 and q̄ ≥ 0 such that

∣

∣∂tb̄(t, y, a)
∣

∣+
∣

∣∂tσ̄(t, y, a)
∣

∣+
∣

∣∂tf̄(t, y, a)
∣

∣ ≤ K̄
(

1 + |y|
)q̄
,

∣

∣∂y b̄(t, y, a)
∣

∣+
∣

∣∂yσ̄(t, y, a)
∣

∣+
∣

∣∂yf̄(t, y, a)
∣

∣+
∣

∣∂y ḡ(y)
∣

∣ ≤ K̄
(

1 + |y|
)q̄
,

∣

∣∂2
yy b̄(t, y, a)

∣

∣+
∣

∣∂2
yyσ̄(t, y, a)

∣

∣+
∣

∣∂2
yyf̄(t, y, a)

∣

∣+
∣

∣∂2
yy ḡ(y)

∣

∣ ≤ K̄
(

1 + |y|
)q̄
,

for all (t, y, a) ∈ [0, T ]× Rdd̂ × A.

Then, for every ε ∈ (0, 1), there exist vε : [0, T ]×C([0, T ];Rd) → R and v̄ε : [0, T ]×R
dd̂ → R,

with

vε(t, x) = v̄ε

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

,

for all (t, x) ∈ [0, T ]× C([0, T ];Rd), such that the following holds.

1) vε ∈ C1,2
pol([0, T ]× C([0, T ];Rd)) and v̄ε ∈ C1,2([0, T ]× Rdd̂).
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2) vε is a classical solution of the following equation in the unknown u (see Remark B.6):






























∂H
t u(t, x) +

1

2
ε2tr

[

∂yy v̄ε(t, y
t,x)

]

+ supa∈A

{

〈

b(t, x, a), ∂V
x u(t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a)∂V
xxu(t, x)

]

+ f(t, x, a)

}

= 0, (t, x) ∈ [0, T )× C([0, T ];Rd),

u(T, x) = g(x), x ∈ C([0, T ];Rd),

(B.21)

where, for every (t, x) ∈ [0, T ]× C([0, T ];Rd), yt,x ∈ Rdd̂ is defined as

yt,x :=

(
∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

. (B.22)

3) There exists a constant C̄ ′ ≥ 0, depending only on K̂, K̄, q̄, such that

−C̄ ′ eC̄
′(T−t)

(

1 + |y|
)3q̄ ≤ ∂2

yiyj
v̄ε(t, y) ≤ 1

ε2
C̄ ′ eC̄

′(T−t)
(

1 + |y|
)3q̄

,

for all (t, y) ∈ [0, T ]× Rdd̂ and every i, j = 1, . . . , dd̂.

4) There exists a constant L̄′ ≥ 0, depending only on T and K̂, such that
∣

∣∂V
x vε(t, x)

∣

∣ ≤ L̄′,

for every (t, x) ∈ [0, T ]× C([0, T ];Rd).

5) Finally, vε converges pointwise to v in (2.5) as ε → 0+.

Remark B.6. In equation (B.21) with uknown u, the term 1
2
ε2tr[∂yy v̄ε(t, y

t,x)] is known as
it does not depend on u but it involves the function v̄ε. The reason for the presence of this
term is due to the fact that we first derive the HJB equation for the function v̄ε, then we
use equalities (B.29)-(B.30)-(B.31) to derive equation (B.21) for vε. However, from those
equalities we are not able to rewrite the term 1

2
ε2tr[∂yy v̄ε(t, y

t,x)] in terms of vε, therefore we
have left it as it is since this is not relevant for the sequel (actually we could work with the
HJB equation satisfied by v̄ε).

Proof (of Lemma B.5). Let φ : [0, T ] → R(dd̂)×d be given by

φ(t) =







φ1(t)Id
...

φd̂(t)Id






(B.23)

for all t ∈ [0, T ], where Id denotes the d× d identity matrix. Let b̄φ : [0, T ]×Rdd̂ ×A → Rdd̂

and σ̄φ : [0, T ]× R
dd̂ ×A → R

(dd̂)×m be given by

b̄φ(t, y, a) = φ(t) b̄(t, y, a), σ̄φ(t, y, a) = φ(t) σ̄(t, y, a), (B.24)
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for all (t, y, a) ∈ [0, T ]× Rdd̂ × A, with b̄(t, y, a) being a column vector of dimension d. For

every ε ∈ (0, 1), consider the following Hamilton-Jacobi-Bellman equation on [0, T ]× Rdd̂:































∂tū(t, y) + supa∈A

{

〈

b̄φ(t, y, a), ∂yū(t, y)
〉

+
1

2
ε2tr

[

∂2
yyū(t, y)

]

+
1

2
tr
[

(σ̄φσ̄
⊺

φ)(t, y, a)∂
2
yyū(t, y)

]

+ f̄(t, y, a)

}

= 0, (t, y) ∈ [0, T )× R
dd̂,

ū(T, y) = ḡ(y), y ∈ R
dd̂.

(B.25)

Proof of item 3). From the assumptions on b̄, σ̄, f̄ , ḡ, it follows that there exists a unique

classical solution v̄ε ∈ C1,2([0, T ] × Rd̂) of equation (B.25) (see for instance [42, Theorem
14.15] and, in particular, the comments after Theorem 14.15 concerning the case when the
operators “Lν” are linear). Moreover, by [40, Theorems 4.1.1 and 4.7.4] we have that item
3) holds. Furthermore, by [40, Theorem 4.6.2] there exists some constant Ĉ ≥ 0, depending
only on K̂, such that

|v̄ε(t, y)− v̄(t, y)| ≤ ε Ĉ eĈ(T−t), (B.26)

for every (t, y) ∈ [0, T ]× Rdd̂, where v̄ : [0, T ]× Rdd̂ → R is defined as

v̄(t, y) = sup
α∈A

E

[
∫ T

t

f̄(s, Y t,y,α
s , αs) ds+ ḡ(Y t,y,α

T )

]

,

with Y t,y,α = (Y t,y,α
s )s∈[t,T ] solving the following system of controlled stochastic differential

equations:

{

dY t,y,α
s = b̄φ(s, Y

t,y,α
s , αs) ds+ σ̄φ(s, Y

t,y,α
s , αs) dBs, s ∈ (t, T ],

Y t,y,α
t = y.

Proof of item 1). For every (t, x) ∈ [0, T ]×C([0, T ];Rd), consider yt,x ∈ Rdd̂ given by (B.22).
Then, proceeding as in the proof of [13, Theorem 3.15] (see, in particular, equalities (3.16)),
we obtain

Y t,yt,x,α
r =

(
∫

[0,t]

φ1(s) d
−x(s) +

∫ r

t

φ1(s) dX
t,x,α
s , . . . ,

∫

[0,t]

φd̂(s) d
−x(s) +

∫ r

t

φd̂(s) dX
t,x,α
s

)

=

(
∫

[0,r]

φ1(s) d
−X t,x,α

s , . . . ,

∫

[0,r]

φd̂(s) d
−X t,x,α

s

)

, (B.27)

for all r ∈ [t, T ], P-a.s., where, for each i = 1, . . . , d,
∫

[0,r]
φi(s) d

−X t,x,α
s is intended P-a.s. as

a deterministic forward integral. From (B.27) we get

v̄

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

= sup
α∈A

E

[
∫ T

t

f̄(s, Y t,yt,x,α
s , αs)ds+ ḡ(Y t,yt,x,α

T )

]
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= sup
α∈A

E

[
∫ T

t

f(s,X t,x,α, αs)ds+ g(X t,x,α)

]

= v(t, x),

where v is the value function defined in (2.5).
Now, let vε : [0, T ]× C([0, T ];Rd) → R be defined as

vε(t, x) := v̄ε

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

, (B.28)

for every (t, x) ∈ [0, T ] × C([0, T ];Rd). Then, by direct calculations (proceeding as in the
proof of [15, Lemma D.1]), we deduce that vε ∈ C1,2

pol([0, T ] × C([0, T ];Rd)) and that the
following equalities hold:

∂H
t vε(t, x) = ∂tv̄ε

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

, (B.29)

∂V
xi
vε(t, x) =

〈

∂y v̄ε

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

,φi(t)

〉

, (B.30)

∂V
xxvε(t, x) = φ⊺(t) ∂2

yy v̄ε

(

t,

∫

[0,t]

φ1(s) d
−x(s), . . . ,

∫

[0,t]

φd̂(s) d
−x(s)

)

φ(t), (B.31)

for every i = 1, . . . , d, where φi(t) denotes the i-th column of the matrix φ(t).

Proof of item 2). Since v̄ε is a classical solution of equation (B.25), it follows from equalities
(B.29)-(B.30)-(B.31) that vε is a classical solution of equation (B.21).

Proof of item 5). From (B.26), we have

|vε(t, x)− v(t, x)| = |v̄ε(t, yt,x)− v̄(t, yt,x)| ≤ ε Ĉ eĈ(T−t),

for every (t, x) ∈ [0, T ]× C([0, T ];Rd). This shows the validity of item 5).

Proof of item 4). Following [40, Section 6 of Chapter 4], we now formulate a stochas-
tic optimal control problem with value function v̄ε. To simplify notation we still consider
the same probability space (Ω,F ,P), on which we suppose that another Brownian motion
W = (Wt)t≥0, d-dimensional and independent of B, is defined. For every t ∈ [0, T ], we

denote by F̂t = (F̂ t
s)s≥0 the P-completion of the filtration generated by (Bs∨t − Bt)s≥0 and

(Ws∨t−Wt)s≥0. We also denote by Ât the family of all F̂t-progressively measurable processes
α̂ : [0, T ]× Ω → A. Then, v̄ε admits the following stochastic control representation:

v̄ε(t, y) = sup
α̂∈Ât

E

[
∫ T

t

f̄(s, Y ε,t,y,α̂
s , α̂s) ds+ ḡ(Y ε,t,y,α̂

T )

]

,

with Y ε,t,y,α̂ = (Y ε,t,y,α̂
s )s∈[t,T ] solving the following system of controlled stochastic differential

equations:
{

dY ε,t,y,α̂
s = b̄φ(s, Y

ε,t,y,α̂
s , α̂s) ds+ σ̄φ(s, Y

ε,t,y,α̂
s , α̂s) dBs + εφ(s) dWs, s ∈ (t, T ],

Y ε,t,y,α̂
t = y,
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with φ as in (B.23) and b̄φ, σ̄φ as in (B.24), respectively. Now, given t ∈ [0, T ], x ∈
C([0, T ];Rd), α̂ ∈ Ât, ε ∈ (0, 1), consider the solution Xε,t,x,α̂ to the following system of
controlled stochastic differential equations:

{

dXε,t,x,α̂
s = b(s,Xε,t,x,α̂, α̂s) ds+ σ(s,Xε,t,x,α̂, α̂s) dBs + ε dWs, s ∈ (t, T ],

Xε,t,x,α̂
s = x(s), s ∈ [0, t].

From similar calculations as in (B.27), we deduce that (recall that yt,x is given by (B.22))

Y ε,t,yt,x,α̂
r =

(
∫

[0,r]

φ1(s) d
−Xε,t,x,α̂

s , . . . ,

∫

[0,r]

φd̂(s) d
−Xε,t,x,α̂

s

)

,

for all r ∈ [t, T ], P-a.s.. Then

v̄ε(t, y
t,x) = sup

α̂∈Ât

E

[
∫ T

t

f̄(s, Y ε,t,yt,x,α̂
s , α̂s)ds+ ḡ(Y ε,t,yt,x,α̂

T )

]

= sup
α̂∈Ât

E

[
∫ T

t

f(s,Xε,t,x,α̂, α̂s)ds+ g(Xε,t,x,α̂)

]

.

Recalling (B.28) and the definition of yt,x in (B.22), we get

vε(t, x) = sup
α̂∈Ât

E

[
∫ T

t

f(s,Xε,t,x,α̂, α̂s)ds+ g(Xε,t,x,α̂)

]

, (B.32)

for every (t, x) ∈ [0, T ] × C([0, T ];Rd). Proceeding along the same lines as for the proof of
(B.32), we obtain

v̂ε(t, x̂) = sup
α̂∈Ât

E

[
∫ T

t

f(s,Xε,t,x̂,α̂, α̂s)ds+ g(Xε,t,x̂,α̂)

]

,

for every (t, x̂) ∈ [0, T ] × D([0, T ];Rd). Then, from the Lipschitz property of f and g, we
derive the following Lipschitz property of v̂ε

|v̂ε(t, x̂)− v̂ε(t, x̂
′)| ≤ L̄′ ‖x̂− x̂′‖t,

for all t ∈ [0, T ], x̂, x̂′ ∈ D([0, T ];Rd), for some constant L̄′, depending only on T and K. As
a consequence, from the definition of vertical derivative of vε, we see that item 4) holds.

We can now state the following result, which plays a crucial role in the proof the comparison
theorem (Theorem 4.5), in order to show that u1 ≤ v.

Theorem B.7. Let Assumptions (A), (B), (C) hold. Consider the sequences {bn}n, {fn}n,
{gn}n, {vn}n in (B.18)-(B.19) (recall from Lemma B.3 that dn and φn,1, . . . , φn,dn are the
same for b, f , g). We also assume, without loss of generality, that in Assumption (C)-(i),
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d̄ = dn and that the functions ϕ1, . . . , ϕd̄ coincide with φn,1, . . . , φn,dn.
Then, for every n and any ε ∈ (0, 1), there exist vn,ε : [0, T ] × C([0, T ];Rd) → R and
v̄n,ε : [0, T ]× Rddn → R, with

vn,ε(t, x) = v̄n,ε

(

t,

∫

[0,t]

φn,1(s) d
−x(s), . . . ,

∫

[0,t]

φn,dn(s) d
−x(s)

)

,

for all (t, x) ∈ [0, T ]× C([0, T ];Rd), such that the following holds.

1) vn,ε ∈ C1,2
pol([0, T ]× C([0, T ];Rd)) and v̄n,ε ∈ C1,2([0, T ]× Rddn).

2) vn,ε is a classical solution of equation (B.21) with b, f, g, v̄ε, y
t,x replaced respectively by

bn, fn, gn, v̄n,ε, y
t,x
n , where yt,xn is given by (B.9).

3) There exists a constant C̄n ≥ 0, independent of ε, such that

− C̄n eC̄n(T−t)
(

1 + |y|
)3q ≤ ∂2

yiyj
v̄n,ε(t, y) ≤ 1

ε2
C̄n eC̄n(T−t)

(

1 + |y|
)3q

, (B.33)

for all (t, y) ∈ [0, T ]×Rdd̂ and every i, j = 1, . . . , ddn, with q as in item (iii) of Assumption
(C).

4) There exists a constant L̄ ≥ 0, depending only on T and K, such that

∣

∣∂V
x vn,ε(t, x)

∣

∣ ≤ L̄, (B.34)

for every (t, x) ∈ [0, T ]× C([0, T ];Rd).

5) There exists a constant c̄ ≥ 0, depending only on K and T , such that

|vn,ε(t, x)− vn,ε(t
′, x′)| ≤ c̄

(

|t− t′|1/2 + ‖x(· ∧ t)− x′(· ∧ t′)‖T
)

,

for all (t, x), (t′, x′) ∈ [0, T ]× C([0, T ];Rd).

6) For every n, vn,ε converges pointwise to vn in (B.19) as ε → 0+.

7) vn converges pointwise to v in (2.5) as n → +∞.

Proof. Items 1)-2)-3)-4)-6) follow directly from Lemma B.5 with b, f, g replaced respectively
by bn, fn, gn. Moreover, item 5) follows from (2.6). Finally, item 7) follows from Lemma
B.4.

We end this section with the next result, which plays a fundamental role in the proof of the
comparison theorem (Theorem 4.5), in order to show that v ≤ u2.
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Theorem B.8. Let Assumptions (A), (B), (C) hold. For every s0 ∈ [0, T ], consider the
sequences {bn}n, {fn}n, {vn(s0, ·)}n obtained applying Lemma B.3 to b, f , v(s0, ·) (recall
from Lemma B.3 that dn and φn,1, . . . , φn,dn are the same for b, f , vn(s0, ·)). We also as-
sume, without loss of generality, that in Assumption (C)-(i), d̄ = dn and that the functions
ϕ1, . . . , ϕd̄ coincide with φn,1, . . . , φn,dn.
For every (s0, a0) ∈ [0, T ]× A, let vs0,a0 : [0, s0]× C([0, T ];Rd) → R be given by

vs0,a0(t, x) = E

[
∫ s0

t

f
(

r,X t,x,a0, αr

)

dr + v
(

s0, X
t,x,a0

)

]

, ∀ (t, x) ∈ [0, s0]× C([0, T ];Rd),

where X t,x,a0 corresponds to the process X t,x,α with α ≡ a0. Similarly, for every n ∈ N, let
vs0,a0n : [0, s0]× C([0, T ];Rd) → R be given by

vs0,a0n (t, x) = E

[
∫ s0

t

fn
(

r,X t,x,a0 , αr

)

dr+ v̂n
(

s0, X
t,x,a0

)

]

, ∀ (t, x) ∈ [0, s0]×C([0, T ];Rd),

where the sequence {v̂n} is defined as in Lemma B.3 starting from the function v.
Then, for every n, there exists v̄s0,a0n : [0, s0]× Rddn → R, with

vs0,a0n (t, x) = v̄s0,a0n

(

t,

∫

[0,t]

φn,1(s) d
−x(s), . . . ,

∫

[0,t]

φn,dn(s) d
−x(s)

)

,

for all (t, x) ∈ [0, s0]× C([0, T ];Rd), such that the following holds.

1) vs0,a0n ∈ C1,2
pol([0, s0]× C([0, T ];Rd)) and v̄s0,a0n ∈ C1,2([0, s0]× Rddn).

2) vs0,a0n is a classical solution of the following equation:























∂H
t vs0,a0n (t, x) + fn(t, x, a0) +

〈

bn(t, x, a0), ∂
V
x v

s0,a0
n (t, x)

〉

+
1

2
tr
[

(σσ⊺)(t, x, a0)∂
V
xxv

s0,a0
n (t, x)

]

= 0, (t, x) ∈ [0, s0)× C([0, T ];Rd),

vs0,a0n (s0, x) = v̂n(s0, x), x ∈ C([0, T ];Rd),

(B.35)

where yt,xn is given by (B.9).

3) There exists a constant L̂ ≥ 0, depending only on T and K, such that

∣

∣∂V
x v

s0,a0
n (t, x)

∣

∣ ≤ L̂,

for every (t, x) ∈ [0, s0]× C([0, T ];Rd).

4) There exists a constant ĉ ≥ 0, depending only on K and T , such that

|vs0,a0n (t, x)− vs0,a0n (t′, x′)| ≤ ĉ
(

|t− t′|1/2 + ‖x(· ∧ t)− x′(· ∧ t′)‖T
)

,

for all (t, x), (t′, x′) ∈ [0, T ]× C([0, T ];Rd).
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5) vs0,a0n converges pointwise to vs0,a0 as n → +∞.

Proof. Items 1)-2)-3) follow from the same arguments as in [13, Theorem 3.5], which indeed
goes along the same lines as in the proof of items 1)-2)-4) of Lemma B.5, relying on regularity
results for linear (rather than fully nonlinear as in Lemma B.5) parabolic equations as in
particular [35, Theorem 6.1, Chapter 5]. Moreover, item 5) follows from (2.6). Finally, item
4) follows from Lemma B.4 with gn, T, A replaced respectively by v̂n(s0, ·), s0, {a0}.
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