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Abstract

This paper is concerned with the time-dependent Maxwell’s equations for a plane interface between
a negative material described by the Drude model and the vacuum, which fill, respectively, two
complementary half-spaces. In a first paper, we have constructed a generalized Fourier transform
which diagonalizes the Hamiltonian that represents the propagation of transverse electric waves.
In this second paper, we use this transform to prove the limiting absorption and limiting amplitude
principles, which concern, respectively, the behavior of the resolvent near the continuous spectrum and
the long time response of the medium to a time-harmonic source of prescribed frequency. This paper
also underlines the existence of an interface resonance which occurs when there exists a particular
frequency characterized by a ratio of permittivities and permeabilities equal to −1 across the interface.
At this frequency, the response of the system to a harmonic forcing term blows up linearly in time.
Such a resonance is unusual for wave problem in unbounded domains and corresponds to a non-zero
embedded eigenvalue of infinite multiplicity of the underlying operator. This is the time counterpart
of the ill-posdness of the corresponding harmonic problem.

Keywords: Negative Index Materials, Drude model, Dispersive Maxwell’s equations, Spectral the-
ory, Limiting Amplitude principle, Limiting absorption principle, Interface resonance.

2020 AMS subject classification: 35P10, 35Q60, 47A70, 78A25.

1 Introduction

This paper is second of a series of two articles devoted to the mathematical analysis of the transmission
of electromagnetic waves through a plane interface separating a standard material (here the vacuum)
and a metamaterial. These two papers are an improved version of the preliminary study presented in
the PhD thesis [6]. Metamaterials are manufactured materials whose effective behaviour is dispersive
(in other words frequency dependent). In particular, the effective permittivity and permeability can be
both negative in a certain range of frequencies [7, 8, 17, 36]. As a consequence such materials support
so-called back propagating waves whose phase and group velocities have opposite directions [44]. This
is the reason of apparition of new phenomena at the interface with a dielectric medium such as nega-
tive refraction or plasmonic surface waves [25]. Therefore, these materials have raised a lot interest in
the physical literature during the two last decades due to applications in electromagnetism [30, 35], in

1POEMS (Propagation d’Ondes: Etude Mathématique et Simulation) is a mixed research team (UMR 7231) between
CNRS (Centre National de la Recherche Scientifique), ENSTA Paris (Ecole Nationale Supérieure de Techniques Avancées)
and INRIA (Institut National de Recherche en Informatique et en Automatique).
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acoustic [10, 24] and also for seismic waves [4]. Accordingly the study of the corresponding models raised
new mathematical questions for transmission problems, to begin with the long time behaviour of the
response of such medium to a time-harmonic source of prescribed frequency. More precisely, after a tran-
sient regime, does the solution of the time-dependent equation “converge” for large times to a stationary
regime? In scattering theory, this property is referred to as the limiting amplitude principle. It is closely
related to another property called the limiting absorption principle which defines the stationary regime
via the limit of the resolvent of the propagative operator at the frequency of excitation. The question
of the validity of both limiting amplitude and limiting absorption principles is precisely the objective of
this paper for the particular case where the metamaterial is a Drude material, which can be seen as the
simplest metamaterial.

Limiting absorption and limiting amplitude principles have a long history in scattering theory and
more generally in mathematical physics. In the context of wave phenomena, these principles were first
proved to our knowledge by C. Morawetz [27] for sound soft obstacles in a homogeneous medium via
energy techniques. Then D. Eidus [14, 15] constructed an abstract proof which involved the spectral
decomposition of the propagative operator and applied it to a class of acoustic media that are locally
inhomogeneous. Eidus’ approach was then developed by C. Wilcox [43], Y. Dermanjian, and J-C. Guillot
[11, 12] and R. Weder [39] for acoustic and electromagnetic stratified media. Finally, it was extended
to other structures such as waveguides [28], periodic media [31] . . . and to other waves equations: elastic
waves [13, 33], water waves [37, 19], . . . . The method we use is inspired from Eidus’ spectral approach
and its extension to stratified media. It is applied for the first time in the context of dispersive Maxwell’s
equations and metamaterials. Compared to previous studies, the difficulty and novelty of the analysis
relies in the fact that for the Drude material, the permittivity and permittivity depend on the frequency
and become negative for low frequencies. This complicates significantly the establishment of both prin-
ciples. Finally, we want to mention that other techniques such as Mourre’s commutators [22, 40] can
be used to prove the limiting absorption and limiting amplitude principles. These techniques have the
advantage to work on non separable geometries but they are based on a more abstract limit process.
Thus, unlike the spectral decomposition approach, they don’t provide an explicit modal decomposition
of the solution and its limiting stationary regime. Therefore, they are not as precise for applications.

In the first paper [9], we begin by writing the governing equations as a conservative Schödinger equa-
tion. We point out that such a reformulation of the time-dependent Maxwell’s equation which takes
a very explicit expression in [9] for the Drude material, can be applied in the more general setting of
linear passive electromagnetic media (including dissipative ones), see [8, 16, 17, 36]. Then, we perform
the complete spectral analysis of the corresponding Hamiltonian. In particular, we provide the diagonal-
ization of this operator through the construction of an appropriate generalized Fourier transform. This
furnishes the material needed for addressing the question of the limiting amplitude principle which relies
on the existence of a limiting absorption principle. As we shall see, our analysis emphasizes the role
of a so-called resonant frequency corresponding to the case where the ratios between the permittivities
and permeabilities across the interface are simultaneously equal to −1. At this particular frequency, the
limiting principle fails and the solution grows linearly in time. This result in the time-domain is the coun-
terpart of the results concerning the ill-posedness of the transmission problem in the frequency domain
[1, 2, 5, 29]. This interface resonance phenomenon has been enlighten in the physical literature in [18].
We prove here that it is based on the existence of a non-zero embedded eigenvalue of infinite multiplicity
that does not exist in a stratified media composed of non-dispersive dielectrics [39] media. It is is due to
the presence of a negative dispersive material: the Drude material. Let us mention than other resonance
phenomena which are not linked to eigenvalues are observed in unbounded domains such as waveguides
(see e. g. [38, 41, 42]) excited at a cut-off frequencies. In this case, the growth rate is non-linear with
the time and depends on the geometry shape: C log t for planar waveguides and C t1/2 for cylindrical ones.

The outline of the paper is as follows. Section 2 is devoted to a recap of [9] and the statement of
the main results of the present paper. In §2.1, we recall the formulation of the evolution problem as a
generalized Schrödinger equation. We then present in §2.2 the main theorems of this paper: the limiting
absorption principle (Theorem 2) and the limiting amplitude principle (Theorem 4). Their proofs are
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based on the diagonalization of the Hamiltonian involved in the Schrödinger equation, using appropriate
generalized eigenfunctions, which is recalled in §2.3.

In §3, we introduce the fundamental notion of spectral density of the Hamiltonian, as a function of
the real (spectral) variable with values in the set of bounded linear operators between two appropriate
weighted function spaces on R2. We give an explicit expression of this spectral density with the help of
the generalized eigenfunctions and establish the technical results which are the basic ingredients for the
proofs of our main theorems: bounds of the spectral density and corresponding (local) Hölder continuity
estimates, that themselves rely on similar properties about generalized eigenfunctions. The proofs of the
two main theorems are the subject of section 4. Finally, section 5 is devoted to a very specific situation
excluded in Theorems 2 and 4 and which necessitates technical adjustments: this corresponds to the case
where the frequency of the source coincides with the so-called plasmonic frequency.

2 Mathematical model and main results

2.1 Mathematical model

We recall here the mathematical formulation of the problem studied in [9]. In this previous paper, we
have considered the Transverse Electric (TE) transmission problem between a Drude material and the
vacuum separated by a planar interface, which reduces to a two-dimensional model where the vacuum
and the Drude material fill respectively the half-planes

R2
− := {x = (x, y) ∈ R2 | x < 0} and R2

+ := {x = (x, y) ∈ R2 | x > 0}.

The physical unknowns are the transverse component of the electric field E(x, t), the magnetic field

H(x, t) = (Hx(x, t), Hy(x, t)
)>

, the induced transverse electric current in the Drude material J(x, t)

and finally the induced magnetic current in the Drude material K(x, t) = (Kx(x, t),Ky(x, t)
)>

. Our
problem, which couples these unknowns, can be formulated in a concise form as





ε0 ∂tE − curlH + Π J = −Js in R2,

µ0 ∂tH + curlE + ΠK = 0 in R2,

∂tJ = ε0Ω2
e RE in R2

+,

∂tK = µ0Ω2
m RH in R2

+.

(1)

The first two equations derive from Maxwell’s equations, whereas the last two are the constitutive laws
of the Drude material. In these equations, ε0 and µ0 stand for the permittivity and the permeability
of the vacuum, whereas Ωe and Ωm are positive constants which characterize the Drude material. The
operators curl and curl are respectively defined by

curlu := (∂yu,−∂xu)> and curlu := ∂xuy − ∂yux for u = (ux, uy)>. (2)

The operator Π (respectively, Π) denotes the extension by 0 of a scalar function (respectively, a 2D vector
field) defined on R2

+ to the whole plane R2, whereas R (respectively, R) stands for the restriction to R2
+ of

a scalar function (respectively, a 2D vector field) defined on R2. Finally, in the right-hand side of the first
equation, Js(x, t) represents the excitation (current density) which generates an electromagnetic wave.
We emphasize that all quantities involved in (1) will be assumed square-integrable (the equations being
understood in the sense of distributions). Thus (1) contains implicitly the continuity of the tangential
fields across the interface x = 0, that is,

[E]x=0 = 0 and [Hy]x=0 = 0,

where [f ]x=0 denotes the gap of f across the line x = 0.
When looking for time-harmonic solutions to (1) at a given (circular) frequency λ ∈ R, i.e.,

(E(x, t),H(x, t), J(x, t),K(x, t)) = (Eλ(x),Hλ(x), Jλ(x),Kλ(x)) e−iλt
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for Js(x, t) = Js,λ(x) e−iλt, one can eliminate Jλ and Kλ and obtain the following time-harmonic Maxwell
equations:

iλ ελ(x)Eλ + curlHλ = Js,λ and − iλµλ(x)Hλ + curlEλ = 0 in R2,

where

ελ(x) :=





ε−λ := ε0 if x < 0,

ε+
λ := ε0

(
1− Ω2

e

λ2

)
if x > 0,

and µλ(x) :=





µ−λ := µ0 if x < 0,

µ+
λ := µ0

(
1− Ω2

m

λ2

)
if x > 0.

(3)

The rational functions λ 7→ ε+
λ , µ

+
λ characterize the frequency dispersion of the Drude material. Both

take negative values for low frequencies (respectively, when |λ| < Ωe and |λ| < Ωm). Note that

ε+
λ

ε0
= −1 if |λ| = Ωe√

2
and

µ+
λ

µ0
= −1 if |λ| = Ωm√

2
.

We see in particular that both ratios can be simultaneously equal to −1 at the same frequency if and
only if Ωe = Ωm, which will be referred to as the critical case in the following.

Our study of the Maxwell’s equations (1) is based on their reformulation as a conservative Schrödinger
equation (see [9])

dU

d t
+ iAU = G, (4)

in the Hilbert space
H := L2(R2)× L2(R2)2 × L2(R2

+)× L2(R2
+)2 (5)

whose inner product is defined for all U := (E,H, J,K)> and U ′ := (E′,H ′, J ′,K ′)> ∈H by

(U ,U ′)H :=

∫

R2

(
ε0E E′ + µ0 H ·H ′

)
dx +

∫

R2
+

(
ε−1

0 Ω−2
e J J ′ + µ−1

0 Ω−2
m K ·K ′

)
dx.

The Hamiltonian A is the unbounded selfadjoint operator on H defined by

D(A) := H1(R2)×Hcurl(R2)× L2(R2
+)× L2(R2

+)2 ⊂H,

A := i




0 ε−1
0 curl −ε−1

0 Π 0
−µ−1

0 curl 0 0 −µ−1
0 Π

ε0Ω2
e R 0 0 0

0 µ0Ω2
m R 0 0


 ,

where Hcurl(R2) := {u ∈ L2(R2)2 | curlu ∈ L2(R2)}. Finally the source term G in (4) is given by
G(t) := (−ε−1

0 Js(·, t) , 0 , 0, 0)> ∈H.
Considering for simplicity zero initial conditions (i.e., U(0) = 0), we know from the Hille–Yosida theo-

rem [3] that the Schrödinger equation (4) has a unique solution U ∈ C1
(
[0,+∞),H

)
∩C0

(
[0,+∞),D(A)

)

which is given by Duhamel’s formula

U(t) =

∫ t

0

e−iA (t−s) G(t) ds, ∀t ≥ 0. (6)

Let us finally notice that Maxwell’s equation (1) contain implicitly some conditions about the diver-
gence of the magnetic field H and of the induced magnetic current K. Indeed taking the divergence of
the second equation of (1) restricted to R2

− shows that µ0 ∂t divH = 0 in R2
−. Hence, as our system

starts from rest, we have divH = 0 at t = 0 and the latter equation shows that divH = 0 in R2
− for all

t > 0. Similarly, taking the divergence of the second and fourth equations of (1) restricted to R2
+ yields

{
µ0 ∂t divH + divK = 0 in R2

+,

∂t divK = µ0Ω2
m divH in R2

+.
(7)
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Then by differentiating the second equation with respect to t, we can eliminate divH and obtain

∂2
t divK + Ω2

m divK = 0 in R2
+.

Hence, as divK = 0 and ∂t divK = 0 at t = 0, this equation shows that divK = 0 for all t > 0 and we
deduce from (7) that divH = 0 in R2

+ for all t > 0. This explains why in the following, the solution to
(1) will be searched for in the subspace of H defined by

Hdiv0 := {(E,H,J ,K)⊥ ∈H | divH = 0 in R2
± and divK = 0 in R2

+}. (8)

Note that the conditions divH = 0 in R2
± does not mean that the divergence of H vanishes in the whole

plane R2: there may be a gap of the normal component of H across the line x = 0.

2.2 Statement of the main results

In this paper, we are interested in the long-time behavior of U(t) given in (6) when the excitation starts
at t = 0 and becomes time-harmonic at a given (circular) frequency ω > 0, that is,

G(t) = Gω H(t) e−iω t for some given Gω ∈H,

where H denotes the Heaviside function (i.e., H(t) = 0 if t < 0 and H(t) = 1 if t ≥ 0). In this case,
formula (6) can be rewritten equivalently as

U(t) = φω,t(A)Gω

where λ 7→ φω,t(λ) is, for all t ≥ 0, the bounded continuous function defined by

φω,t(λ) := e−iλ t

∫ t

0

ei(λ−ω) s ds =





i
e−iλ t − e−iω t

λ− ω
if λ 6= ω,

t e−iω t if λ = ω.

(9)

We intuitively expect that after some transient regime due to the fact that U(t) starts from rest at t = 0,
the solution U(t) behaves like a time-harmonic wave U+

ω = (E+
ω ,H

+
ω , J

+
ω ,K

+
ω )⊥, that is,

U(t) ∼ −iU+
ω (·) e−iω t as t→ +∞. (10)

Such a property is usually called the limiting amplitude principle in mathematical physics. It is closely
related to another property, called the limiting absorption principle, which provides the time-harmonic
behavior U+

ω by the formula

U+
ω = lim

η↘0

(
A− (ω + iη) I

)−1
Gω.

Our aim is to define a mathematical framework for a rigorous statement of these principles and to make
precise the various situations where these principles hold true or not. Our main results are summarized
below.

2.2.1 The limiting absorption principle

We first have to recall some results about the spectrum of A (which is necessarily real since A is a
selfadjoint) and introduce some notations, in particular the following particular frequencies Ωp (“p” for
“plasmonic”) and Ωc (“c” for “cross point”, see §2.3) defined by

Ωp :=
Ωm√

2
and Ωc :=

Ωe Ωm√
Ω2

e + Ω2
m

. (11)

Note that in the critical case, that is, when Ωe = Ωm, we have Ωp = Ωc. It is also useful to introduce the
following set of “exceptional frequencies” (whose role will be made clear later):

σexc :=

{
{0,±Ωp,±Ωm} if Ωe 6= Ωm,

{0,±Ωm} if Ωe = Ωm.
(12)

The proposition below gathers various results given in [9, §4].
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Proposition 1. The spectrum of A is the whole real line: σ(A) = R. The point spectrum σpt(A) is
composed of eigenvalues of infinite multiplicity:

σpt(A) =

{
{0,±Ωm} if Ωe 6= Ωm,

{0,±Ωp,±Ωm} if Ωe = Ωm.
(13)

The eigenspaces Ker(A) and Ker(A± Ωm) are respectively given by:

Ker(A) = {(0, Π̃∇φ, 0, 0)> | φ ∈W 1
0 (R2

−)},

Ker(A∓ Ωm) =
{

(0, Π∇φ, 0,±iµ0Ωm∇φ)
> | φ ∈W 1

0 (R2
+)
}
,

where Π̃ is the extension by 0 of a 2D vector field defined on R2
− to the whole plane R2 and W 1

0 (R2
±) stands

for the Beppo-Levi space W 1
0 (R2

±) := {φ ∈ L2
loc(R2

±) | ∇φ ∈ L2(R2
±)2 and φ|x=0 = 0}. Furthermore, the

orthogonal complement of the direct sum of the eigenspaces associated to 0 and ±Ωm is the space Hdiv0

defined in (8):

Hdiv0 =
(

KerA⊕Ker(A + Ωm)⊕Ker(A− Ωm)
)⊥
.

In the following, we denote by Pdiv0 the orthogonal projection on the subspace Hdiv0 of H, by Ppt the
orthogonal projection on the point subspace of A, that is, the direct sum of the eigenspaces associated
to the eigenvalues of A, and by P±Ωp

is the orthogonal projection on the eigenspace associated to ±Ωp.
Finally we introduce

Pac := I− Ppt =

{
Pdiv0 if Ωe 6= Ωm,

Pdiv0 − P−Ωp
− P+Ωp

if Ωe = Ωm,
(14)

where the last equality follows from Proposition 1. We will see in §3 that Pac is actually the orthogonal
projection on the absolutely continuous subspace associated to A, which explains the index “ac”.

The limiting absorption principle explores the behavior of the resolvent of A, i.e.,

R(ζ) := (A− ζ I)−1 for ζ ∈ C \ R

near the spectrum of A. More precisely, we investigate the existence of the one-sided limits of the absolutely
continuous part of the resolvent near some ω ∈ R, that is,

R±ac(ω) := lim
η↘0

Rac(ω ± iη) where Rac(ζ) := R(ζ)Pac = PacR(ζ) for ζ ∈ C \ R. (15)

The resolvent R(ζ) is an analytic function of ζ in C \ R with values in B(H), the Banach algebra of
bounded linear operators in H. Of course, the above one-sided limits, if they exist, are not defined in
B(H) (otherwise, ω would belong to the resolvent set of A), but for a weaker topology. To this aim, we
introduce a weighted version of our Hilbert space H (see (5)) defined for any s ∈ R by

Hs := L2
s(R2)× L2

s(R2)2 × L2
s(R2

+)× L2
s(R2

+)2,

where L2
s(O) := {u ∈ L2

loc(O) | ηs u ∈ L2(O)} for O = R2 or O = R2
+, and the weight ηs is given by

ηs(x, y) := (1 + x2)s/2 (1 + y2)s/2.

The space L2
s(O) is naturally endowed with the norm

‖u‖2L2
s(O) := ‖ηs u‖2L2(O) =

∫

O
|ηs u|2 dx.

Similarly, the Hilbert space Hs is equipped with the norm

‖U‖Hs := ‖ηsU‖H.
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It is readily seen that for positive s, the spaces Hs and H−s are dual to each other if H is identified
with its own dual space, which yields the continuous embeddings Hs ⊂ H ⊂ H−s. The notation 〈· , ·〉s
represents the duality product between them. This duality product extends the inner product of H in
the sense that

〈U ,U ′〉s = (U ,U ′)H if U ∈Hs and U ′ ∈H. (16)

As a topology for the limits (15), we choose the operator norm ‖ · ‖Hs,H−s of B(Hs,H−s), the Banach
algebra of bounded linear operators from Hs to H−s. The limiting amplitude principle stated in the
next subsection requires the Hölder regularity of the limits. The following theorem, which is proved in
§4.1, aims at providing an optimal result in this direction.

Theorem 2 (Limiting absorption principle). Let s > 1/2. For all ω ∈ R\σexc, the absolutely continuous
part of the resolvent Rac(ζ) has one-sided limits R±ac(ω) := limη↘0Rac(ω ± iη) for the operator norm of
B(Hs,H−s). Moreover, by denoting

R±ac(ζ) := Rac(ζ) if ζ ∈ C± := {ζ ∈ C | ± Im ζ > 0}, (17)

the function ζ 7→ R±ac(ζ) ∈ B(Hs,H−s) is locally Hölder continuous in C± \σexc. More precisely, for any
compact set K ⊂ C± \ σexc, there exists a set ΓK ⊂ (0, 1) of Hölder exponents such that for any γ ∈ ΓK ,
there exists CK,γ > 0 such that

∀(ζ, ζ ′) ∈ K ×K,
∥∥∥R±ac(ζ ′)−R±ac(ζ)

∥∥∥
Hs,H−s

≤ CK,γ |ζ ′ − ζ|γ .

The set ΓK is defined as follows:

ΓK :=

{ (
0,min(s− 1/2, 1)

)
if K ∩ {±Ωe,±Ωc} = ∅,

(
0,min(s− 1/2, 1/2)

)
if K ∩ {±Ωe,±Ωc} 6= ∅.

(18)

This abstract theorem provides us the existence of the one-sided limits R±ac(ω), but not an explicit
expression of these operators. Section 4.1 will show their respective spectral representations (see Propo-
sition 27). To understand the physical significance of these limits, first note that U ζ = Rac(ζ)G means
equivalently that (A− ζ I)U ζ = PacG. Hence one can expect that the limits U±ω = R±ac(ω)G satisfy the
time-harmonic equation (A− ω I)U±ω = PacG. This can be verified rigorously provided A is interpreted
in a suitable distributional sense (since U±ω does not belong to H in general). This means that U±ω both
represent time-harmonic solutions of our Maxwell equations (1). Their difference can be understood pre-
cisely by the limiting amplitude principle will actually tells us that U+

ω is outgoing, in the sense of (10).
It could be seen similarly that U−ω is incoming, by considering the behavior as t → −∞ of anti-causal
solutions.

Note that Theorem 2 excludes the values of σexc defined in (12). In the case where Ωe 6= Ωm, it may
seem surprising to exclude the values ω = ±Ωp which are not in the point spectrum of A. As a matter of
fact, these values require a special study, which is the subject of §5.

Remark 3. The above formulation of Theorem 2 is not entirely optimal in the sense that our definition
of ΓK excludes a particular case which could be included. Indeed, when K contains +Ωe or −Ωe but
not ±Ωc, the value γ = 1/2 is allowed, provided that s > 1 (note that this situation cannot occur in the
critical case Ωe = Ωm since in this case, the values ±Ωe = ±Ωm ∈ σexc cannot belong to K). The reason
why we excluded this particular case is that its proof is slighly more involved than for all the other cases.
As the proof of the general situation is already very technical (see §3), we decided to spare the reader and
postpone the proof of this particular case to Appendix A.2.

2.2.2 The limiting amplitude principle

We are now able to state our main result concerning the asymptotic behavior of the solution U(t) to our
Schrödinger equation (4) with a time-harmonic excitation G(t) = Gω H(t) e−iω t starting at t = 0 (recall
that H(t) denotes the Heaviside function). Instead of our particular excitation introduced in §2.1, we
consider the more general case where Gω ∈Hdiv0 ∩Hs. For simplicity, we assume that U(0) = 0 which
corresponds to zero initial conditions on the fields (E,H, J,K).
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Theorem 4. Let s > 1/2 and ω ∈ R\σexc (see (12)). On the one hand, for any Gω ∈Hs which belongs
to the range of Pac, the limiting amplitude principle holds true in the sense that the solution U(t) to (4)
with zero initial conditions has the following asymptotic behavior for large time:

lim
t→+∞

∥∥∥U(t) + iU+
ω e−iωt

∥∥∥
H−s

= 0, (19)

where U+
ω := R+

ac(ω)Gω ∈H−s is given by the limiting absorption principle.
On the other hand, in the critical case Ωe = Ωm, for any Gω ∈Hs ∩Hdiv0, the asymptotic behavior

for large time of U(t) is given by

lim
t→+∞

∥∥∥U(t)−
(
− iU+

ω e−iωt +
∑

±
P±Ωp

Gω φω,t(±Ωp)
)∥∥∥
H−s

= 0, (20)

where P±Ωp
is the orthogonal projection on the infinite dimensional eigenspace associated to ±Ωp, φω,t

is defined in (9) and U+
ω := R+

ac(ω)Gω as above.

This theorem, which is proved in §4.2, tells us that in the non-critical case, that is Ωe 6= Ωm, the
limiting amplitude principle holds true for any Gω ∈ Hdiv0 ∩Hs (since Hdiv0 is exactly the range of
Pac in this case, see (14)). The assumption Gω ∈ Hdiv0 forces the solution to remain orthogonal to
the eigenspaces associated to the point spectrum {0,±Ωm}, which is a natural physical assumption (see
§2.1). The frequencies which are excluded here are 0, ±Ωm and ±Ωp. Let us mention that the limiting
amplitude principle holds also for ω = ±Ωp. This case, which is not covered by Theorem 4, requires a
special treatment that is detailed in §5.

On the other hand, in the critical case Ωe = Ωm, the validity of the limiting amplitude principle
depends on the spectral content of the excitation Gω ∈Hdiv0 ∩Hs which can be decomposed as

Gω = PacGω + P−Ωp
Gω + P+Ωp

Gω.

If P−Ωp
Gω = P+Ωp

Gω = 0 (which means that Gω belongs to the range of Pac), the principle holds true
for any ω ∈ R \ {0,±Ωm}, which includes in particular the frequencies ω = ±Ωp. But if P−ΩpGω 6= 0 or
P+ΩpGω 6= 0, the behavior of U(t) is no longer time-harmonic at the frequency ω. Two situations may
occur. Firstly, if ω ∈ R \ {0,±Ωp,±Ωm}, the solution U(t) remains bounded in time but oscillates at the
two frequencies ω and Ωp (see the expression (9) of φω,t(±Ωp) for ω 6= ±Ωp): it is a beat phenomenon.
Secondly, if ω = ±Ωp, there is no stationary regime at all, since U blows up linearly in time (since
by (9): φω,t(±Ωp) = t e∓iΩpt for ω = ±Ωp). This conclusion confirms the strong ill-posedness of the
time-harmonic problem described in [1, 2, 29]. This linear growth in time corresponds to a resonance
phenomena. Such a phenomenon is classical for vibration problems in bounded domains but quite unusual
for unbounded domains. In our case, the fields P±Ωp

Gω are trapped waves which belongs to H and are
defined as (continuous) superpositions of functions which are exponentially decaying with the distance
to the interface (i.e., plasmonic waves): they give birth to an interface resonance phenomenon. The
linear behavior in time is characteristic to a resonance due to an eigenvalue of the operator. Here, the
eigenvalues ±Ωp are of infinite multiplicities and embedded in the continuous spectrum of A. This is a
very interesting and new resonance phenomenon for transmission problem in a electromagnetic stratified
media which does not occur with standard dielectric materials (see [39]) since such non-zero eigenvalue
of the Maxwell operator does not exist.

2.3 Recap on the diagonalization of the Hamiltonian A
The proofs of both limiting absorption and limiting amplitude principles rely on the spectral analysis
of the Schrödinger equation (4) performed in [9]. The final result of this previous paper is the explicit
construction of a generalized Fourier transform F which diagonalizes the Hamiltonian operator A, in
the sense that F is a unitary transformation from the physical space H (defined in (5)) into a second
Hilbert space Ĥ, named the spectral space, in which the Hamiltonian A takes a diagonal form. The
introduction of this transformation yields in particular modal representations of both the resolvent of A
and the solution U of the evolution equation (4). Thus, it appears as a key tool for proving Theorems
2 and 4. Therefore, the goal of this subsection is to recall all the results and notations from [9] that are
necessary to use this spectral tool.
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2.3.1 Spectral zones and generalized eigenfunctions

The generalized Fourier transform F is based on the knowledge of a family of time-harmonic solutions of
our Schrödinger equation, which are referred to as generalized eigenfunctions or generalized eigenmodes.
These modes are non-zero bounded solutions for real λ’s of the equation AW = λW, which has to be
understood in distributional sense since these solutions do not belong to H. Thanks to the stratified
geometry, they are expressed here as separable functions of the variables x and y. They appear as
superpositions of planes waves on each side of the interface x = 0.

In the family defined below, the generalized eigenfunctions functions are denoted by Wk,λ,j . They are
indexed by three variables k, λ and j. The two first ones are real parameters: k represents a wavenumber
in the y-direction, that is, the direction of the interface, whereas λ is a spectral parameter. The last one
j is an integer that indicates a multiplicity: its possible values depend on the pair (k, λ). To make this
precise, we first have to introduce various subsets of the (k, λ)-plane, called here spectral zones, which
correspond to various propagation regimes. In each of them, the set of possible values for j will be
constant.

The definition of the spectral zones is linked to the sign of the piecewise-constant function

Θk,λ(x) := k2 − ελ(x)µλ(x)λ2. (21)

From (3), we have more explicitly

Θk,λ(x) =





Θ−k,λ := k2 − ε0 µ0 λ
2 if x < 0,

Θ+
k,λ := −

ε0µ0 λ
4 −

(
k2 + ε0µ0(Ω2

e + Ω2
m)
)
λ2 + ε0µ0 Ω2

eΩ2
m

λ2
if x > 0.

Physically |Θ±k,λ| represents the square of the wavenumber in the x-direction inside R2
±, for a plane wave of

frequency λ whose wavenumber in the y-direction is k. Notice first that Θ±k,λ = Θ±|k|,|λ| for all (k, λ) ∈ R2,

so that we can restrict ourselves to the quadrant k ≥ 0 and λ ≥ 0. In this quadrant, there are three curves
through which the sign of Θ−k,λ or Θ+

k,λ changes. These curves, which are referred to as spectral cuts, have
been defined in [9] as the graphs of three functions λ0(k), λd(k) and λi(k). In the present paper, we use
instead their respective inverses k0(λ), kd(λ) and ki(λ) defined as follows:

Θ−k,λ = 0 ⇐⇒ |k| = k0(λ) :=
√
ε0 µ0 |λ|,

Θ+
k,λ = 0 ⇐⇒ |k| =





kd(λ) :=
√
ε+
λ µ

+
λ |λ| if |λ| ≥ max(Ωe,Ωm)

or

ki(λ) :=
√
ε+
λ µ

+
λ |λ| if 0 < |λ| ≤ min(Ωe,Ωm).

(22)

Note that kd(λ) and ki(λ) are given by the same formula but define two different curves since they differ by
their domain of definition. The spectral cuts are represented in Figure 1 in the cases Ωe < Ωm, Ωe = Ωm

and Ωe > Ωm. The grey area represents the part of the quadrant where Θ−k,λ < 0, which corresponds to the
propagative regime along the x-direction in the vacuum, whereas the white remaining sector corresponds
to the evanescent regime (that is, non propagative). Similarly, the hatched areas represent the parts of
the quadrant where Θ+

k,λ < 0, that is, the propagative regime in the Drude material (again along the
x-direction). In the area with vertical hatches, direct propagation occurs, which means that the group
and phase velocities of a plane wave have the same direction, as in vacuum. On the other hand, in the
area with horizontal hatches, the propagation is called inverse, since these velocities point in opposite
directions (which is related to the fact that both ε+

λ and µ+
λ are negative in this area, see [23] or [9, §3.3.2]

for more complete explanations). This justifies the use of the indices d, i and e, meaning respectively
direct, inverse and evanescent, to name the various spectral zones. Each of them is actually indexed by
a pair of indices: the first one indicates the behavior in the vacuum (d or e) and the second one, in the
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Drude material (d, i or e). We thus define

Λdd :=
{

(k, λ) ∈ R2 | |λ| > max(Ωe,Ωm) and |k| < kd(λ)
}
,

Λdi :=
{

(k, λ) ∈ R2 | 0 < |λ| < min(Ωe,Ωm) and |k| < min
(
k0(λ), ki(λ)

) }
,

Λei :=
{

(k, λ) ∈ R2 | 0 < |λ| < min(Ωe,Ωm), k0(λ) < |k| < ki(λ)
}
,

Λde :=
{

(k, λ) ∈ R2 | |λ| 6= Ωm and |k| < k0(λ)
}
\ Λdd ∪ Λdi.

In the following, the above sets will be referred as surfacic spectral zones. The parts of these spectral
zones located in the quadrant R+ × R+ are represented in Figure 1.

The expression of the generalized eigenfunctions given below involves an appropriate square root θ±k,λ
of Θ±k,λ that has the property to be either purely imaginary or positive real (the choice of the square root
is justified by a limiting absorption process [9, §3.3.1]). We thus define

θk,λ(x) := θ±k,λ if ± x > 0 where (23)

θ−k,λ :=

{
−i sgn(λ) |Θ−k,λ|1/2 if (k, λ) ∈ Λdi ∪ Λde ∪ Λdd,

|Θ−k,λ|1/2 otherwise,
(24)

θ+
k,λ :=





+i sgn(λ) |Θ+
k,λ|1/2 if (k, λ) ∈ Λei ∪ Λdi,

−i sgn(λ) |Θ+
k,λ|1/2 if (k, λ) ∈ Λdd,

|Θ+
k,λ|1/2 otherwise.

(25)

We have to introduce a last spectral zone Λee, which is associated to plasmonic waves, i.e., guided
modes that are localized and propagates alongside the interface between both media [25]. Unlike the
four other spectral zones which are surface areas, Λee is composed of one-dimensional curves which
originate at the intersection points of the spectral cuts, called here the cross points. These are the
points where Θ−k,λ = Θ+

k,λ = 0, that is, the four points (k, λ) such that |k| = kc and |λ| = Ωc, where
kc = k0(Ωc) = ki(Ωc), which yields the definition (11) of Ωc, that is,

Ωc :=
Ωe Ωm√
Ω2

e + Ω2
m

and kc =
√
ε0µ0 Ωc.

The spectral zone Λee is composed of the solutions (k, λ) of the following dispersion equation:

Wk,λ = 0 where Wk,λ :=
θ−k,λ
µ−λ

+
θ+
k,λ

µ+
λ

= 0. (26)

We know from [9, Lemma 13] that for a given k, this equation admits no solution if |k| < kc, and two
opposite solutions ±λe(k) if |k| ≥ kc, where

λe(k) :=





Ωm

√
1

2
+
k2

K
− sgn(K)

√
1

4
+

k4

K2
if Ωm 6= Ωe,

Ωm/
√

2 if Ωm = Ωe,

(27)

with K := ε0µ0 (Ω2
m − Ω2

e). The function k 7→ λe(k) is strictly decreasing on [kc,+∞) if Ωm < Ωe and
strictly increasing if Ωm > Ωe. Moreover λe(k) = Ωm/

√
2 + O(k−2) as |k| → +∞. In the case where

Ωm 6= Ωe, we denote by ke the inverse of λe, originally defined for positive λ and k and extended to
negative λ by setting ke(−λ) = ke(λ), that is,

|λ| = λe(k) ⇐⇒ |k| = ke(λ) if |k| ∈ [kc,+∞) and |λ| ∈ λe
(
[kc,+∞)

)
, (28)

where λe
(
(kc,+∞)

)
=
(

min(Ωp,Ωc),max(Ωp,Ωc)
)
. We finally define

Λee :=
{

(k, λ) ∈ R2 | |k| > kc and |λ| = λe(k)
}
.
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Figure 1: Parts of the spectral zones located in the quadrant R+ × R+ for Ωe < Ωm (top left), Ωe > Ωm

(top right) and Ωe = Ωm (bottom).
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Since, it is a curve, Λee will be referred as the lineic spectral zone. Note that, for technical reasons which
will appear later, we have excluded the cross points from this definition, although they are also solutions
to (26). In other words, Λee yields all the solutions to (26). Figure 1 shows the location of Λee in the
three cases Ωe < Ωm, Ωe = Ωm and Ωe > Ωm.

We can now introduce the family of generalized eigenfunctions Wk,λ,j related to the various spectral
zones Λz for

z ∈ Z := {dd,de,di,ei,ee}.

Before giving their mathematical expression, let us discuss their physical interpretation, which make
clear our choice of possible values for the index j. Consider first the case of the surface zones, that is,
z ∈ Z \ {ee}. In this case, each Wk,λ,j represents an incident plane wave which scatters on the interface
between both media and produces a reflected plane wave and a transmitted wave. In the half-plane where
both incident and reflected waves coexist, the regime of vibration is necessarily propagative (direct or
inverse) in the x-direction. On the other hand, in the half-plane where the transmitted wave occurs, the
regime can be propagative or evanescent. This explains that for a given pair (k, λ) in the spectral zones
Λdd and Λdi where both half-planes are propagative, two generalized eigenfunctions Wk,λ,j are considered:
they are indexed by j = ±1 which indicates the half-plane R2

± where the transmitted wave takes place.
Following the same interpretation, for a given pair (k, λ) in the spectral zones Λei and Λde, only one
Wk,λ,j is considered, with j = −1 in Λei and j = +1 in Λde. On the other hand, for the one-dimensional
spectral zone Λee, the regime is evanescent in both media. For a given pair (k, λ) ∈ Λee, only one Wk,λ,j

which represents now a guided wave that propagates along the interface is considered. Since there is no
longer transmitted wave, we use the index j = 0 in this case. Summing up, the set Jz of possible values
of j when (k, λ) ∈ Λz with z ∈ {dd,de,di,ei} is given by

Jz :=





{−1,+1} if z = dd or di,
{+1} if z = de,
{−1} if z = ei,
{0} if z = ee.

(29)

The generalized eigenfunctions are then defined by

∀z ∈ Z, ∀(k, λ) ∈ Λz, ∀j ∈ Jz, Wk,λ,j := Vλ wk,λ,j , (30)

where Vλ is a “vectorizator” in the sense that it expresses each Wk,λ,j in term of its first scalar component
wk,λ,j (the component associated with the electrical field), via the formula

Vλ w :=

(
w , − i

µλ λ
curlw ,

i ε0 Ω2
e

λ
Rw ,

µ0 Ω2
m

µ+
λ λ

2
R curlw

)>
. (31)

The scalar function wk,λ,j is given by

wk,λ,j(x, y) := Ak,λ,j ψk,λ,j(x) eiky (32)

where the expressions of Ak,λ,j and ψk,λ,j(x) depend on the spectral zones. Note that, thanks to (2) and
because of (32), (30) can be rewritten as

Wk,λ,j =
(
wk,λ,j ,

k wk,λ,j
µλ λ

, i
∂xwk,λ,j
µλ λ

,
iε0 Ω2

e

λ
Rwk,λ,j , ik

µ0 Ω2
m

µ+
λ λ

2
Rwk,λ,j , −

µ0 Ω2
m

µ+
λ λ

2
R ∂xwk,λ,j

)>
. (33)

On the one hand, in the surface spectral zones Λdd, Λde, Λdi and Λei, we have

Ak,λ,±1 :=
1

π |Wk,λ|

∣∣∣∣
λ

2
θ∓k,λ/µ

∓
λ

∣∣∣∣
1/2

and (34)

ψk,λ,±1(x) := cosh
(
θk,λ(x)x

)
∓

θ±k,λ/µ
±
λ

θk,λ(x)/µλ(x)
sinh

(
θk,λ(x)x

)
, (35)
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where Wk,λ and θk,λ(x) are defined respectively in (26) and (23). Note that the latter expression of
ψk,λ,±1 can be rewritten equivalently

ψk,λ,±1(x) =





cosh
(
θ∓k,λ x

)
∓
θ±k,λ/µ

±
λ

θ∓k,λ/µ
∓
λ

sinh
(
θ∓k,λ x

)
if ± x ≤ 0,

exp
(
∓ θ±k,λ x

)
if ± x ≥ 0,

(36)

which justifies the above-mentioned physical interpretation of the Wk,λ,j .
On the other hand, in the plasmonic spectral zone Λee, we have

Ak,λ,0 :=
λ2
∣∣∣µ+
λ θ

+
k,λ

∣∣∣
1/2

√
2πΩm

(
4k4 + (ε0µ0)2(Ω2

e − Ω2
m)2
)1/4 and (37)

ψk,λ,0(x) := exp
(
− θk,λ(x) |x|

)
, (38)

which shows clearly that Wk,λ,0 is a guided wave localized near the interface.

Remark 5. Let us mention that the notations introduced here are slightly different from [9], which
results from the fact that the scalar function wk,λ,j defined in (32) includes the contribution eiky. As
a consequence, the normalizing coefficient Ak,λ,j differs from [9] by a factor

√
2π. But of course, the

Wk,λ,j’s remain unchanged.

2.3.2 Generalized Fourier transform and diagonalization theorem

We introduce now the spectral space

Ĥ :=
⊕

z∈Z
L2(Λz)

card(Jz) = L2(Λdd)2 ⊕ L2(Λde)⊕ L2(Λdi)
2 ⊕ L2(Λei)⊕ L2(Λee),

in which the action of the Hamiltonian A will be reduced to a simple multiplication by the spectral
variable λ. This space is a direct sum of L2 spaces of each spectral zone. More precisely, each L2(Λz)
for z ∈ Z is repeated card(Jz) times, that is, the number of generalized eigenfunctions associated to the
spectral zone Λz. As we did for the Wk,λ,j ’s, we denote somewhat abusively by Û(k, λ, j) the fields of Ĥ,
where it is understood that the set Jz of possible values for j depends on the spectral zone Λz to which
the pair (k, λ) belongs. Using these notations, the Hilbert space Ĥ is endowed with the following norm:

‖Û‖2Ĥ :=
∑

z∈Z\{ee}

∑

j∈Jz

∫

Λz

|Û(k, λ, j)|2 dλ dk +
∑

±

∫

|k|>kc
|Û(k,±λe(k), 0)|2 dk.

Theorem 6 below gathers the results of Theorem 20 and Proposition 21 in [9]. It provides us the
expression of the generalized Fourier transform F and its adjoint F∗. The former appears as a “de-
composition” operator on the family of generalized eigenfunctions (Wk,λ,j), whereas the latter can be
interpreted as a “recomposition” operator in the sense that its “recomposes” a function U ∈H from its
spectral components Û(k, λ, j) ∈ Ĥ which appear as “coordinates” on the “generalized spectral basis”
(Wk,λ,j). Both of these operators are (partial) isometries and thus bounded. So it is sufficient to know
their expression on a dense subspace, exactly as for the usual Fourier transform or its inverse. For F, the
dense subspace of H is Hs (with s > 1/2) whereas for F∗, we introduce below Ĥcomp.

Theorem 6 (Diagonalization Theorem, cf. [9]). Let s > 1/2.
(i) The generalized Fourier transform F : H 7→ Ĥ is a partial isometry, defined for all U in Hs by

∀z ∈ Z, ∀(k, λ) ∈ Λz, ∀j ∈ Jz, FU(k, λ, j) = 〈U ,Wk,λ,j〉s, (39)

where the Wk,λ,j’s are defined in (30).

(ii) Let Ĥcomp denote the dense subspace of Ĥ composed of compactly supported functions whose
supports do not intersect the boundaries of the spectral zones Λz for z ∈ {dd,de,di,ei} (i.e., the spectral
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cuts and the three lines R × {0,±Ωm}). The adjoint F∗ : Ĥ 7→ H of F is an isometry defined for all
Û ∈ Ĥcomp by

F∗Û =
∑

z∈Z\{ee}

∑

j∈Jz

∫

Λz

Û(k, λ, j)Wk,λ,j dλ dk +
∑

±

∫

|k|>kc
Û(k,±λe(k), 0)Wk,±λe(k),0 dk, (40)

where the integrals are understood as Bochner integrals with values in H−s.
(iii) Furthermore, we have FF∗ = IdĤ, while F∗F = Pdiv0 where we recall that Pdiv0 is the orthogonal

projector in H onto Hdiv0 (see (8)). In particular, the restriction of F to Hdiv0 is a unitary operator.
Furthermore F diagonalizes A in the sense that for any measurable function f : R→ C,

f(A)Pdiv0 = Pdiv0f(A) = F∗ f(λ)F in D(f(A)). (41)

Remark 7. (i) First notice that we use of duality product 〈·, ·〉s (which extends the inner product of
H, see (16)) in the definition (39) of F. The reason is that the Wk,λ,j’s do not belong to H since their
modulus does not decay at infinity (this is why they are called generalized eigenfunctions). But the fact
that they are bounded shows that they belong to H−s for any s > 1/2 (indeed L∞(R2) ⊂ L2

−s(R2) if and
only if s > 1/2).

(ii) Let us now explain why we restrict ourselves to functions of Ĥcomp in (40). First one can easily
check that the H−s-norm of Wk,λ,j remains uniformly bounded if (k, λ) is restricted to vary in a compact

set of R2 that does not intersect the boundaries of the spectral zones. Hence, for Û ∈ Ĥcomp, the integrals
considered in (40), whose integrands are valued in H−s, are Bochner integrals [20] in H−s. However,
as F∗ is bounded from Ĥ to H, the values of these integrals belongs to H. The same holds true for all
Û ∈ Ĥ such that the integrands are integrable functions valued in H−s.

(iii) In the general case, the integrands are not always integrable functions valued in H−s, which may
happen for instance if Û does not vanish near some part of the boundaries of the spectral zones, because of
the singular behavior of some Wk,λ,j. For such a Û , the integrals in (40) are no longer Bochner integrals

in H−s, but limits of Bochner integrals. Indeed, thanks to the density of Ĥcomp in Ĥ, we can approximate

Û by its restrictions to an increasing sequence of compact subsets of ∪z∈ZΛz as in the definition of Ĥcomp,

which yields an approximation of F∗Û . Of course, the limit we obtain belongs to H and does not depend
on the sequence. We will indicate this limiting process before each integral as follows:

F∗Û =
∑

z∈Z\{ee}

∑

j∈Jz
lim
H

∫

Λz

Û(k, λ, j)Wk,λ,j dλ dk +
∑

±
lim
H

∫

|k|>kc
Û(k,±λe(k), 0)Wk,±λe(k),0 dk, (42)

for all Û ∈ Ĥ.

3 The spectral density

3.1 Motivation and main results

This quite technical section is somehow the keystone of the present paper. It provides us the basic
ingredients for the proofs of Theorem 2 and 4, which both mainly consist in using Theorem 6 to investigate
the asymptotic behavior of a family of functions of A. On the one hand, for the limiting absorption
principle at a given frequency ω ∈ R, we have to consider the families of functions rω±iη : R → C for
η > 0 defined by

rω±iη(λ) :=
1

λ− (ω ± iη)
(43)

and we study the limits of the resolvent R(ω ± iη) = rω±iη(A) as η ↘ 0. On the other hand, for the
limiting amplitude principle, we have to examine the behavior of φω,t(A) as t → +∞, where φω,t(·) is
defined in (9). As we will see in §4.2, both limiting processes are intimately connected. We focus here on
the former to explain the motivation of this section.

Roughly speaking, the basic idea is to rewrite the diagonal expression (41) of f(A) as

f(A)Pac =

∫

R
f(λ)Mλ dλ, (44)
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where λ 7→Mλ is a family of bounded operators from Hs to H−s, and Pac is defined in (14). This formula
can be interpreted as a continuous block diagonalization of f(A)Pac where the diagonal blocks are the
operators Mλ. Using this formula for the functions defined in (43), the absolutely continuous part of the
resolvent of A (see (15)) appears as a Cauchy integral

Rac(ω ± iη) := R(ω ± iη)Pac =

∫

R

Mλ

λ− (ω ± iη)
dλ,

whose limits as η ↘ 0 will be given by a suitable version of the well-known Sokhotski–Plemelj formula
[21], provided that λ 7→ Mλ is locally Hölder continuous. This gives actually the main objectives of the
present section which consists first in establishing (44), then proving the local Hölder continuity of Mλ.
These are the respective subjects of Theorems 8 and 9 below.

Formula (44) provides us a fundamental property of the spectral measure E (see [9, §2.3] for a brief
reminder about this notion) of A, namely the fact that in the orthogonal complement of the point sub-
space, it is absolutely continuous, which means that it is “proportional” to the Lebesgue measure (see
Corollary 12). This explains the terminology spectral density for Mλ, as well as the notation Pac.

Formal construction of Mλ in the non-critical case. Let us first consider the case Ωe 6= Ωm for
which the orthogonal projection Pac := I−Ppt coincides with Pdiv0 (see (14)). In order to prove (44), we
start from the diagonalization Theorem 6 applied to the spectral measure of A : for any Borel set S ⊂ R,
we have E(S) = 1S(A) where 1S denotes the indicator function of S. We assume here that

S is a bounded set such that S ∩ σexc = ∅, (45)

where we recall that σexc := {0,±Ωp,±Ωm} in the non-critical case (see (12)). In other words, we exclude
not only the eigenvalues 0 and ±Ωm, which shows in particular that

E(S)Pdiv0 = E(S) = E(S)Pac (46)

(since E(S)Pdiv0 = E(S)E
(
R \ {0,±Ωm}

)
= E

(
S ∩ (R \ {0,±Ωm})

)
= E(S)), but also the plasmonic

frequencies ±Ωp. Applying (41) to 1S(A) then yields

E(S)Pdiv0 = F∗ 1S(λ)F.

Using the expressions (39) and (42) of F and F∗, this formula writes more explicitly as

E(S)Pdiv0 U =
∑

z∈Z\{ee}

∑

j∈Jz
lim
H

∫

Λz

1S(λ) 〈U ,Wk,λ,j〉s Wk,λ,j dλ dk

+
∑

±
lim
H

∫

|k|>kc
1S(±λe(k)) 〈U ,Wk,±λe(k),0〉sWk,±λe(k),0 dk, (47)

for all U ∈Hs, where we recall that the limit (in H) is obtained by considering an increasing sequence of
compact subsets of each Λz whose union covers Λz. We are going to see that thanks to assumption (45),
on the one hand such a limiting process is useless here, and on the other hand, we can apply Fubini’s
theorem for the surface integrals on the Λz for z ∈ Z \{ee}, as well as the change of variable k = ±ke(λ)
in the last integral. Admitting this provisionally and using (46), we finally obtain that for all U ∈Hs,

E(S)Pac U = E(S)U =

∫

R
1S(λ)MλU dλ with (48)

MλU :=
∑

z∈Z\{ee}

∑

j∈Jz

∫

Λz(λ)

〈U ,Wk,λ,j〉s Wk,λ,j dk +
∑

k∈Λee(λ)

Je(λ) 〈U ,Wk,λ,0〉sWk,λ,0, (49)

for almost every λ ∈ R, where Je(λ) is the Jacobian of the change of variable k = ±ke(λ) defined by

Je(λ) :=
∣∣k′e(λ)

∣∣ =
∣∣∣dλe

dk

(
ke(λ)

)∣∣∣
−1
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and Λz(λ) denotes the set of k ∈ R corresponding to the horizontal section of Λz at the “height” λ, i.e.,

Λz(λ) := {k ∈ R | (k, λ) ∈ Λz} . (50)

A glance at Figure 1 clearly shows that if z ∈ Z \ {ee}, then Λz(λ) is either empty (in this case the
corresponding integral vanishes) or a bounded set composed of one or two intervals. For instance, if λ >
max(Ωe,Ωm), then Λdd(λ) =

(
−kd(λ),+kd(λ)

)
whereas Λde(λ) =

(
−k0(λ),−kd(λ)

)
∪
(
+kd(λ),+k0(λ)

)
.

Moreover, we have

Λee(λ) =

{
{±ke(λ)} if |λ| ∈ λe

(
(kc,+∞)

)
=
(

min(Ωp,Ωc),max(Ωp,Ωc)
)
,

∅ otherwise,

which shows that the last term in (49) appears only if |λ| ∈ λe
(
(kc,+∞)

)
.

The critical case. What about the case Ωe = Ωm? We keep the assumption (45) for S, but now
σexc := {0,±Ωm} (see (12)), so that (46) is no longer true. From (14), it has to be replaced by

E(S)Pdiv0 = E(S) = E(S)Pac + E
(
S)P−Ωp

+ E
(
S)P+Ωp

. (51)

Formula (47) is still valid. The difference with the non-critical case lies in the last integrals for which
it is no longer possible to make the change of variable k = ±ke(λ) since λe(k) = Ωp for all |k| > kc.
These integrals represent exactly the quantities E

(
S)P±Ωp

U related to the eigenvalues ±Ωm of infinite
multiplicity. We have actually

P±Ωp
U = lim

H

∫

|k|>kc
〈U ,Wk,±Ωp,0〉sWk,±Ωp,0 dk,

for all U ∈ Hs. Formula (51) then shows that the last integrals in (47) have to be removed to express
E(S)Pac. Using the same arguments as above for the surface integrals on Λz for z ∈ Z \ {ee}, we obtain
instead of (48)-(49)

E(S)Pac U = E(S \ {±Ωp})U =

∫

R
1S(λ)MλU dλ with (52)

MλU :=
∑

z∈Z\{ee}

∑

j∈Jz

∫

Λz(λ)

〈U ,Wk,λ,j〉s Wk,λ,j dk. (53)

Main results. The properties of the spectral density are stated in the two following theorems, which
are proved in the remainder of this section.

Theorem 8. Let s > 1/2. For every bounded function f : R → C with a compact support that does not
contain any point of σexc (see (12)), the operator f(A)Pac is given by

f(A)Pac =

∫

R
f(λ)Mλ dλ,

where the spectral density Mλ is defined for all λ ∈ R \ σexc as a bounded operator from Hs to H−s
by (49) if Ωe 6= Ωm and by (53) if Ωe = Ωm. The above integral is understood as a Bochner integral in
B(Hs,H−s).

Note that if f is a bounded function whose support S is no longer compact and/or contains points
of σexc, the expression of f(A)Pac follows from Theorem 8 by considering an increasing sequence (Sn) of
compacts subsets of S \ σexc whose union covers this set. Setting fn := f 1Sn , Theorem 6 shows that

∥∥∥
(
f(A)− fn(A)

)
PacU

∥∥∥
H

=





∥∥∥
(
f(λ)− fn(λ)

)
FU
∥∥∥
Ĥ

if Ωe 6= Ωm,
∥∥∥
(
f(λ)1R\{±Ωp} − fn(λ)

)
FU
∥∥∥
Ĥ

if Ωe = Ωm,

16



which tends to 0 by the Lebesgue dominated convergence theorem. Hence, using the same notation as in
(42), we have

∀U ∈Hs, f(A)PacU = lim
H

∫

R
f(λ)MλU dλ,

that we rewrite in the condensed form

f(A)Pac = s-lim
B(Hs,H)

∫

R
f(λ)Mλ dλ, (54)

where “s-lim” means that the limit is taken for the strong operator topology of B(Hs,H).

Theorem 9. Let s > 1/2. The spectral density λ 7→ Mλ ∈ B(Hs,H−s) is locally Hölder-continuous
on R \ σexc. More precisely, let [a, b] be an interval of R \ σexc and Γ[a,b] ⊂ (0, 1) be the set of Hölder
exponents defined by (18) for K = [a, b]. Then for any γ ∈ Γ[a,b], there exists a constant Cγa,b > 0 such
that

∀λ′, λ ∈ [a, b],
∥∥Mλ′ −Mλ

∥∥
Hs,H−s

≤ Cγa,b |λ
′ − λ|γ . (55)

Remark 10. Let us mention that the formulation of Theorem 9 is not entirely optimal in the sense that
it holds true for two particular values of γ which are not contained in the definition (18) of Γ[a,b].

On the one hand, in the case where [a, b]∩{±Ωe,±Ωc} = ∅, the value γ = 1 can be included in Γ[a,b],
provided that s > 3/2. The proof of Theorem 9 presented in the following actually includes this particular
case. However, as the proof of the limiting absorption principle (Theorem 2) is no longer valid for this
particular value (see §4.1), we keep the same definition of Γ[a,b] here.

On the other hand, in the case where [a, b] contains +Ωe or −Ωe but not ±Ωc, the value γ = 1/2 is
allowed, provided that s > 1. As mentioned in Remark 3, this particular value has been excluded for the
sake of clarity, but we show in Appendix A.2 how to deal with this case.

The above theorems are based on properties of the generalized eigenfunctions which are studied in
the next subsections. These properties will be established in bounded “slices” of the spectral zones Λz

defined for any closed interval [a, b] ⊂ R by

Λz([a, b]) := Λz ∩
(
R× [a, b]

)
=

⋃

λ∈[a,b]

{(k, λ) | k ∈ Λz(λ)}, (56)

where Λz(λ) is defined in (50). In particular, we are able to show now that Theorem 8 follows from the
following Proposition which is proved in §3.2.3.

Proposition 11. Let s > 1/2 and [a, b] ⊂ R \ σexc.

1. If z ∈ Z \ {ee} and Λz([a, b]) 6= ∅, then for j ∈ Jz, the map (k, λ) 7→ ‖Wk,λ,j‖H−s is square
integrable in Λz([a, b]).

2. In the non-critical case Ωe 6= Ωm, if Λee([a, b]) 6= ∅, then the map (k, λ) 7→ ‖Wk,λ,0‖H−s is bounded
on Λee([a, b]).

Proof of Theorem 8. The properties of Proposition 11 allow us to justify the path from (47) to (48)-(49)
if Ωe 6= Ωm and to (52)-(53) if Ωe = Ωm. Indeed, thanks to assumption (45), this lemma tells us that the
functions involved in the surface integrals in (47) are integrable functions valued in H−s. More precisely,
for all z ∈ Z \ {ee} and U ∈ Hs, the map (k, λ) 7→ 1S(λ) 〈U ,Wk,λ,j〉s Wk,λ,j belongs to L1

(
Λz,H−s

)

since ∥∥∥∥
∫

Λz

1S(λ) 〈U ,Wk,λ,j〉s Wk,λ,j dλ dk

∥∥∥∥
H−s

≤ ‖U‖Hs
∫

Λz

1S(λ) ‖Wk,λ,j‖2H−s dλ dk.

On the one hand, this shows that the limiting process in H is useless (by the Lebesgue’s dominated
convergence theorem for Bochner integrals [20, Theorem 3.7.9]). On the other hand, this justifies the use
of Fubini’s theorem [20, Theorem 3.7.13], which tells us in particular that the integrals on Λz(λ) in (49)
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or (53) are defined for almost every λ. Noticing that Proposition 11 holds true for a = b, we see that
these integrals are actually defined for all λ /∈ σexc.

In the non-critical case, it remains to deal with the last integrals in (47), related to the 1D spectral
zone Λee. This is where we use the fact that S ∩ {±Ωp} = ∅ (contained in assumption (45)), which
implies that the support of k 7→ 1S(±λe(k)) is bounded. In other words, the integrals actually cover
a bounded part of Λee. Hence Proposition 11 tells us that the functions involved in these integrals are
integrable functions valued in H−s, which shows again that the limit process is useless and allows the
change of variable which yields (49).

To conclude, we simply have to notice that all the above arguments remain valid if, instead of the
spectral measure E(S), one considers the spectral representation of f(A)Pac where f is a bounded function
with compact support S that satisfies (45).

The following corollary of Theorem 8 shows that outside the eigenvalues of A, the spectrum of A is
absolutely continuous.

Corollary 12. The spectral measure of A satisfies

∀U ,V ∈Hs, d
(
E(λ)PacU ,PacV

)
H = d

(
E(λ)PacU ,V

)
H = 〈MλU ,V 〉s dλ. (57)

Moreover, for any Borel set S ⊂ R (bounded or not), we have

∀U ∈Hs, ‖E(S)Pac U‖2H =

∫

R
1S(λ) 〈MλU ,U〉s dλ, (58)

where λ 7→ 〈MλU ,U〉s is non-negative and integrable on R.

Proof. By virtue of (48) and (52), for any bounded Borel set S ⊂ R such that S ∩ σexc = ∅, we have

∀U ,V ∈Hs,
(
E(S)Pac U ,V

)
H =

〈∫

R
1S(λ)MλU dλ ,V

〉

s

As the above integral is Bochner, we can permute it with the duality product [20, Theorem 3.7.12], which
yields

∀U ,V ∈Hs,
(
E(S)Pac U ,V

)
H =

∫

R
1S(λ) 〈MλU ,V 〉s dλ. (59)

Besides, we have E(σexc)Pac = 0. Indeed, from (14), we see that E(σexc)Pac = E(σexc \σpt(A)), where
(12) and (13) show that σexc \ σpt(A) is equal to {±Ωp} for Ωe 6= Ωm, whereas it is empty for Ωe = Ωm

(which implies that E
(
σexc \ σpt(A)

)
= 0). For Ωe 6= Ωm, {±Ωp} has zero Lebesgue’s measure and does

not contain eigenvalues, thus we have also E({±Ωp}) = 0 and the conclusion follows. This shows by
sigma-additivity that (59) actually holds true if S ∩ σexc 6= ∅, thus for any bounded Borel set S, which
amounts to the second equality of (57).

The first equality simply follows from the fact that Pac is an orthogonal projection which commutes
with E(S).

Finally, if we choose V = U in (59), we obtain (58) for S bounded. The fact that it holds true
for unbounded S follows from the spectral theorem which ensures that for all U ∈ H, the map S 7→
(E(S)U ,U)H defines a non-negative finite measure.

In what follows, in order to avoid the appearance of non meaningful constants in inequalities in the
proofs of the estimates involved in this paper, we use the symbols . and &. More precisely, this will be
employed for non-negative functions fγ and gγ of the real variable λ, that may depend on a parameter
γ ∈ (0, 1]. By definition, one has:

fγ(λ) . gγ(λ) on [a, b] ⇐⇒ ∃ Cγa,b > 0, ∀λ ∈ [a, b], fγ(λ) ≤ Cγa,b gγ(λ), .

However, for clarity purposes, we decide to keep these constants explicit in the statements of the results.
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3.2 Pointwise estimates of generalized eigenfunctions

In this section, we establish pointwise (in (k, λ) ∈ Λz)) estimates of Wk,λ,j for j ∈ Jz and z ∈ Z, in the
space H−s for s > 1/2, essentially based on the continuous embedding L∞(R2) ⊂ L2

−s(R2) which relies
on the following inequality:

‖φ‖L2
−s(R2) ≤ Cs ‖φ‖L∞(R2), ∀φ ∈ L∞(R2) with Cs =

(∫

R2

η−s(x, y)2dxdy
) 1

2

< +∞ for s >
1

2
. (60)

According to the formula (33) for Wk,λ,j , this relies on estimates on the 2D scalar functions wk,λ,j (32).

3.2.1 Generalized eigenfunctions of surface spectral zones

We deal first with the case z ∈ Z \ {ee} and their associated generalized eigenfunctions Wk,λ,j for
j = ±1 ∈ Jz (often referred as bulk modes in physics). In that case, the estimates will be used in integrals
along the Λz(λ), see (49) and (53), where the integrand is quadratic in the generalized eigenfunctions
Wk,λ,j . Thus, we need estimates of Wk,λ,j which are square integrable over the variable k in each set
Λz(λ). The pointwise upper bounds at (k, λ) will depend on the zone Λz that contains (k, λ) and may
blow up when the will approach boundary of each spectral zone. This is more or less clear from the
expressions of the Wk,λ,j ((30), (31)): these estimates must take care of the presence of negative powers
of the functions θ±k,λ (see in particular (32)) that precisely vanish on the boundary of the spectral zones.

More precisely, in our estimates, negative powers of |θ+
k,λ| and |θ−k,λ| can be accepted, but not too

large in order to respect the square integrability criterion in k over each Λz(λ) (it will be discussed in
more details in Lemma 16 and relation (80)).

The following proposition provides H−s-estimate for the surface spectral zones. It is preceded by a
preliminary lemma which gives a useful estimate on the Wronskian Wk,λ that appears in the expression
of the generalized eigenfunctions (see (32) and (33)).

Lemma 13. Let z ∈ Z \ {ee} and [a, b] ⊂ R \ σexc such that Λz([a, b]) 6= ∅. Then, there exists Ca,b > 0
such that:

|Wk,λ|−1 ≤ Ca,b (|θ+
k,λ|+ |θ

−
k,λ|)

−1, ∀(k, λ) ∈ Λz([a, b]). (61)

Proof. The proof of the estimate (61) depends on the spectral zone. More precisely:

• By virtue of (24, 25), one has θ−k,λ/µ
−
λ ∈ iR and θ+

k,λ/µ
+
λ ∈ R in Λde and θ−k,λ/µ

−
λ ∈ R and

θ+
k,λ/µ

+
λ ∈ iR in Λei. Thus, from (26),

|Wk,λ| ≥
1√
2

( |θ−k,λ|
|µ−λ |

+
|θ+
k,λ|
|µ+
λ |

)
& |θ+

k,λ|+ |θ
−
k,λ|,

since µ−λ = µ0 and µ+
λ is continuous and does not vanish on [a, b].

• In Λdd and Λdi, θ
±
k,λ/µ±(λ) are imaginary numbers whose imaginary parts have the same sign.

Thus,

|Wk,λ| =
|θ−k,λ|
|µ−λ |

+
|θ+
k,λ|
|µ+
λ |

& |θ+
k,λ|+ |θ

−
k,λ|.

The above lower bounds for |Wk,λ| prove (61).

Proposition 14. Let s > 1/2, z ∈ Z \ {ee}, and [a, b] ⊂ R \ σexc such that Λz([a, b]) 6= ∅. Then, there
exists Ca,b > 0 such that if ±1 ∈ Jz then:

‖Wk,λ,±1‖H−s ≤ Ca,b |θ∓k,λ|
− 1

2 , ∀(k, λ) ∈ Λz([a, b]). (62)

If moreover ±Ωc /∈ [a, b], for any γ ∈ (0, 1] ∩ (0, s− 1/2), one has

‖Wk,λ,±1‖H−s ≤ C
γ
a,b |θ

∓
k,λ|
− 1

2 +γ , ∀(k, λ) ∈ Λz([a, b]). (63)
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Proof. From symmetry reasons in the (k, λ) plane, it is quite obvious that we can restrict ourselves to
the intersections of the spectral zones with the quadrant {λ > 0, k ≥ 0}. Moreover, for simplicity, we
give the proof for j = 1 (which means that z ∈ {di,de,dd} since 1 /∈ Jei, see the definition (29) of Jz)
and let the reader check by simple symmetry arguments (between −1 and +1 on one hand, x < 0 and
x > 0 on the other hand) that it also works for j = −1.

Step 1. To begin, we estimate the first component wk,λ,1 = Ak,λ,1 ψk,λ,1(x) eiky of Wk,λ,1 (see (33)).
First, using (61) and the fact that µ−λ = µ0 and µ+

λ is continuous and does not vanish on [a, b] (since
±Ωm /∈ [a, b]), it follows that the coefficient Ak,λ,1 defined by (34) is bounded by:

|Ak,λ,1| .
|θ−k,λ|

1
2

|θ−k,λ|+ |θ
+
k,λ|

. (64)

Then, we estimate the function ψk,λ,1:

• (i) For x ≥ 0, by definition (cf. (36)), ψk,λ,1(x) = e−θ
+
k,λx with θ+

k,λ positive or purely imaginary.
Hence,

∀ x ≥ 0, |ψk,λ,1(x)| ≤ 1. (65)

• (ii) For x < 0, by formula (24) for z ∈ {di,de,dd}, one has θ−k,λ = − i |θ−k,λ| ∈ iR. Thus, by virtue
of the inequalities | cosh(u)| ≤ 1 and | sinh(u)| ≤ 1 for u ∈ iR , one deduces from the expression of
(36) of ψk,λ,1 that:

∀ x < 0, |ψk,λ,1(x)| . 1 + |θ+
k,λ|/|θ

−
k,λ|. (66)

From (65) and (66) , we deduce the uniform bound

∀ x ∈ R, |ψk,λ,1(x)| .
|θ+
k,λ|+ |θ

−
k,λ|

|θ−k,λ|
. (67)

Thus, from (64) and (67), we get

|wk,λ,1(x, y)| . |θ−k,λ|
− 1

2 , ∀(x, y) ∈ R2, (68)

and as s > 1/2, it follows that

‖wk,λ,1‖L2
−s(R2) . |θ−k,λ|

− 1
2 . (69)

Step 2. The second step consists in showing that similar estimates hold for the other five components
of the vector Wk,λ,1. According to (33), the second component of this vector is k (λµλ)−1 wk,λ,1. Since
k (λµλ)−1 is bounded in Λz([a, b]) (since 0, ±Ωm /∈ [a, b]), the estimate of this component follows from
the one for the first component (69).

The third component of Wk,λ,1 is i(λµλ)−1∂xwk,λ,1 = i(λµλ)−1Ak,λ,1 ∂xψk,λ,1 eiky (cf. (33)). This
component is less singular than wk,λ,1 since differentiating ψk,λ,1 with respect to x leads to a multiplication
by factors θ±k,λ that regularizes the expression. Indeed, one has

∂xψk,λ,1(x) = −θ+
k,λ e−θ

+
k,λx, for x > 0, θ−k,λ sinh

(
θ−k,λx

)
− θ+

k,λ

µ−λ
µ+
λ

cosh
(
θ−k,λx

)
, for x < 0. (70)

Again, as θ+
k,λ > 0 or θ−k,λ ∈ iR, the exponential function and the hyperbolic sine and cosine involved in

(70) are bounded by 1. Furthermore as µ−λ /µ
+
λ is bounded (since ±Ωm /∈ [a, b]), it follows that:

∣∣∂xψk,λ,1(x)
∣∣ . |θ−k,λ|+ |θ+

k,λ|. (71)

Thus, combining with (64) we get

∀x ∈ R∗, |i(λµλ)−1∂xwk,λ,1| =
∣∣i(λµλ)−1Ak,λ,1 ∂xψk,λ,1(x) eiky

∣∣ . |θ−k,λ|
1
2 , (72)
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and thus
∥∥i(λµλ)−1∂xwk,λ,1

∥∥
L2
−s(R2)

. |θ−k,λ|
1
2 . |θ−k,λ|−

1
2 . Once the first three components have been

treated, the work is finished since the last three components are 0 for x < 0 and proportional (with a
coefficient that depends on λ but is bounded in Λz([a, b])) to the first three for x > 0 (see again (33)).
Thus one concludes to the estimate (62).

Step 3. We now explain how to obtain the improved estimates when ±Ωc /∈ [a, b]. These are an improve-
ment in the sense that, since γ ≥ 0, the bound (63) is better than (62) when θ−k,λ tends to 0.

We shall concentrate ourselves on the estimate of the first component wk,λ,1 of Wk,λ,1. Passing to the
other five components is essentially a matter of repeating the arguments of Step 2.

The improvement is obtained from a “new” estimate for Ak,λ,1 that exploits ±Ωc /∈ [a, b], and a different
estimate for ψk,λ,1 when x < 0 in which we introduce γ:

• because ±Ωc /∈ [a, b], Λz([a, b]) does not contain any cross-point so that θ+
k,λ and θ−k,λ do not vanish

simultaneously. As a consequence |θ−k,λ|+ |θ
+
k,λ| is bounded from below and

|Ak,λ,1| . |θ−k,λ|
1
2 . (73)

• The inequality | sinh(θ−k,λx)| ≤ 1, used of Step 1 (ii) for deriving (66), is inaccurate for small θ−k,λ.
Given γ ∈ (0, 1], we can replace it by

| sinh(θ−k,λx)| =
∣∣ sin

(
|θ−k,λ|x)

∣∣γ ∣∣ sin
(
|θ−k,λ|x)

∣∣1−γ ≤ |θ−k,λ|γ |x|γ .

Using this estimate yields |ψk,λ,1(x)| . 1 + |θ−k,λ|γ−1 |x|γ for x < 0. This, together with (65), yields
the following new estimate for ψk,λ,1 (instead of (67))

∀ x ∈ R, |ψk,λ,1(x)| . 1 + |θ−k,λ|
γ−1 |x|γ . (74)

Thus, from (73) and (74), we get

|wk,λ,1(x, y)| . |θ−k,λ|
1
2 + |θ−k,λ|

γ− 1
2 |x|γ = |θ−k,λ|

γ− 1
2

(
|θ−k,λ|

1−γ + |x|γ
)
. |θ−k,λ|

γ− 1
2 (1 + |x|γ)

since, as γ ≤ 1, |θ−k,λ|1−γ is bounded. As the function (x, y) 7→ (1 + |x|)γ ∈ L2
−s(R2) for 0 ≤ γ < s− 1/2,

this yields immediately the expected estimate

‖wk,λ,1‖L2
−s(R2) . |θ−k,λ|

− 1
2 +γ ,

which is nothing but the estimate (63) for the first component wk,λ,1 of Wk,λ,1.

3.2.2 Generalized eigenfunctions of the lineic spectral zone

We deal now with the H−s estimates of the generalized eigenfunctions Wk,λ,0 (also referred as plasmonic
waves in the physical literature) when (k, λ) belongs to the spectral zone Λee for Ωe 6= Ωm. Let us recall
that for (k, λ) ∈ Λee, k and λ are related by k = ± ke(λ) (cf. (27, 28, 2.3.1). Thus, the set Λee([a, b])
involved in this result and defined by (56) can be rewritten as

Λee([a, b]) = {(±ke(|λ|), λ) ∈ Λee | λ ∈ [a, b]}.

Proposition 15. Assume that Ωe 6= Ωm and let s > 1/2 and [a, b] ⊂ R \ σexc such that Λee([a, b]) 6= ∅.
Then, there exists Ca,b > 0 (depending only on a, b) such that

‖Wk,λ,0‖H−s ≤ Ca,b (θ+
k,λ)

1
2 , ∀(k, λ) ∈ Λee([a, b]). (75)
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Proof. As [a, b] does not contain ±Ωp, Λee([a, b]) is a bounded subset of Λee. One one hand, from (37),
one deduces that Ak,λ,0 . (θ+

k,λ)1/2 (θ+
k,λ > 0 in Λee([a, b]), see (25)).

On the other hand, one has |ψk,λ,0(x)| . 1 (cf. (38)) since θ±k,λ > 0. It follows that:

|wk,λ,0(x, y)| . (θ+
k,λ)1/2 and |∂xwk,λ,0(x, y)| . (θ+

k,λ)1/2 ,∀(k, λ) ∈ Λee([a, b]), (76)

(we use here to estimate ∂xwk,λ,0 that θ±k,λ is bounded as a continuous function of (k, λ) on Λee([a, b])).

Finally, as the lines λ = 0 and λ = ±Ωm do not intersect the compact set Λee([a, b]) all the coefficients
in (k, λ) that are involved in the expression (33) of Wk,λ,0 in terms of wk,λ,0 and ∂xwk,λ,0 are bounded.
Thus, the inequality (75) for s > 1/2 comes immediately from (76) and the relation (33) that define the
generalized eigenfunction Wk,λ,0.

3.2.3 Proof of Proposition 11

The following preliminary lemma gives local estimates of the inverse of |θ±k,λ| with respect to (k, λ) in
each spectral zone Λz for z ∈ Z \ {ee}. These estimates will be used to prove Proposition 11 and thus
Theorems 8 and 9. To simplify their presentation, we introduce the function k+ defined as follows:

k+(λ) :=





ki(λ) ∈ R+ if 0 < |λ| ≤ min(Ωe,Ωm),

i
√
−ε+

λ µ
+
λ |λ| ∈ iR+ if min(Ωe,Ωm) < |λ| < max(Ωe,Ωm),

kd(λ) ∈ R+ if max(Ωe,Ωm) ≤ |λ|.

(77)

We notice that the even function k+ vanishes at ±Ωe and ±Ωm since k+(±Ωe) = ki(±min(Ωm,Ωe)) =
kd(±max(Ωm,Ωe)) = 0 (see (3) and (22) and figure 1). Moreover, one easily checks that k+ is locally
Hölder of index γ = 1/2 on R∗ and C∞ (thus locally Lipschitz continuous) on R∗ \ {±Ωe,±Ωm}.
Lemma 16. For all λ ∈ R \ {0,±Ωe,±Ωm}, we have

∀|k| 6= k0(λ),
∣∣θ−k,λ

∣∣−1 ≤ k0(λ)−1/2
∣∣|k| − k0(λ)

∣∣−1/2
, (78)

∀|k| 6= k+(λ),
∣∣θ+
k,λ

∣∣−1 ≤
∣∣k+(λ)

∣∣−1/2 ∣∣|k| − k+(λ)
∣∣−1/2

. (79)

Proof. From the definitions (21) and (24) of Θ+
k,λ and θ+

k,λ, one has

∀λ ∈ R, ∀|k| 6= k+(λ), |θ+
k,λ|
−1 = |Θ+

k,λ|
−1/2 =

∣∣|k| − k+(λ)
∣∣−1/2 ∣∣|k|+ k+(λ)

∣∣−1/2
.

Inequality (79) simply follows by noticing that
∣∣|k|+ k+(λ)

∣∣ ≥ |k+(λ)|,

since k+(λ) is either a positive real number or a purely imaginary number, which does not vanish if
λ /∈ {±Ωe,±Ωm}.

For inequality (78), one proceeds similarly by substituting respectively θ+
k,λ, Θ+

k,λ and k+ by θ−k,λ,

Θ−k,λ and k0 (the only difference is that k0(λ) is always real-valued).

Remark 17. The estimates of Lemma 16 are optimal in the sense that they take into account in a sharp
way their singular behaviour of |θ±k,λ|−1 when approaching the boundary of the spectral zone (see (17)).
Indeed, these functions approach 0 as the square root of the (horizontal) distance to the spectral cuts,
more precisely:

|θ−k,λ|−1 ∼ (2k0(λ))−
1
2 |k ± k0(λ)|− 1

2 as k ∈ Λz(λ)→ ∓ k0(λ), z = ei,de,di

|θ+
k,λ|−1 ∼ (2k+(λ))−

1
2 |k ± k+(λ)|− 1

2 as k ∈ Λz(λ)→ ∓ k+(λ), λ 6= ±Ωe z = ei,di,dd.

Therefore, one has for λ 6= ±Ωe,
{

k 7→ |θ−k,λ|−r ∈ L2
(
Λz(λ)

)
, z = de,di

k 7→ |θ+
k,λ|−r ∈ L2

(
Λz(λ)

)
, z = ei,di,dd

⇐⇒ r < 1. (80)
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As |θ−k,λ|−1 is bounded on Λdd(λ), it is straightforward to see that (62) and (80) (used with r = 1/2)
imply that if ±1 ∈ Jz, the function k 7→ Wk,λ,±1 is square integrable in each set Λz(λ). Thanks to
Lemma 16, and Propositions 14 and 15, we can now prove Proposition 11 of section 3.1.

Proof. Proof of point 1. Let s > 1/2, z ∈ Z \ {ee} and [a, b] ⊂ R \ σexc such that Λz([a, b]) 6= ∅. We
know from the relation (62) of Proposition 14 that if ±1 ∈ Jz then

‖Wk,λ,±1‖2H−s . |θ
∓
k,λ|
−1, ∀(k, λ) ∈ Λz([a, b]). (81)

Thus, it is simply a matter of using Lemma 16. We distinguish two cases:

(i) : j = 1 (which is only possible by (29) for z = dd,de,di)

• For z = dd, as (k, λ) 7→ |θ−k,λ| does not vanish in Λdd([a, b]), the H−s-norm of Wk,λ,j is bounded when
(k, λ) ∈ Λz([a, b]). This proves the point 1 for z = dd since Λdd([a, b]) has a finite Lebesgue measure.

• Now if z = de or z = di, then it follows from (78) and (81) that

∀(k, λ) ∈ Λz([a, b]), ‖Wk,λ,1‖2H−s .
∣∣|k| − k0(λ)

∣∣− 1
2 , (82)

since k0(λ)−1/2 remains bounded in [a, b]. Let λ ∈ [a, b]. One has Λz(λ) ⊂ ] − k0(λ), k0(λ)[. Then, by
(82) and evenness in k, it follows

∫

Λz(λ)

‖Wk,λ,1‖2H−sdk .
∫ k0(λ)

0

(k0(λ)− k)−
1
2 dk . 2k0(λ)

1
2 . 1.

Thus, the point 1 is a consequence of the Fubini-Tonelli theorem and the fact that [a, b] is bounded.

(ii) : j = −1 (which is only possible by (29) for z = di,dd,ei)

The slight difference with the case (i) is when [a, b] contains ±Ωe where k+ vanish.

• For the case where z = dd,di,ei, by virtue of the estimates (79) and (81), one gets

∀(k, λ) ∈ Λz([a, b]), ‖Wk,λ,−1‖2H−s ≤ |k
+(λ)|− 1

2

∣∣|k| − k+(λ)
∣∣− 1

2 . (83)

Using that k+(λ) ∈ R+,∗ in (83), Λz(λ) ⊂ ]−k+(λ), k+(λ)[ (see figure 1) and a parity argument in k give

∫

Λz(λ)

‖Wk,λ,−1‖2H−s dk . k+(λ)−
1
2

∫ k+(λ)

0

(k+(λ)− k)−
1
2 dk . 1.

This implies the point 1 since the bound is uniform with respect to λ ∈ [a, b].

Proof of point 2. The key point is that, as [a, b] does not contain ±Ωp, Λee([a, b]) is a bounded subset
of Λee. Thus, the point 2 is an immediate consequence of the estimate (75) and the fact that θ+

k,λ is
bounded on Λee([a, b]).

3.3 Hölder regularity of generalized eigenfunctions

3.3.1 Orientation

In this section, we show what we shall call local “Hölder type estimates” (see Propositions 20 and 23) on
generalized eigenfunctions.
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The case of the functions Wk,λ,±1

In this case we study the functions (k, λ) ∈ Λz 7→Wk,λ,j ∈H−s , such that j ∈ Jz and z ∈ Z \ {ee}. By
local “Hölder type estimate” we mean an estimate in which k plays the role of a parameter with respect
to the spectral variable λ, i.e. of the form (given a ≤ b)

∀
(
(k, λ), (k, λ′)) ∈ ΛZ([a, b])2, ‖Wk,λ′,j −Wk,λ,j‖H−s ≤ Fγ(k;λ, λ′) |λ′ − λ|γ , (84)

where Fγ :
{

(k;λ, λ′) ∈ R3 /
(
(k, λ), (k, λ′)) ∈ Λz([a, b])

2} → R+ is smooth and γ ∈ (0, 1].

There are many different ways to obtain estimates of the form (84). Before going to technical developments
(based, as we shall see, on lengthy hand computations that require to be done with a lot of care) and
precise results, it is worthwhile to make three observations that guided us in the derivation of (84).

Observation 1: it is clear from the integral expression Mλ of the spectral density that in order to
transform the estimates (84) into Hölder regularity for λ 7→ Mλ in B(Hs,H−s), for given (λ, λ′) the
function k 7→ Fγ(k;λ, λ′) should have appropriate square integrability properties (we shall be more
precise later). Natural candidates for Fγ(k;λ, λ′) automatically involve negative powers of |θ±k,λ| and

|θ±k,λ′ | (cf. section 3.2), which means that they may blow up when (k, λ) or (k, λ′) approaches a spectral

cut. That is why we have to pay attention to control this blow up (i.e. to the allowed powers of θ±k,λ):
this brings us back criterion (80).

Observation 2: similarly to what was done in section 3.2, the desired estimates (84) will be derived from
similar pointwise Hölder estimates for the functions λ 7→ wk,λ,j(x, y) ∈ C and λ 7→ ∂xwk,λ,j(x, y) ∈ C,
that involve the space variable (x, y) as an additional parameter. These estimates will be of the form

|vk,λ′,j(x, y)− vk,λ,j(x, y)| ≤ (1 + |x|)γ fγ(k;λ, λ′) |λ′ − λ|γ , (85)

for vk,λ,j = wk,λ,j or vk,λ,j = ∂xwk,λ,j . The limitation for the set of possible Hölder exponents then
comes from the double requirement that :

(i) in order to use these estimates to get the H−s-valued estimates, we must have 0 < γ < s−1/2 (the
condition for which x 7→ (1 + |x|)γ belongs to L2

−s(R2)),

(ii) the function fγ(k;λ, λ′) is supposed to have the same square integrability properties in k as
Fγ(k;λ, λ′), cf. observation 1, which will generate another limitation on γ.

Observation 3: From the technical point of view, the systematic path that we chose to use for
getting estimates of the form (85), assuming that λ 7→ vk,λ,j(x, y) is differentiable, is the following:

1. Obtain Lipschitz estimates via the mean value theorem from L∞ estimates of the λ-derivative
∂λvk,λ,j :

|vk,λ′,j(x, y)− vk,λ,j(x, y)| ≤ sup
λ̃∈[λ,λ′]

∣∣∂λvk,λ′,j(x, y)
∣∣ |λ− λ′|.

2. Interpolate the previous estimate with L∞ estimates of vk,λ,j

∣∣∣∣∣∣∣

|vk,λ′,j(x, y)− vk,λ,j(x, y)| = |vk,λ′,j(x, y)− vk,λ,j(x, y)|γ |vk,λ′,j(x, y)− vk,λ,j(x, y)|1−γ

≤ 21−γ( sup
λ̃∈[λ,λ′]

|(∂λv)k,λ̃,j(x, y)|γ
) (

sup
λ̃∈[λ,λ′]

|vk,λ̃,j(x, y)|1−γ
)
|λ− λ′|γ

and the estimation of the two above sup leads to estimates of the form (85).

Even though step 1 seems to provide already the desired type of estimate with γ = 1, the interpolation
step 2 will be needed to fulfil the integrability requirements mentioned in observations 1 and 2.

Finally, we want to mention that estimates of the form (84) with a function Fγ with 0 < γ ≤ 1 that
involves negative powers of |θ±k,λ| and |θ±k,λ′ | will allow us to obtain (in section 3.4) better Hölder exponents
for the spectral density (after an integration on the sets Λz(λ)) than the actual local Hölder regularity
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of the generalized eigenfunctions Wk,λ,j with respect to λ. Indeed, Hölder estimates for Wk,λ,j (with a
constant function Fγ) are limited to 0 < γ ≤ 1/4 since the expression of Wk,λ,j (see (33), (32), (34) and
(35)) contains functions (k, λ) 7→ |θ±k,λ|1/2 that are only 1/4 locally Hölder continuous in λ at the vicinity

of the spectral cut where θ±k,λ vanishes.

The case of the functions Wk,λ,0

In this case, we study the functions (k, λ) ∈ R2 7→Wk,λ,0 ∈H−s for (λ, k) ∈ Λee and Ωe 6= Ωm. This case
is special since Λee is a reunion of curves: k = ± ke(λ) for |λ| ∈ (min(Ωp,Ωc),max(Ωp,Ωc)). Thus, (k, λ)
cannot be considered as independent variables and k is no longer a parameter. We are in fact interested
in the functions

|λ| ∈
(

min(Ωp,Ωc),max(Ωp,Ωc)
)
7→ W±ke(λ),λ,0.

Then given [a, b] ⊂ [min(Ωp,Ωc),max(Ωp,Ωc)] which does not contain Ωp, we look for estimates of the
form (these replace (84))

∀ (λ, λ′) ∈ [a, b]2 =⇒ ‖W±ke(λ),λ,0 −W±ke(λ′),λ′,0‖H−s ≤ Fγ(λ, λ′) |λ′ − λ|γ , (86)

that will be obtained from pointwise estimates (these replace (85))

|v±ke(λ),λ,0(x, y)− v±ke(λ),λ,0(x, y)| ≤ (1 + |x|+ |y|)γ fγ(λ, λ′) |λ′ − λ|γ , (87)

for v±ke(λ),λ,0 = w±ke(λ),λ,0 or v±ke(λ),λ,0 = ∂xw±ke(λ),λ,0. A difference between (85) and (87) is that
1 + |x| is replaced by 1 + |x|+ |y|. However, this does not change the condition γ < s− 1/2 raised in the
point (ii) of observation 2 since this is also the condition for which (x, y) 7→ (1 + |x| + |y|)γ belongs to
L2
−s(R2). In this case, since k is no longer a parameter of the estimate, the observations 1 and the point

(ii) of 2 of the previous paragraph are no longer relevant. However, the technical approach described in
observation 3 still makes sense.

3.3.2 Generalized eigenfunctions of surface spectral zones

From now on, the forthcoming estimates will be established for z ∈ Z \ {ee}, j ∈ Jz ⊂ {−1, 1} and
(k, λ) ∈ Λz([a, b]) where [a, b] ⊂ R \ σexc is such that Λz([a, b]) 6= ∅.

Also, in order to symmetrize our estimates with respect to θ+
k,λ and θ−k,λ we introduce the quantity

θmin
k,λ := min(|θ+

k,λ|, |θ
−
k,λ|), for z ∈ Z \ {ee} and (k, λ) ∈ Λz. (88)

Note that while θmin
k,λ (and positive powers of θmin

k,λ ) remain bounded when (k.λ) ∈ Λz([a, b]) (in other

words θmin
k,λ . 1), negative powers of θmin

k,λ blow up when (k, λ) approaches a spectral cut.

Since pointwise estimates of the functions wk,λ,j and ∂xwk,λ,j have already been obtained in section 3.2
(see (68) for instance), in order to implement the process described above (observation 3), we simply
need to get pointwise estimates of their λ-derivatives on Λz([a, b]) (where these functions are smooth in
λ since Λz([a, b]) does not intersect the spectral cut). These require estimates of λ-derivatives of various
intermediate quantities that are the object of the next subsection.

(I) Preliminary λ-derivatives estimates.

(Ia) Derivatives of powers of |θ±k,λ|: From (24, 25), in each Λz, one has θ±k,λ = a|θ±k,λ| with a2 = ±1.
Thus, it follows

∀ α ∈ R, |∂λ(θ±k,λ)α| = |∂λ(|θ±k,λ|
α)|.

Furthermore, the relation |θ±k,λ| = |Θ
±
k,λ|1/2 gives:

|∂λ(θ±k,λ)α| = |∂λ(|θ±k,λ|
α)| = |∂λ(|Θ±k,λ|

α
2 )| =

∣∣∣α
2

∣∣∣
∣∣∂λ|Θ±k,λ|

∣∣ |θ±k,λ|α−2 for α ∈ R .

25



As [a, b] ⊂ R \ σexc, Θ±k,λ is C∞ on Λz([a, b]) so that
∣∣∂λ|Θ±k,λ|

∣∣ = |∂λΘ±k,λ
∣∣ . 1. Thus, it yields

|∂λ(θ±k,λ)α| = |∂λ(|θ±k,λ|
α)| . |θ±k,λ|

α−2, ∀(k, λ) ∈ Λz([a, b]) and α ∈ R. (89)

(Ib) Derivatives of the Wronskian Wk,λ: From the definition (26) of Wk,λ and µ−λ = µ0, one gets:

∂λWk,λ =
∂λθ
−
k,λ

µ0
+
∂λθ

+
k,λ

µ+
λ

+ θ+
k,λ ∂λ

( 1

µ+
λ

)
.

As [a, b] ⊂ R \ σexc, |µ+
λ | . 1, |∂λ(1/µ+

λ )| . 1 for λ ∈ [a, b]. Moreover |θ±k,λ| . 1 since θ±k,λ is continuous

on Λz([a, b]). Then it follows, with (89) with α = 1:

|∂λWk,λ| . |θ−k,λ|
−1 + |θ+

k,λ|
−1. (90)

Furthermore, one has ∂λ(1/Wk,λ) = −∂λWk,λ/(Wk,λ)2. Thus, combining (61) and (90) leads to:

|∂λ(W−1
k,λ)| .

|θ−k,λ|−1 + |θ+
k,λ|−1

(|θ−k,λ|+ |θ
+
k,λ|)2

, ∀(k, λ) ∈ Λz([a, b]). (91)

(Ic) Derivative of the coefficients Ak,λ,±1. From formula (34) and the fact that λ 7→ |λ/(2µ∓λ )|1/2 is

C∞ smooth for (k, λ) in Λz([a, b]), one gets

|∂λAk,λ,±1| . (|∂λ(|θ∓k,λ|
1
2 )|+ |θ∓k,λ|

1
2 ) |Wk,λ|−1 + |θ∓k,λ|

1
2 |∂λ(W−1

k,λ)|.

Thus combining the estimate (61) for W−1
k,λ, (89) applied with α = 1/2, |θ∓k,λ|

1
2 . |θ∓kλ|−

3
2 and (91) gives:

|∂λAk,λ,±1| .
|θ∓kλ|−

3
2

|θ−k,λ|+ |θ
+
k,λ|

+ |θ∓k,λ|
1
2

|θ−k,λ|−1 + |θ+
k,λ|−1

(|θ−k,λ|+ |θ
+
k,λ|)2

, ∀ (k, λ) ∈ Λz([a, b]). (92)

As |θ∓k,λ|1/2/(|θ
−
k,λ|+ |θ

+
k,λ|) ≤ |θ

∓
k,λ|−1/2 and we have by definition (88) of θmin

k,λ :

|θ∓kλ|
− 3

2 ≤ (θmin
k,λ )−

3
2 , |θ∓kλ|

− 1
2 ≤ (θmin

k,λ )−
1
2 , |θ−k,λ|

−1 + |θ+
k,λ|
−1 . (θmin

k,λ )−1, |θ−k,λ|+ |θ
+
k,λ| ≥ θ

min
k,λ ,

we deduce from (92) that

|∂λAk,λ,±1| . (θmin
k,λ )−

5
2 , ∀(k, λ) ∈ Λz([a, b]). (93)

Note that moreover, if ±Ωc /∈ [a, b], we can exploit in (92) the fact |θ+
k,λ| and |θ−k,λ| cannot vanish

simultaneously, in other words that |θ+
k,λ|+ |θ

−
k,λ| is bounded from below, to obtain the improved estimate

|∂λAk,λ,±1| . (θmin
k,λ )−

3
2 , ∀(k, λ) ∈ Λz([a, b]). (94)

(II) Hölder-type estimates of generalized eigenfunctions for j = ±1

Each Wk,λ,j is constructed from wk,λ,j (and its x derivative), which is itself constructed from ψk,λ,j (and
its x derivative). We study below the λ-derivatives of these functions in the reverse order.

(IIa) Pointwise estimates the λ-derivative of the functions ψk,λ,±1(x) and ∂xψk,λ,±1(x)

Lemma 18. Let z ∈ Z \ {ee} and [a, b] ⊂ R \σexc such that Λz([a, b]) 6= ∅. If ±1 ∈ Jz, then one has for
all (k, λ) ∈ Λz([a, b]) the following pointwise estimates

∀ x ∈ R,
∣∣∂λψk,λ,±1(x)

∣∣ . (1 + |x|)
( 1

|θ+
k,λ|

+
1

|θ−k,λ|
+
|θ±k,λ|
|θ∓k,λ|2

)
, (95)

∀ x ∈ R,
∣∣∂λψk,λ,±1(x)

∣∣ . (1 + |x|) (θmin
k,λ )−2, (96)

∀ x ∈ R∗,
∣∣∂λ∂xψk,λ,±1(x)

∣∣ . (1 + |x|) (θmin
k,λ )−1. (97)
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Proof. As for proposition 14, we give the proof for j = 1 (which means that z ∈ {di,de,dd}) and let the
reader check by simple symmetry arguments (between −1 and +1 on one hand, x < 0 and x > 0 on the
other hand) that it also works for j = −1.

Step 1: proof of (95).

(i) For x ≥ 0, one has ψk,λ,1(x) = e−θ
+
k,λx (cf. formula (36)) thus:

∂λψk,λ,1(x) = −x (∂λθ
+
k,λ) e−θ

+
k,λx

with θ+
k,λ > 0 or θ+

k,λ ∈ iR. Thus, combining the inequality (89) for α = 1 and |e−θ
+
k,λx| ≤ 1 yields

immediately:
∀ x ≥ 0,

∣∣∂λψk,λ,1(x)
∣∣ . |θ+

k,λ|
−1 |x|. (98)

(ii) For x < 0, setting qλ := (θ+
k,λ/µ

+
λ )/(θ−k,λ/µ

−
λ ), formula (36) for ψk,λ,±1 that,

ψk,λ,1(x) = cosh
(
θ−k,λ x

)
− qλ sinh

(
θ−k,λ x

)
.

Therefore, one computes that

∂λψk,λ,1(x) = x ∂λ(θ−k,λ) sinh(θ−k,λ x)− ∂λqλ sinh(θ−k,λ x)− qλ x ∂λ(θ−k,λ) cosh(θ−k,λ x). (99)

We now bound successively the three terms of the right hand side of (99). For the first term, thanks
to (89) for α = 1 and | sinh(θ−k,λ x)| ≤ 1 since θ−k,λ ∈ iR (see (24)), one gets:

|x ∂λ(θ−k,λ) sinh(θ−k,λ x)| . |x| |θ−k,λ|
−1. (100)

For the second term, as [a, b] ⊂ R \ σexc, |µ−λ /µ
+
λ | . 1 and |∂λ(µ−λ /µ

+
λ )| . 1, one obtains

∣∣∂λqλ
∣∣ .

∣∣∣
θ+
k,λ

θ−k,λ

∣∣∣+ |∂λθ+
k,λ| |θ

−
k,λ|
−1 + |θ+

k,λ| |∂λ(θ−k,λ)−1|,

which gives with (89) applied successively for α = 1 and α = −1:

∣∣∂λqλ
∣∣ .

∣∣∣
θ+
k,λ

θ−k,λ

∣∣∣+
1

|θ−k,λ| |θ
+
k,λ|

+
|θ+
k,λ|
|θ−k,λ|3

.

As |θ−k,λ|−1 . |θ−k,λ|−3 (since |θ−k,λ|2 . 1), the previous inequality simplifies to:

∣∣∂λqλ
∣∣ . 1

|θ−k,λ| |θ
+
k,λ|

+
|θ+
k,λ|
|θ−k,λ|3

. (101)

Hence, combining (101) and | sinh(θ−k,λ x)| ≤ |θ−k,λ| |x| yields:

∣∣∂λqλ sinh(θ−k,λ x)
∣∣ .

( 1

|θ+
k,λ|

+
|θ+
k,λ|
|θ−k,λ|2

)
|x|. (102)

For the third term, |µ−λ |/|µ
+
λ | . 1 gives |qλ| . |θ+

k,λ|/|θ
−
k,λ| and | cosh(θ+

k,λ x)| ≤ 1. Thus, one gets

∣∣qλ x ∂λ(θ−k,λ) cosh(θ−k,λ x)
∣∣ .
|θ+
k,λ|
|θ−k,λ|

∣∣∂λθ−k,λ
∣∣ |x| .

|θ+
k,λ|
|θ−k,λ|2

|x|. (103)

where we have used (89) with α = 1 for the last inequality. Gathering the estimates (100), (102)
and (103) in (99) gives (95) for x < 0. One observes with (98) that (95) holds also for x ≥ 0 and
thus (95) is proved.
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Step 2 : proof of (96). Inequality (96) is an immediate consequence of (95) by using the bounds: |θ+
k,λ| . 1

and |θ±k,λ|−1 . (θmin
k,λ )−1 . (θmin

k,λ )−2.

Step 3: proof of (97). From formula (70), we compute, using the chain rule, that for x > 0

∂λ∂xψk,λ,1(x) = −
(
1− x θ+

k,λ

)
∂λθ

+
k,λ e−θ

+
k,λx

so that, using (89) for α = 1,

∣∣∂λ∂xψk,λ,1(x)
∣∣ . |θ+

k,λ| |∂λθ
+
k,λ| |x|+ |∂λθ

+
k,λ| . |x|+ |θ

+
k,λ|
−1 . (1 + |x|) (θmin

k,λ )−1,

that is to say (97) for x > 0. On the other hand, for x < 0, using again (70), one has

∣∣∣∣∣∣∣∣

∂λ∂xψk,λ,1(x) = ∂λθ
−
k,λ

(
sinh(θ−k,λx) + x θ−k,λ cosh(θ−k,λx)

)

−
[
∂λθ

+
k,λ

µ−λ
µ+
λ

+ θ+
k,λ ∂λ

(µ−λ
µ+
λ

)]
cosh(θ−k,λx)− θ+

k,λ

µ−λ
µ+
λ

∂λθ
−
k,λ x sinh(θ−k,λx).

Then, since θ−k,λ ∈ iR, see (24), |µ−λ /µ
+
λ | . 1, |∂λ(µ−λ /µ

+
λ )| . 1, |θ∓k,λ| . 1 and |∂λθ∓k,λ| . (θmin

k,λ )−1 (by
(89) for α = 1), one obtains (97) for x < 0.

(IIb) Pointwise estimates the λ-derivative of the functions wk,λ,±1(x, y) and ∂xwk,λ,±1(x, y).

Lemma 19. Let z ∈ Z \ {ee} and [a, b] ⊂ R \ σexc such that Λz([a, b]) 6= ∅. Then, for j ∈ Jz, one has
for all (k, λ) ∈ Λz([a, b]) the following pointwise estimates

∀(x, y) ∈ R2, |∂λwk,λ,j(x, y)| . (θmin
k,λ )−

5
2 (1 + |x|), . (104)

∀ (x, y) ∈ R∗ × R, |∂λ∂xwk,λ,j(x, y)| . (θmin
k,λ )−

3
2 (1 + |x|). (105)

If moreover ±Ωc /∈ [a, b], (104) can be improved into

∀(x, y) ∈ R2, |∂λwk,λ,j(x, y)| . (θmin
k,λ )−

3
2 (1 + |x|). (106)

Proof. As in Lemma 18, we give only the proof for j = 1. We naturally separate this proof in three steps.

Step 1 : proof of (104). It follows from the formula (32) for wk,λ,1 that:

|∂λwk,λ,1(x, y)| . |∂λAk,λ,1| |ψk,λ,1(x)|+ |Ak,λ,1| |∂λψk,λ,1(x)|. (107)

One one hand, we have the estimate (93) for ∂λAk,λ,1, namely

|∂λAk,λ,1| . (θmin
k,λ )−

5
2 . (108)

On the other hand, we already showed (see (74) in the proof of proposition 14, used for γ = 1)

∀ x ∈ R, |ψk,λ,1(x)| ≤ 1 + |x|. (109)

Next, using |θ−k,λ|+ |θ
+
k,λ| ≥ |θ

−
k,λ| in (64), we deduce

|Ak,λ,1| . |θ−k,λ|
− 1

2 . (θmin
k,λ )−

1
2 , (110)

while, from Lemma 18 (estimate (96)), we also have

∀ x ∈ R,
∣∣∂λψk,λ,1(x)

∣∣ . (θmin
k,λ )−2 (1 + |x|).

Finally, using (108, 109, 110, 3.3.2) in (107) yields (104).
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Step 2 : proof of (105). Using (32) again, one has for all x ∈ R∗ and y ∈ R:

|∂λ∂xwk,λ,1(x, y)| ≤ |∂λAk,λ,1|
∣∣∂xψk,λ,1(x)

∣∣+ |Ak,λ,1|
∣∣∂λ∂xψk,λ,1(x)

∣∣. (111)

For the first term, we have to be careful since using directly would lead to a non optimal estimate. Instead
of this, we have to take profit of the cancellation of terms when doing the product of the two estimates
(71) (established in section 3.2, proof of proposition 14) and (92), namely

∣∣∂xψk,λ,1(x)
∣∣ . |θ−k,λ|+ |θ+

k,λ|, |∂λAk,λ,1| .
|θ−kλ|−

3
2

|θ−k,λ|+ |θ
+
k,λ|

+ |θ−k,λ|
1
2

|θ−k,λ|−1 + |θ+
k,λ|−1

(|θ−k,λ|+ |θ
+
k,λ|)2

which yields

|∂λAk,λ,1|
∣∣∂xψk,λ,1(x)

∣∣ . |θ−kλ|−
3
2 + |θ−k,λ|

1
2

|θ−k,λ|−1 + |θ+
k,λ|−1

|θ−k,λ|+ |θ
+
k,λ|

. (θmin
k,λ )−

3
2 . (112)

The second term is easier. We simply combine (110) with the estimate (97) of Lemma 18, namely

∣∣∣∂λ∂xψk,λ,1(x)
∣∣∣ . (1 + |x|) (θmin

k,λ )−1.

to obtain
|Ak,λ,1|

∣∣∂λ∂xψk,λ,1(x)
∣∣ . (1 + |x|) (θmin

k,λ )−
3
2 . (113)

Finally, (105) follows from (111), (112) and (113).

Step 3: proof of (106). Since ±Ωc /∈ [a, b], we can use the improved estimates (94) for ∂λAk,λ,1 (instead
of (93)) and with (107) and (109), one obtains:

|∂λwk,λ,1(x, y)| . (θmin
k,λ )−

3
2 (1 + |x|) + |Ak,λ,1|

∣∣∂λψk,λ,1(x)
∣∣. (114)

For the second term of the right hand side of (114), combining (64) and (95) leads to:

|Ak,λ,1| |∂λψk,λ,1(x)| . (|θ−k,λ|+ |θ
+
k,λ|)

−1
( |θ−k,λ|

1
2

|θ+
k,λ|

+
1

|θ−k,λ|
1
2

+
|θ+
k,λ|

|θ−k,λ|
3
2

)
(1 + |x|), ∀x ∈ R.

We point out that in the last expression, we use the more precise inequality (95) instead of (96) to
simplify in the product a |θ−k,λ|−1/2 term. As (|θ−k,λ| + |θ

+
k,λ|)−1 . 1 (since ±Ωc /∈ [a, b]), |θ∓k,λ| . 1 and

|θ±k,λ|−1 . (θmin
k,λ )−1, one deduces that:

|Ak,λ,1| |∂λψk,λ,1(x)| . (θmin
k,λ )−

3
2 (1 + |x|), ∀x ∈ R. (115)

Combining (114) and (115) yields finally the estimate (106).

(IIc) Hölder-type estimates for Wk,λ,±1.

We are now in position to prove our “Hölder type” inequalities for Wk,λ,±1.

Proposition 20. Let s > 1/2, z ∈ Z \ {ee}, γ ∈ (0, 1] ∩ (0, s − 1/2) and [a, b] ⊂ R \ σexc such that
Λz([a, b]) 6= ∅. Then, there exists Cγa,b > 0 such that for j ∈ Jz:

‖Wk,λ′,j−Wk,λ,j‖H−s ≤ C
γ
a,b sup

λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
1
2−2γ |λ′−λ|γ , ∀(k, λ), (k, λ′) ∈ Λz([a, b]) and λ ≤ λ′. (116)

If moreover, ±Ωc /∈ [a, b] , then there exists Cγa,b > 0 such that for j ∈ Jz:

‖Wk,λ′,j−Wk,λ,j‖H−s ≤ C
γ
a,b sup

λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
1
2−γ |λ′−λ|γ , ∀(k, λ), (k, λ′) ∈ Λz([a, b]) and λ ≤ λ′. (117)
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Proof. We detail the proof for j = 1 (j = −1 follows by “symmetry arguments”). Let us first prove (116).

We proceed as explained in observation 3 at the beginning of this section. First of all, by using the mean
value Theorem and the estimate (104) for ∂λwk,λ,1(x, y), one gets:

|wk,λ′,1(x, y)− wk,λ,1(x, y)| . (1 + |x|) sup
λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
5
2 |λ′ − λ|. (118)

On the other hand, from the pointwise estimate (68) for wk,λ,1, we also have (by simply bounding the
modulus of the difference by the sum of the moduli):

|wk,λ′,1(x, y)− wk,λ,1(x, y)| . sup
λ̃∈[λ,λ′]

(θmin
k,λ )−

1
2 . (119)

Interpolating between (118) and (119) with γ ∈ (0, 1] , we get, as γ (− 5
2 ) + (1− γ)(− 1

2 ) = − 1
2 − 2γ,

|wk,λ′,1(x, y)− wk,λ,1(x, y)| . (1 + |x|)γ sup
λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
1
2−2γ |λ′ − λ|γ . (120)

Thus, as x 7→ (1 + |x|)γ ∈ L2
−s(R2) thanks to γ < s− 1/2, (120) implies:

‖wk,λ′,1 − wk,λ,1‖L2
−s(R2) . sup

λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
1
2−2γ |λ′ − λ|γ , ∀(k, λ), (k, λ′) ∈ Λz([a, b]) and λ ≤ λ′. (121)

With the additional assumption that ±Ωc /∈ [a, b], we can use the better inequality (106) for ∂λwk,λ,1
instead of (104) , which leads to an improved version of (118) where −5/2 is replaced by −3/2. Interpo-
lating again with (119), one obtains that for any γ ∈ (0, 1]:

‖wk,λ′,1 − wk,λ,1‖L2
−s(R2) . sup

λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
1
2−γ |λ′ − λ|γ , ∀(k, λ), (k, λ′) ∈ Λz([a, b]) and λ ≤ λ′. (122)

The estimate (121) (resp. (122)) is nothing but the inequality (116) (resp. (117)) for the first component
wk,λ,1 of Wk,λ,1. It remains to show similar estimates for the other five components of Wk,λ,1.

According to (33), the second component of Wk,λ,1 is k (λµλ)−1 wk,λ,1. On one hand, the coefficient

k (λµλ)−1 is bounded and smooth on the compact set Λz([a, b]). On the other hand from (69), one has
for α = γ or 2γ:

‖wk,λ,1‖L2
−s(R2) . (θmin

k,λ )−1/2 . sup
λ̃∈[λ,λ′]

(θmin
k,λ̃

)−1/2−α, ∀(k, λ), (k, λ′) ∈ Λz([a, b]).

Thus, from (121) (resp. (122)), one derives for the second component (seen as the product of k (λµλ)−1

by wk,λ,1) an Hölder estimate of the form (121) (resp. (122) if ±Ωc /∈ [a, b]).
The third component of Wk,λ,1 is given by i/(µλ λ) ∂xwk,λ,1. We first establish an estimates of the

form (121) for ∂xwk,λ,1. To do so, we proceed as for wk,λ,1 at the beginning of this proof. First, by using
the mean value Theorem and the estimate (105) for ∂λ∂xwk,λ,1(x, y), one gets:

|∂xwk,λ′,1(x, y)− ∂xwk,λ,1(x, y)| . (1 + |x|) sup
λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
3
2 |λ′ − λ|, (123)

which is “better” than the same for wk,λ,1 (cf. (118)) since (θmin
k,λ )−

5
2 is replaced by (θmin

k,λ )−
3
2 .

On the other hand, it follows from the estimate (72) (since |λµλ| . 1) that

|(∂xwk,λ′,1 − ∂xwk,λ,1)(x, y)| ≤ |∂xwk,λ′,1(x, y)|+ |∂xwk,λ,1(x, y)| . |θ−k,λ|
1
2 + |θ−k,λ′ |

1
2 . 1. (124)

The interpolation between (123) and (124) leads to

|∂xwk,λ′,1(x, y)− ∂wk,λ,1(x, y)| . (1 + |x|)γ sup
λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
3
2 γ |λ′ − λ|γ ,
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and yields

‖∂xwk,λ′,1−∂xwk,λ,1‖L2
−s(R2) . sup

λ̃∈[λ,λ′]

(θmin
k,λ̃

)−
3
2γ |λ′−λ|γ , ∀(k, λ), (k, λ′) ∈ Λz([a, b]) and λ ≤ λ′. (125)

Moreover, (124) implies that ‖∂xwk,λ,1‖L2
−s(R2) . 1 and λ 7→ i/(µλ λ) is smooth in λ on Λz([a, b]). Thus,

the third component i/(µλ λ) ∂xwk,λ,1 (seen as the product of i/(µλ λ) by ∂xwk,λ,1) satisfies also an
estimate of the form (125). We point out that

(θmin
k,λ̃

)−
3
2γ . (θmin

k,λ̃
)−

1
2−γ for γ ≤ 1,

thus the weaker estimates (121) and (122) hold for the third component (which is less singular than than
the first one).

Finally, the last three components are 0 for x < 0 and proportional with a coefficient that is smooth
and bounded in λ to the first three components for x > 0 (see (33)). Thus, the estimates on these
components are obtained by using the estimates on the three first components and (62).

3.3.3 Generalized eigenfunctions of the lineic spectral zone

According to what we said in section 3.3.1, in order to obtain the desired H−s-estimates (86) for Wk,λ,0

via the pointwise estimates (87), we shall first obtain estimates of the λ-derivatives of the functions:

λ 7→ w±kE(λ),λ,0(x, y) and λ 7→ ∂xw±kE(λ),λ,0(x, y). (126)

By parity arguments in k, we only need to give the proofs of these estimates for k = ke(λ).
The forthcoming estimates will be established for Ωe 6= Ωm, z = ee, j = 0 and (k, λ) ∈ Λee([a, b])

where [a, b] ⊂ R\σexc is such that Λee([a, b]) 6= ∅. In particular, ±Ωp /∈ [a, b] which ensures that Λee([a, b])
is a bounded subset of Λee, whereas the fact that 0 /∈ [a, b] implies that all points of [a, b] have the same
sign. Moreover, as Λee([a, b]) does not intersect the lines λ = 0 and λ = ±Ωm, the functions λ 7→ µ+(λ)−1

and λ 7→ λ−1 are bounded and C∞ smooth with respect to λ on the compact set Λee([a, b]). Concerning
the regularity of the function λ 7→ ke(λ) (defined by (28)) that appears in (126), it is continuous (by the
bijection theorem) on [Ωc,+∞[ with value ke(Ωc) = kc at λ = Ωc. Furthermore, as λe is C∞ on [kc,+∞]
and λ′e(k) 6= 0 on this interval, using the inversion theorem, λ 7→ ke(λ) is C∞ on (Ωc,+∞[ but also on
[Ωc,+∞[ since λ′e(kc) 6= 0. As ke is even, ke is C∞ for |λ| ∈ [Ωc,+∞[. It implies in particular that
|ke(λ)| . 1 and |k′e(λ)| . 1 on Λee([a, b]).

(I) Preliminary λ-derivatives estimates.

(Ia) Derivative of powers of θ±k,λ.

∣∣∂λ
(
θ±k,λ

)α∣∣ . (θ+
k,λ)α−2, ∀ (k, λ) ∈ Λee([a, b]), (127)

(where we recall that θ±k,λ > 0 in Λee, see (24,25)). Using the chain rule formula, one can write somewhat
abusively (see Remark 21):

∂λ(θ±ke(λ),λ)α = ∂λ(Θ±ke(λ),λ)
α
2 =

α

2

[
∂kΘ±ke(λ),λ k

′
e(λ) + ∂λΘ±ke(λ),λ

]
(θ±ke(λ),λ)α−2. (128)

The quantity inside brackets is a continuous function of λ and is thus bounded, hence it follows that
∣∣∂λ(θ±ke(λ),λ)α

∣∣ . (θ±ke(λ),λ)α−2.

This yields (127) since the dispersion relation (26) (or equivalently the definition of Λee):

θ−ke(λ),λ = −(µ−λ /µ
+
λ ) θ+

ke(λ),λ

implies that θ−ke(λ),λ . θ+
ke(λ),λ.
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Remark 21. The reader will note that in sections 3.3.3 and 5.4 the symbol ∂λ is used somewhat abusively
for the total derivative d/dλ except in equations (128) and (207) where ∂λΘ±ke(λ),λ is the partial derivative

in λ of the function (k, λ) 7→ Θ±k,λ evaluated at (ke(λ), λ).

(Ib) Derivatives of powers of Ak,λ,0: we show that

∣∣∂λAk,λ,0
∣∣ . (θ+

k,λ)−
3
2 , ∀(k, λ) ∈ Λee([a, b]). (129)

We first rewrite the expression (38) of Ake(λ),λ,0 in the form

Ake(λ),λ,0 = (θ+
ke(λ),λ)

1
2 Be(λ),

where λ 7→ Be(λ) is of class C∞ in [Ωc,+∞). Differentiating with respect to λ, one gets:

∂λAke(λ),λ,0 = ∂λ(θ+
ke(λ),λ)

1
2 Be(λ) + (θ+

ke(λ),λ)
1
2 ∂λBe(λ).

As Be(λ), ∂λBe(λ), and θ+
ke(λ),λ are bounded in [a, b], using (127) for α = 1/2 we deduce (129).

(II) Pointwise estimates of ∂λ
(
wk,λ,0(x, y)

)
and ∂λ

(
∂xwk,λ,0(x, y)

)
.

Lemma 22. Let Ωe 6= Ωm and [a, b] ⊂ R \ σexc such that Λee([a, b]) 6= ∅. Then one has for all
(k, λ) ∈ Λee([a, b]) the following pointwise estimates:

∀(x, y) ∈ R2,
∣∣∂λ
(
wk,λ,0(x, y)

)∣∣ . (θ+
k,λ)−

3
2 (1 + |x|+ |y|), (130)

∀ (x, y) ∈ R∗ × R,
∣∣∂λ
(
∂xwk,λ,0(x, y)

)∣∣ . (θ+
k,λ)−

3
2 (1 + |x|+ |y|). (131)

Proof. Step 1 : proof of (130). From the expression (32) of wke(λ),λ,0, one has

|∂λ
(
wke(λ),λ,0(x, y)

)
| ≤

∣∣∂λ
(
Ake(λ),λ,0

)
ψke(λ),λ,0(x)

∣∣+
∣∣Ake(λ),λ,0 ∂λ

(
ψke(λ),λ,0(x)eike(λ)y

)∣∣. (132)

We bound now the two terms of the right hand side of (132). First, |ψke(λ),λ,0(x)| = e−θke(λ),λ,0(x) |x| ≤ 1
(cf. (38)), thus by (129), one gets:

|∂λ
(
Ake(λ),λ,0

)
ψke(λ),λ,0(x)| . (θ+

ke(λ),λ)−
3
2 . (133)

Then, for the second term, one computes the expression of ∂λ(ψke(λ),λ,0(x)eike(λ)y):

∂λ(ψke(λ),λ,0(x) eike(λ)y) =
[
∓ ∂λθ±ke(λ),λ x+ i k′e(λ)y

]
ψke(λ),λ,0(x) eike(λ)y for ± x ≥ 0, y ∈ R. (134)

As |ψke(λ),λ,0(x)| ≤ 1, |k′e(λ)| . 1 and θ+
ke(λ),λ . 1, by applying (127) for α = 1, it follows:

|∂λ(ψke(λ),λ,0(x) eiky)| . (|x|+ |y|) (θ+
ke(λ),λ)−1, ∀(x, y) ∈ R2.

The coefficient Ake(λ),λ,0 satifies |Ake(λ),λ,0| . 1 (see (37)), hence it leads to

|Ake(λ),λ,0 ∂λ
(
ψke(λ),λ,0(x)

)
| . (|x|+ |y|) (θ+

ke(λ),λ)−1, ∀(x, y) ∈ R2. (135)

As (θ+
ke(λ),λ)−1 . (θ+

ke(λ),λ)−3/2, combining (132), (133) and (135) yields the estimate (130).

Step 2 : proof of (131). From the expression (32,37,38) of wke(λ),λ,0, one has

∂xwke(λ),λ,0(x, y) = ∓θ±ke(λ),λwke(λ),λ,0(x, y) for ±x > 0 and y ∈ R.

We let the reader show, by deriving in λ this product, that (131) is a consequence of the estimates: (127)
for α = 1, (130) and

|θ±ke(λ),λ| . 1 and |wke(λ),λ,0(x, y)| = Ake(λ),λ,0 ψke(λ),λ,0(x) . 1, ∀(x, y) ∈ R2.
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Thanks to the previous estimates, we are now able to give Hölder type inequalities for Wk,λ,0 in the
following proposition.

Proposition 23. Let Ωe 6= Ωm, s > 1/2, γ ∈ (0, 1] ∩ (0, s − 1/2) and [a, b] ⊂ R \ σexc such that
Λee([a, b]) 6= ∅. Then, there exists a constant Cγa,b > 0 such that for all (±ke(λ), λ), (±ke(λ′), λ′) ∈
Λee([a, b]) and λ ≤ λ′, one has:

‖W±ke(λ′),λ′,0 −W±ke(λ),λ,0‖H−s ≤ C
γ
a,b sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)

1−γ
2 sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)−

3
2γ |λ′ − λ|γ . (136)

Moreover, if ±Ωc /∈ [a, b], there exists Cγa,b > 0 such that for all (±ke(λ), λ), (±ke(λ′), λ′) ∈ Λee([a, b]) and λ ≤
λ′:

‖W±ke(λ′),λ′,0 −W±ke(λ),λ,0‖H−s ≤ C
γ
a,b |λ

′ − λ|γ . (137)

Proof. Step 1: proof of (136) and (137) for the first component wk,λ,0 of Wk,λ,0. We use in this proof
the notations k = ke(λ) and k′ = ke(λ′). From the mean value Theorem and the estimate and (130) (and
the parity of θ+

k,λ with repsect to k), one gets:

|w±k′,λ′,0(x, y)− w±k,λ,0(x, y)| . (1 + |x|+ |y|) sup
λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)−

3
2 |λ′ − λ|, ∀(x, y) ∈ R2. (138)

Then using (76), one immediately obtains:

|w±k,λ′,0(x, y)− w±k,λ,0(x, y)| ≤ (θ+
k′,λ′)

1
2 + (θ+

k,λ)
1
2 . sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)

1
2 (139)

Thus, interpolating inequalities (138) and (139) leads to

|w±k′,λ′,0(x, y)− w±k,λ,0(x, y)| . sup
λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)

1−γ
2 sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)−

3γ
2 |λ′ − λ|γ(1 + |x|+ |y|)γ ,

for all (x, y) ∈ R2, (k, λ), (k′, λ′) ∈ Λee([a, b]) and λ ≤ λ′ and γ ∈ (0, 1]. As (x, y) → (1 + |x| + |y|)γ ∈
L2
−s(R2) for 0 < γ < s− 1/2, one obtains:

‖w±k′,λ′,0 − w±k,λ,0‖L2
s(R2) . sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)

1−γ
2 sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)−

3γ
2 |λ′ − λ|γ , (140)

for (k, λ), (k′, λ′) ∈ Λee([a, b]) and λ ≤ λ′ and γ ∈ (0, 1] ∩ (0, s− 1/2). Now, if one makes the additional
assumption that ±Ωc /∈ [a, b], it implies that the crosspoints do not belongs to the set Λee([a, b]). Thus,
Λee([a, b]) is not only a bounded set but also a compact set of Λee where θ+

k,λ is a continuous function
that does not vanish and therefore the estimate (140) simplifies to

‖w±k′,λ′,0 − w±k,λ,0‖L2
s(R2) . |λ′ − λ|γ . (141)

(140) and (141) are nothing but the estimates (136) and (137) for the first component wk,λ,0 of the Wk,λ,0.

Step 2 : Generalization to other components. The estimates of the other components can be performed
in the same way. More precisely, the second component: k wk,λ,0/(µλλ) is the product of the smooth and

bounded function λ 7→ k/(µλλ) for (k, λ) ∈ Λee([a, b]) by wk,λ,0. Thus, as ‖wk,λ,0‖L2
s(R2) . (θ+

k,λ)
1
2 (by

(76)), an estimate of the form (140) (resp. (141) if ±Ωc /∈ [a, b]) is derived for k wk,λ,0/µλ by using (140)
(resp. (141) if ±Ωc /∈ [a, b]).

The third component is the product of the partial derivative of ∂xwk,λ,0 by i/(µλ λ). Thus, in a first
time, one performs exactly the same reasoning as in step 1 by using the second estimate of (76) and (131)
(instead of (130)) to obtain the estimates (140) and (141) if ±Ωc /∈ [a, b] but for ∂xw±k,λ,0 instead of
w±k,λ,0. In a second time, using again the second estimate of (76), one observes that the multiplication
by the smooth and bounded coefficient in λ: i/(µλ λ) only change the constant Cγa,b in these estimates.

Finally, the last three components are 0 for x < 0 and proportional with a coefficient that is smooth and
bounded in λ to the first three components for x > 0 (see (33)). Thus, the estimates on these components
are obtained by using the estimates on the three first components and (75).
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3.4 Proof of Theorem 9

3.4.1 The various components of the spectral density

We have now all the ingredients to prove the Hölder regularity of the spectral density, that is to say
the local Hölder estimate (55) for [a, b] 3 λ 7→ Mλ ∈ B(Hs,H−s) where [a, b] is a bounded interval of
R \ σexc. We are going to prove this estimate for the various components of the spectral density which
appear in its expression (49) (if Ωe 6= Ωm), that we rewrite in the form

Mλ =
∑

z∈Z
Mz
λ where (142)

Mz
λU :=

∑

j∈Jz

∫

Λz(λ)

〈U ,Wk,λ,j〉s Wk,λ,j dk if z ∈ Z \ {ee} and (143)

Mee
λ U :=

∑

k∈Λee(λ)

Je(λ) 〈U ,Wk,λ,0〉sWk,λ,0, (144)

where the last component Mee
λ has to be removed if Ωe = Ωm (see (53)). Thus the aim of this section is

to prove that for all z ∈ Z and all γ ∈ Γ[a,b] (see (18)), we have

∀λ, λ′ ∈ [a, b],
∥∥Mz

λ′U −Mz
λU
∥∥
H−s

. |λ′ − λ|γ ‖U‖Hs . (145)

The fact that the set Γ[a,b] of possible Hölder exponents depends on [a, b] will become clear in the following.
We must distinguish three cases, denoted by (A), (B) and (C), depending on the position of {±Ωe,±Ωc}
with respect to the interval [a, b]:

(A) : [a, b] ∩ {±Ωe,±Ωc} = ∅,

(B) : [a, b] ∩ {±Ωe} 6= ∅ and [a, b] ∩ {±Ωc} = ∅,

(C) : [a, b] ∩ {±Ωc} 6= ∅.

(146)

The reader will easily check that these cases are mutually exclusive and cover all possibilities. According
to (18), we have

Γ[a,b] :=

{ (
0,min(s− 1/2, 1)

)
in case (A),

(
0,min(s− 1/2, 1/2)

)
in cases (B) and (C).

In the following, §3.4.2 and 3.4.3 are devoted to the proof of (145) for z ∈ Z \ {ee}, whereas §3.4.4 deals
with the case z = ee. Recall that the points of σexc (see (12)) are always excluded from the considered
interval [a, b] ⊂ R. Moreover, as Γ[a,b] depends on whether [a, b] contains ±Ωe or ±Ωc, we will assume for
simplicity that when [a, b] contains one of these points (that is, in cases (B) or (C)), it is located at the
boundary of the interval, i.e., equal to a or b. There is no loss of generality since, in order to prove (145),
it suffices to prove the same property separately for two intervals [a, c] and [c, b] with c ∈ (a, b). Then,
(145) follows from the triangle inequality and the fact that

∀λ ∈ [a, c], ∀λ′ ∈ [c, b], |λ′ − c|γ + |c− λ|γ ≤ 2 |λ′ − λ|γ .

3.4.2 Components related to the surface spectral zones

We focus here on the proof of (145) for z ∈ Z \ {ee}. From (143), we see that we have to estimate
the difference between two integrals defined of different domains, one on Λz(λ), the other on Λz(λ

′).
Each of both contains a common part Λz(λ) ∩ Λz(λ

′) and an own part, respectively, Λz(λ) \ Λz(λ
′) and

Λz(λ
′) \ Λz(λ) (some of these sets may be empty). Hence we can write

Mz
λ′U −Mz

λU = Dz
λ∩λ′U + Dz

λ′\λU − Dz
λ\λ′U , (147)
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Figure 2: Case where Ωm < Ωe and [a, b] ⊂ (Ωp,Ωc).

where we have denoted

Dz
λ∩λ′U :=

∑

j∈Jz

∫

Λz(λ)∩Λz(λ′)

{
〈U ,Wk,λ′,j〉s Wk,λ′,j − 〈U ,Wk,λ,j〉s Wk,λ,j

}
dk, (148)

Dz
λ\λ′U :=

∑

j∈Jz

∫

Λz(λ)\Λz(λ′)

〈U ,Wk,λ,j〉s Wk,λ,j dk. (149)

Figure 2 illustrates the various sets involved in these integrals in the particular case where

Ωm < Ωe and [a, b] ⊂ (Ωp,Ωc). (150)

In this situation, we have Λdd([a, b]) = Λde([a, b]) = ∅, so that (145) has to be proved for z = di
and ei. For λ and λ′ in [a, b] with λ < λ′, the gray areas in Figure 2 represent the sets Λz([λ, λ

′])
for z = di and ei (more precisely their intersections with the half-plane k > 0), whose lower and
upper boundaries are respectively Λz(λ) × {λ} and Λz(λ

′) × {λ′}. The common part of the domains of
integration corresponds to the rectangles in light gray defined by

(
Λz(λ) ∩ Λz(λ

′)
)
× [λ, λ′], whereas the

own parts are associated to the triangles in dark gray. For z = di, we see that Λdi(λ) \Λdi(λ
′) = ∅ while

Λdi(λ
′) \ Λdi(λ) = (k0(λ), k0(λ′)) corresponds to the upper boundary of the dark triangle. For z = ei,

the situation is reversed: Λei(λ
′) \ Λei(λ) = ∅ while Λei(λ

′) \ Λei(λ) = (k0(λ), k0(λ′)) ∪ (ki(λ
′), ki(λ))

corresponds to the lower boundaries of the two triangles.
Step 1. In the general case of an interval [a, b] ⊂ R \ σexc, we first consider the part (148) associated

with the common domain of integration. Let us prove that it satisfies the Hölder estimate (145), i.e.,

∀λ, λ′ ∈ [a, b],
∥∥Dz

λ∩λ′U
∥∥
H−s

. |λ′ − λ|γ ‖U‖Hs , (151)

for γ ∈ Γ[a,b]. Using the equality

〈U ,Wk,λ′,j〉s Wk,λ′,j − 〈U ,Wk,λ,j〉s Wk,λ,j

= 〈U , {Wk,λ′,j −Wk,λ,j}〉s Wk,λ′,j + 〈U ,Wk,λ,j〉s {Wk,λ′,j −Wk,λ,j},

we infer that

∥∥Dz
λ∩λ′U

∥∥
H−s

≤
(∑

j∈Jz

∫

Λz(λ)∩Λz(λ′)

dλ,λ′,j(k) dk
)
‖U‖Hs where (152)

dλ,λ′,j(k) :=
{∥∥Wk,λ′,j

∥∥
H−s

+
∥∥Wk,λ,j

∥∥
H−s

} ∥∥Wk,λ′,j −Wk,λ,j

∥∥
H−s

. (153)

We see here that the Hölder regularity of Dz
λ∩λ′ requires both the pointwise estimates and the Hölder

regularity of the generalized eigenfunctions. Indeed, dλ,λ′,j(k) can be estimated thanks to Propositions
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14 and 20. We rewrite inequalities (62) and (63), as well as the Hölder estimates (116) and (117) in the
following condensed expressions, valid for γ ∈ (0, 1] ∩ (0, s− 1/2), j ∈ Jz and for all (k, λ) and (k, λ′) in
Λz([a, b]) with λ ≤ λ′:

∥∥Wk,λ,j

∥∥
H−s

.
∣∣θ−jk,λ

∣∣α and (154)

∥∥Wk,λ′,j −Wk,λ,j

∥∥
H−s

. sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)α′ |λ′ − λ|γ ,

where we have denoted

(α, α′) :=

{
(−1/2 + γ,−1/2− γ) if [a, b] ∩ {±Ωc} = ∅,
(−1/2,−1/2− 2γ) if [a, b] ∩ {±Ωc} 6= ∅.

(155)

Combining these estimates, we obtain

dλ,λ′,j(k) .
(

sup
λ̃∈[λ,λ′]

∣∣θ−j
k,λ̃

∣∣α
) (

sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)α′) |λ′ − λ|γ .

Hence (151) will be proved once we have verified that the integral on Λz(λ)∩Λz(λ
′) of the above product

of suprema is bounded by a constant depending only on a, b and γ. This is the object of Lemma 24
presented in §3.4.3.

Step 2. Let us prove now the Hölder regularity of the part Dz
λ\λ′ defined in (149), that is,

∀λ, λ′ ∈ [a, b],
∥∥Dz

λ\λ′U
∥∥
H−s

. |λ′ − λ|γ ‖U‖Hs . (156)

We no longer assume here that λ < λ′, which allows us to simultaneously treat both quantities Dλ′\λ
and Dλ\λ′ involved in (147). We are going to see that property (156) follows now from the smallness of
the domain of integration (as |λ′ − λ| → 0) and the bounds of the generalized eigenfunctions given by
Proposition 14.

From the definition (149), we have

∥∥Dz
λ\λ′U

∥∥
H−s

≤
(∑

j∈Jz

∫

Λz(λ)\Λz(λ′)

∥∥Wk,λ,j

∥∥2

H−s
dk
)
‖U‖Hs .

Using (154) then yields

∥∥Dz
λ\λ′U

∥∥
H−s

.
(∑

j∈Jz

∫

Λz(λ)\Λz(λ′)

|θ−jk,λ|
2α dk

)
‖U‖Hs .

The object of Lemma 25, that is also presented in §3.4.3, is to prove that

∑

j∈Jz

∫

Λz(λ)\Λz(λ′)

|θ−jk,λ|
2α dk . |λ′ − λ|γ ,

for any γ ∈ Γ[a,b], which completes the proof of (156). Combining (147), (151) and (156) shows (145) for
z ∈ Z \ {ee}.

3.4.3 Two technical lemmas

We gather in this subsection the results about integrals of functions θ+
k,λ and θ−k,λ that are needed in the

above proof of the Hölder regularity of the components of the spectral density which are related to the
surface spectral zones. The main ingredients are the estimates (78) and (79).

Lemma 24. Let z ∈ Z \ {ee}, [a, b] ⊂ R \ σexc and γ ∈ Γ[a,b]. Then for j ∈ Jz and for all λ, λ′ ∈ [a, b]
such that λ < λ′, we have, with α and α′ defined in (155).

∫

Λz(λ)∩Λz(λ′)

(
sup

λ̃∈[λ,λ′]

∣∣θ−j
k,λ̃

∣∣α
) (

sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)α′)
dk . 1. (157)
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Proof. We distinguish here the various cases (A), (B) and (C) defined in (146), which will be themselves
divided in several subcases. In most of the subcases, the estimate (157) will be deduced from a stronger
result, namely (the fact that (158) implies (157) is explained just below)

∫

Λz(λ)∩Λz(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣β dk . 1 and

∫

Λz(λ)∩Λz(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣β dk . 1, (158)

where
β := min(α, 0) + α′ = min(−1,−1/2− γ) ≤ −1. (159)

However, in some particular subcases, (158) will not be true any longer and (157) will have to be proven
directly in a different manner that will be explained separately.

To see why (158) implies (157), we remark that |θ±k,λ|−1 ≤ (θmin
k,λ )−1 implies |θ±k,λ|α ≤ (θmin

k,λ )α if α < 0.

On the other hand, |θ±k,λ| being bounded, |θ±k,λ|α . 1 if α ≥ 0. Gathering these two observations gives

sup
λ̃∈[λ,λ′]

∣∣θ±
k,λ̃

∣∣α . sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)min(α,0)
.

Consequently, by definition (159) of β

sup
λ̃∈[λ,λ′]

∣∣θ−j
k,λ̃

∣∣α · sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)α′
. sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)min(α,0) · sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)α′
= sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)β
.

The last equality being true because both min(α, 0) and α′ are negative.

It is thus clear that (157) follows from (158) since sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)β ≤ sup
λ̃∈[λ,λ′]

|θ+

k,λ̃
|β + sup

λ̃∈[λ,λ′]

|θ−
k,λ̃
|β .

We shall also use the fact that, since β < 0, raising (78)–(79) to the power −β > 0 yields

∣∣θ−
k,λ̃

∣∣β ≤ k0(λ̃)β/2
∣∣|k| − k0(λ̃)

∣∣β/2,
∣∣θ+

k,λ̃

∣∣β ≤
∣∣k+(λ̃)

∣∣β/2 ∣∣|k| − k+(λ̃)
∣∣β/2. (160)

Case (A). This corresponds [a, b] ∩ {±Ωe,±Ωc} = ∅ and Γ[a,b] =
(
0,min(s − 1/2, 1)) (cf. (18)). We

shall additionnally consider the particular case (150) illustrated by Figure 2. The reader will rely on the
authors about the fact that this case actually involves all the technical difficulties that can be met in all
other situations of case (A).

In this particular case, we are going to prove (158) for z = ei and di, the only zones that intersect
[a, b]× R (see Figure 2). In the following, λ and λ′ denote two points of [a, b] such that λ < λ′.

(i) The case z = di. Figure 2 shows that Λdi(λ) ∩ Λdi(λ
′) = (−k0(λ),+k0(λ)). As k+(λ̃) = ki(λ̃) (by

definition (77) of k+(λ) for |λ| ≤ min(Ωe,Ωm)), and as both functions k0(λ̃)β/2 and ki(λ̃)β/2 are bounded
(since {0,±Ωm,±Ωe} ∩ [a, b] = ∅), we deduce from (160) that

(a)
∣∣θ−
k,λ̃

∣∣β .
∣∣|k| − k0(λ̃)

∣∣β/2, (b)
∣∣θ+

k,λ̃

∣∣β .
∣∣|k| − ki(λ̃)

∣∣β/2. (161)

We next prove successively the two inequalities of (158).

(i.1) As the closure of Λdi([a, b]) does not intersect the spectral cuts |k| = ki(λ̃), the right-hand side of
(161)(b) also remains bounded whatever the sign of β, thus

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣β . 1.

As λ 7→ k0(λ) is bounded on [a, b], this yields the first inequality of (158).
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(i.2) Oppositely, the right-hand side of (161)(a) tends to +∞ when |k| approaches k0(λ̃).

However as λ̃ 7→ k0(λ̃) is increasing on [a, b] and β < 0, λ̃ 7→ | |k| − k0(λ̃)|β/2 is decreasing and therefore

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣β .
∣∣|k| − k0(λ)

∣∣β/2,

from which we de deduce that
∫ +k0(λ)

−k0(λ)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣β dk .
∫ +k0(λ)

−k0(λ)

∣∣|k| − k0(λ)
∣∣β/2 dk =

2 k0(λ)β/2+1

β/2 + 1
, (162)

which is bounded since β/2 + 1 = min(1/2, 3/4− γ/2) > 0 for any γ ∈ (0, 1]∩ (0, s− 1/2) i. e. γ ∈ Γ[a,b].
Hence the second inequality of (158) is proved.

(ii) The case z = ei. In this case Λei(λ) ∩ Λei(λ
′) = (k0(λ′), ki(λ′)) ∪ (−ki(λ′),−k0(λ′)). By parity in k,

to prove (158), it suffices to consider the integrals on (k0(λ′), ki(λ′)). We use again inequalities (161), but
now both right-hand sides tend to +∞ when |k| approaches k0(λ̃) or ki(λ̃). Let us show only the first
inequality of (158), the second one can be treated in the same way. As this time λ̃ 7→ ki(λ̃) is decreasing
on [a, b], λ̃ 7→ | |k| − ki(λ̃)|β/2 is increasing. As a consequence,

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣β .
∣∣|k| − ki(λ′)

∣∣β/2,

from which we infer that, since β/2 + 1 > 0 (cf (159))

∫ ki(λ
′)

k0(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣β dk .
∫ ki(λ

′)

k0(λ′)

∣∣|k| − ki(λ′)
∣∣β/2 dk =

(
ki(λ

′)− k0(λ′)
)β/2+1

β/2 + 1
. 1,

that is to say the first inequality of (158).

Case (B). In this case, [a, b] contains +Ωe or −Ωe, not ±Ωc and Γ[a,b] =
(
0,min(s − 1/2, 1/2)

)
. To fix

ideas, we suppose that Ωe > Ωm, but it is easy to reproduce the same argument if Ωe < Ωm.

According to the last paragraph of section 3.4.1 and parity, we can restrict ourselves to a = Ωe or b = Ωe.

(B1) [a, b] = [Ωe, b]. This case is illustrated by Figure 3 (left) which shows that we have to prove (157)
for z = dd and de.

(i) The case z = dd. Figure 3 (left) then shows that Λdd(λ) ∩ Λdd(λ′) = (−kd(λ),+kd(λ)). As in case
(A), we shall prove (158).

Note first that the second inequality of (158) is easy in this case, since, as the closure of Λdd([Ωe, b]) does
not intersect the spectral cuts |k| = k0(λ̃), the arguments used in item (i.1) of case (A) for proving this
inequality apply with obvious changes.

The main difference with case (A) concerns the first inequality of (158). Indeed, the function k+(λ̃)β/2 =
kd(λ̃)β/2 is no longer bounded in [Ωe, b] (since kd(λ̃) vanishes at λ̃ = Ωe), so that (161) is no longer true.
We can use instead (160) that gives, since k+(λ̃) = kd(λ̃) for λ̃ ≥ Ωe (cf. (77))

∀ λ̃ ∈ [Ωe, b], ∀|k| 6= kd(λ̃),
∣∣θ+

k,λ̃

∣∣β ≤ kd(λ̃)β/2
∣∣|k| − kd(λ̃)

∣∣β/2.

As λ̃ 7→ kd(λ̃) is increasing on [Ωe, b], the function in the right-hand side of this inequality is a decreasing
function of λ̃ ∈ [Ωe, b] for any k ∈ (−kd(λ),+kd(λ)), therefore

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣β ≤ kd(λ)β/2
∣∣|k| − kd(λ)

∣∣β/2.
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Figure 3: Case where Ωm < Ωe with [a, b] = [Ωe, b] (left) and [a, b] = [a,Ωe] (right).

We deduce that
∫ +kd(λ)

−kd(λ)

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣β dk ≤ kd(λ)β/2
∫ +kd(λ)

−kd(λ)

∣∣|k| − kd(λ)
∣∣β/2 dk =

2 kd(λ)β+1

β/2 + 1
,

which proves the first inequality of (158) provided that β + 1 = min(0, 1/2 − γ) ≥ 0. This is why the
possible Hölder exponents γ are restricted to the interval (0,min(1/2, s − 1/2)) in this situation (recall
that γ = 1/2 is not considered here, see Appendix A.2).

(ii) The case z = de for which Λde(λ)∩Λde(λ′) = (kd(λ′), k0(λ))∪ (−k0(λ),−kd(λ′)) and Jee = {1} (by
(29)). Again, by a parity argument in k, to prove it suffices to consider the integral over (kd(λ′), k0(λ)).

The main difference with previous cases is that we can no longer prove (157) through (158) since the first
inequality of (158) becomes false. Indeed, unlike for the case (B1)(i), the measure of Λz(λ)∩Λz(λ

′) does
not shrink to 0 when λ′ → Ω+

e which makes the first integral of (158) divergent. That is why we shall
use an alternative couple of inequalities namely

∫ k0(λ)

kd(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ dk . 1 and

∫ k0(λ)

kd(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣−1
dk . 1, (163)

where we recall that α = −1/2 + γ and α′ = −1/2− γ, so that α+ α′ = −1.

The first inequality of (163) is derived from (157) for j = 1. More precisely,

sup
λ̃∈[λ,λ′]

(θmin
k,λ̃

)α
′
≤ sup
λ̃∈[λ,λ′]

|θ+

k,λ̃
|α
′
+ sup
λ̃∈[λ,λ′]

|θ−
k,λ̃
|α
′

so that, using α+ α′ = −1 with α, α′ < 0, one gets

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α · sup
λ̃∈[λ,λ′]

(
θmin
k,λ̃

)α′ ≤ sup
λ̃∈[λ,λ′]

|θ−
k,λ̃
|−1 + sup

λ̃∈[λ,λ′]

|θ−
k,λ̃
|α · sup

λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′

which shows that (163) implies (157) for j = 1 .

Let us now prove (163). For the second inequality, we can use the arguments of item (i.2) of case (A).

Only the first inequality requires a new argument. We look separately at the integrand in the left-
hand side of the second inequality of (163) on the intervals I1 :=

(
kd(λ′), (kd(λ′) + k0(λ))/2

)
and I2 :=(

(kd(λ′) + k0(λ))/2, k0(λ)
)

respectively. More precisely:
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• In I1, |θ−
k,λ̃
|−1 is bounded so sup

λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α · sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ . sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ ,

• In I2, |θ+

k,λ̃
|−1 is bounded so sup

λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α · sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ . sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α.

From the above observation, we deduce

∫ k0(λ)

kd(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ dk .
∫ k0(λ)

kd(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α dk +

∫ k0(λ)

kd(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ dk. (164)

Using again the arguments of item (i.2) in case (A), we see that the first integral of the right-hand side of
(164) is bounded. For the second integral, we come back to the definition (25) of θ+

k,λ which shows that

∀ k > kd(λ̃),
∣∣θ+

k,λ̃

∣∣α′ =
(
k2 − kd(λ̃)2

)α′/2 ≤
(
k − kd(λ̃)

)α′
.

Since α′ < 0, as λ̃ 7→ kd(λ̃) is increasing on [Ωe, b],
(
k − kd(λ̃)

)α′
is increasing and therefore

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ ≤
(
k − kd(λ′)

)α′
.

The right-hand side of this inequality is integrable in the interval (kd(λ′), k0(λ)) provided that α′ > −1,
that is, γ < 1/2. This completes the proof of (163).

(B2) [a, b] = [a,Ωe]. Figure 3 (right) tells us that we have to prove (157) only for z = de and that
Λde(λ) ∩ Λde(λ′) = (−k0(λ),+k0(λ)).

The treatment of this case is similar to the case (B1)(ii) : instead of (157), we shall prove the stronger
estimate (that differs from (163) only by integration bounds)

∫ k0(λ)

0

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣α sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ dk . 1 and

∫ k0(λ)

0

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣−1
dk . 1. (165)

The second inequality of (165) is treated exactly as in the item (i.2) of case (A). For the first one, as in
the case (B1)(ii), by splitting

(
0, k0(λ)

)
into I1 = (0, k0(λ)/2) and I2 = (k0(λ)/2, k0(λ)) to separate the

singularities at k = 0 and k = k0(λ), one shows with the same arguments that the inequality (164) holds
by replacing the interval of integration (kd(λ′), k0(λ)) by

(
0, k0(λ)

)
. Then, using the arguments of item

(i.2) in case (A), we see that the first integral of the right-hand side of (164) (with this new interval of
integration) is bounded. For the second one, from the definition (77) of k+(λ), we have

∀(k, λ̃) ∈
(
R× [a,Ωe]

)
\ {(0,Ωe)},

∣∣θ+

k,λ̃

∣∣α′ =
(
k2 +

∣∣k+(λ̃)
∣∣2
)α′/2

.

and

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣α′ ≤
(
k2 +

∣∣k+(λ′)
∣∣2
)α′/2

≤ kα
′

is integrable in the interval (0, k0(λ)) provided that α′ > −1, that is, γ < 1/2. Thus the second integral of
the right-hand side of (164) with interval of integration (0, k0(λ)) is bounded. This completes the proof.

Case (C). It remains to study the case where [a, b] contains ±Ωc, more precisely when a or b is equal
to ±Ωc. Fortunately, all the work has already been done in case (A). The same lines are still valid in
the present case, the only difference is that the parameter β defined by the first equality of (159) is now
equal to β = −1−2γ (see (155)).We have seen that the boundedness of both integrals in (158) is ensured
provided β/2 + 1 > 0 (see (162)), which explains why the possible Hölder exponents γ are restricted to
the interval (0,min(1/2, s− 1/2)) in this situation.
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Lemma 25. Let z ∈ Z \ {ee}, [a, b] ⊂ R \ σexc and γ ∈ Γ[a,b]. Then for all λ, λ′ ∈ [a, b], we have

∑

j∈Jz

∫

Λz(λ)\Λz(λ′)

∣∣θ−jk,λ
∣∣2α dk . |λ′ − λ|γ , (166)

where α is defined in (155).

Proof. We distinguish again the cases (A), (B) and (C) defined in (146). In order to use Figures 2 and 3,
we assume again that λ < λ′ and prove separately (166) for the domains Λz(λ)\Λz(λ

′) and Λz(λ
′)\Λz(λ),

which amount to the statement of the lemma.

Case (A). As in the proof of Lemma 24, we can restrict ourselves to the particular situation (150)
illustrated by Figure 2, which is representative of all cases where [a, b] ∩ {±Ωe,±Ωc} = ∅. We have to
prove (166) for z = di and ei.

(i) Let us start with the case z = di for which Jz = {−1,+1}. Figure 2 shows that Λdi(λ) \Λdi(λ
′) = ∅,

whereas Λdi(λ
′) \ Λdi(λ) = (k0(λ), k0(λ′)) ∪ (−k0(λ′),−k0(λ)) whose measure is 2(k0(λ′)− k0(λ)). Since

|k| does not approach the spectral cut |k| = ki(λ), |θ+
k,λ′ |2α . 1 whatever the sign of α. Therefore,

∫

Λdi(λ′)\Λdi(λ)

∣∣θ+
k,λ′

∣∣2α dk . |k0(λ′)− k0(λ)| . |λ′ − λ| . |λ′ − λ|γ ,

since λ→ k0(λ) is differentiable in [a, b] and γ < 1.

For θ−k,λ′ , |k| can approach the spectral cut |k| = k0(λ′), thus |θ−k,λ′ |−1 is no longer bounded. Nevertheless

∣∣θ−k,λ′
∣∣2α .

∣∣θ−k,λ′
∣∣min(2α,0)

.
∣∣|k| − k0(λ′)

∣∣α̃, α̃ := min(α, 0),

where the first inequality holds because θ−k,λ′ is bounded and the second one follows from (78). Thus

∫

Λdi(λ′)\Λdi(λ)

∣∣θ−k,λ′
∣∣2α dk .

∫ k0(λ′)

k0(λ)

∣∣|k| − k0(λ′)
∣∣α̃ dk .

(
k0(λ′)− k0(λ)

)α̃+1
. |λ′ − λ|α̃+1. (167)

As α̃+ 1 = min(γ + 1/2, 1) ≥ γ, inequality (166) follows.

(ii) Consider now the case z = ei for which Jz = {−1}. Figure 2 shows that Λei(λ
′) \ Λei(λ) = ∅,

whereas Λei(λ) \ Λei(λ
′) is composed by the set (k0(λ), k0(λ′)) ∪ (ki(λ

′), ki(λ)) and its symmetric with
respect to k = 0. For each interval, we can use the same arguments as in item (i), depending on whether
k approaches or not the spectral cut near which |θ+

k,λ|2α becomes unbounded.

Case (B). We examine now the case where a or b is equal to ±Ωe. As in the proof of Lemma 24, we
assume that Ωe > Ωm and detail the proof for a = Ωe (Figure 3) (the other cases can be done analogously).
We have to prove (166) for z = dd and de.

(i) Suppose that z = dd. Then Jz = {−1,+1}, Λdd(λ′) \ Λdd(λ) = (kd(λ), kd(λ′)) ∪ (−kd(λ′),−kd(λ))
while Λdd(λ) \ Λdd(λ′) = ∅ (Figure 3). For j = 1, as θ−k,λ′ does not vanish on Λdd[a, b]), |θ−k,λ′ |2α is
bounded and thus it follows that

∫

Λdd(λ)\Λde(λ′)

∣∣θ−k,λ′
∣∣2α dk . |kd(λ′)− kd(λ)| . |λ′ − λ|1/2 . |λ′ − λ|γ ,

since λ→ kD(λ) is 1/2-Hölder continuous in [Ωe, b] (see (169)) and γ ≤ 1/2.

Indeed, the main difference with case (A) concerns (166) for θ+
k,λ′ for the case j = −1. By definition (18)

of Γ[Ωe,b], γ < 1/2 hence α = γ − 1/2 < 0 (cf. (155)). Since k+ = kd (cf (77)), (79) implies

∣∣θ+
k,λ′

∣∣2α . kd(λ′)α
∣∣k − kd(λ′)

∣∣α.
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Therefore, we obtain

∫

Λdd(λ′)\Λdd(λ)

∣∣θ+
k,λ′

∣∣2α dk .
∫ kd(λ′)

kd(λ)

kd(λ′)α
∣∣k − kd(λ′)

∣∣α dk . kd(λ′)α
(
kd(λ′)− kd(λ)

)α+1
. (168)

Even though λ 7→ kd(λ) is no longer differentiable on [Ωe, b], it is 1/2-Hölder continuous. Indeed it is
easy to see from the definition (22) of kd(λ) that

kd(λ) =
√

2ε0 Ωe µ
+
Ωe

(λ− Ωe)1/2
(
1 + o(1)

)
as λ↘ Ωe. (169)

Hence, to get an estimate in |λ− λ′|γ , it is natural to make appear (kd(λ′)− kd(λ))2γ , which we do with
the following trick

(kd(λ′)− kd(λ))1/2+γ = (kd(λ′)− kd(λ))2γ (kd(λ′)− kd(λ))1/2−γ

that we substitute into (168) to obtain, using again α = γ − 1/2,
∫

Λdd(λ′)\Λdd(λ)

∣∣θ+
k,λ′

∣∣2α dk . F (λ, λ′)
(
kd(λ′)− kd(λ))2γ where F (λ, λ′) :=

(
1− kd(λ)

kd(λ′)

)1/2−γ
.

As γ ≤ 1/2 and F (λ, λ′) ≤ 1, this completes the proof of (166) (kd is 1/2-Hölder continuous on [Ωe, b]).

(ii) For z = de, we have Jz = {+1} and Λde(λ) \ Λde(λ′) = (kd(λ), kd(λ′)) ∪ (−kd(λ′),−kd(λ)) (see
Figure 3). Since θ−k,λ does not vanish, this case can be treated as the case (B)(i) for j = 1.

On the other hand Λde(λ′) \Λde(λ) = (k0(λ), k0(λ′))∪ (−k0(λ′),−k0(λ)). This case can be dealt with as
in case (A)-(i), see (167).

Case (C). As in the proof of Lemma 24, the only difference with case (A) is that the parameter α is
now defined by α = −1/2 (see (155)). Hence the most restrictive situation corresponds to (167) with
α+ 1 = 1/2, which shows that all Hölder exponents γ ∈ (0,min(1/2, s− 1/2)) are allowed here.

3.4.4 Component related to the lineic spectral zone

We focus now on the proof of (145) for z = ee, which has to be considered only if Ωe 6= Ωm. We consider
a positive interval

[a, b] ⊂

{
[Ωc,Ωp) if Ωe < Ωm,

(Ωp,Ωc] if Ωe > Ωm,

but of course, the same approach applies for negative intervals. We can reduce to such intervals since
Λee(λ) = Λee(λ′) = ∅ for |λ|, |λ′| /∈

(
min(Ωc,Ωp),max(Ωc,Ωp)

)
and thus Mee

λ = Mee
λ′ = 0 for these values

of λ and λ′ (see Figure 1). Thus, to show the Hölder continuity of λ 7→ Mee
λ on a vicinity of Ωc (case

(C)), it is sufficient to prove the Hölder continuity on [a,Ωc) if Ωe > Ωm (resp. on (Ωc, b] if Ωe < Ωm)
and to show that the limit of Mλ when λ→ Ω−c (resp. λ→ Ω+

c ) is zero to ensure that Mee
λ is continuous

at Ωc.
We proceed as we did for obtaining (152), but here one additional term appears due to the presence

of the Jacobian Je(λ) as a multiplicative factor. For conciseness, we drop the index 0 in the notation of
the generalized eigenfunctions Wk,λ,0. From the expression (144) of Mee

λ and the fact that k ∈ Λee(λ) if
and only if k = ±ke(λ), we have

Mee
λ′U −Mee

λ U =
∑

±
{Je(λ′)− Je(λ)} 〈U ,W±ke(λ′),λ′〉s W±ke(λ′),λ′

+ Je(λ)
(
〈U , {W±ke(λ′),λ′ −W±ke(λ),λ}〉s W±ke(λ′),λ′ + 〈U ,W±ke(λ),λ〉s {W±ke(λ′),λ′ −W±ke(λ),λ}

)
.

As a consequence, ∥∥Mee
λ′U −Mee

λ U
∥∥
H−s

≤
∑

±
d±λ,λ′ ‖U‖Hs ,
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where we have denoted

d±λ,λ′ :=
∣∣Je(λ′)− Je(λ)

∣∣ ∥∥W±ke(λ′),λ′
∥∥2

H−s

+
∣∣Je(λ)

∣∣
{∥∥W±ke(λ′),λ′

∥∥
H−s

+
∥∥W±ke(λ),λ

∥∥
H−s

} ∥∥W±ke(λ′),λ′ −W±ke(λ),λ

∥∥
H−s

. (170)

Hence, the proof of (145) for z = ee will be complete once we have established the following property:

∀λ, λ′ ∈ [a, b], d±λ,λ′ . |λ
′ − λ|γ , (171)

for any γ ∈ Γ[a,b]. We have now to distinguish cases (A) and (C) (case (B) cannot occur here).

Case (A). Using the estimate (75) for ‖W±ke(λ),λ‖H−s and ‖W±ke(λ′),λ′‖H−s , the fact that |θ±ke(λ),λ| . 1
(since λ remains far from Ωp, so ke(λ) remains in a compact set), as well as the fact that λ → Je(λ) is
bounded in [a, b], we have

d±λ,λ′ .
∣∣Je(λ′)− Je(λ)

∣∣+ ‖W±ke(λ′),λ′ −W±ke(λ),λ‖H−s . (172)

Therefore, using the Hölder estimate (137) of Proposition 23 and the fact that λ→ Je(λ) is differentiable
in [a, b] (see the beginning of §3.3.3), we obtain property (171) for any γ ∈ (0, 1] ∩ (0, s− 1/2).

Case (C). The estimation of d±λ,λ′ is more delicate if Ωc ∈ [a, b], that is, if a = Ωc or b = Ωc. To fix ideas,
we assume that Ωe > Ωm and [a, b] = [a,Ωc] (we can proceed similarly if Ωm > Ωe and [a, b] = [Ωc, b]).
As we discussed above, it is sufficient to show that: λ 7→Mλ is Hölder continuous on [a,Ωc) and that Mλ

tends to 0 at Ω−c .

(i) a) We show first that λ 7→ Mλ is Hölder continuous on [a,Ωc). Assume that λ, λ′ ∈ [a,Ωc) with
λ ≤ λ′. We use again (75), which shows that

{∥∥W±ke(λ′),λ′
∥∥
H−s

+
∥∥W±ke(λ),λ

∥∥
H−s

}
. sup
λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)1/2

The main difference with case (A) is that we can no longer use (137). We have to use instead the Hölder
estimate (136). As λ 7→ Je(λ) is still differentiable in [a,Ωc], the definition (170) of d±λ,λ′ yields now

d±λ,λ′ .
(
1 + pλ,λ′

)
|λ′ − λ|γ ,

where
pλ,λ′ := sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)1−γ/2 sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)−3γ/2.

Thus, we need to prove that pλ,λ′ . 1. To do so, we need to know the behaviour of θ+
ke(λ),λ near λ = Ωc.

This is the object of Lemma 26 below. From (173), we deduce that

sup
λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)1−γ/2 . (Ωc − λ)1/2−γ/4 and sup

λ̃∈[λ,λ′]

(θ+

ke(λ̃),λ̃
)−3γ/2 . (Ωc − λ′)−3γ/4,

since λ ≤ λ′ and 1/2− γ/4 ≥ 0 while −3/2γ ≤ 0. As a consequence

pλ,λ′ . (Ωc − λ)1/2−γ/4 (Ωc − λ′)−3γ/4.

The problem is that the right-hand side of this inequality is not a continuous function on the line λ′ = Ωc.
However, using polar coordinates for (Ωc−λ,Ωc−λ′), we see that for any fixed κ ∈ (0, 1), it is continuous,
thus bounded, in any domain of the form

Dκ :=
{

(λ, λ′) ∈ [a,Ωc)2
∣∣ κ (Ωc − λ) < Ωc − λ′ ≤ Ωc − λ

}

since (1/2− γ/4)− 3γ/4 = 1/2− γ > 0. This means that the above lines yield property (171) not for the
whole domain {(λ, λ′) ∈ [a,Ωc]2 | λ ≤ λ′}, but only in Dκ.
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(i) b) To conclude, we have to prove that (171) holds true in the complement of Dκ, that is,

Dc
κ :=

{
(λ, λ′) ∈ [a,Ωc)2

∣∣ κ (Ωc − λ) ≥ Ωc − λ′
}
.

The idea is to restart for instance from (172) (which is still valid here) and use simply the triangle
inequality to bound the last term of the right-hand side, which yields

d±λ,λ′ . |λ
′ − λ|+

(
θ+
ke(λ′),λ′

+ θ+
ke(λ),λ

)
,

thanks to the differentiability of λ → Je(λ) in [a,Ωc] and the estimate (75). Applying again Lemma 26
below, we deduce that

θ+
ke(λ′),λ′

+ θ+
ke(λ),λ . (Ωc − λ′)1/2 + (Ωc − λ)1/2.

Noticing that the inequality κ (Ωc − λ) ≥ Ωc − λ′ which characterizes points of Dc
κ can be written

equivalently as

Ωc − λ ≤ (1− κ)−1 (λ′ − λ) or Ωc − λ′ ≤ (κ−1 − 1)−1 (λ′ − λ),

we finally obtain
d±λ,λ′ . |λ

′ − λ|1/2.
As γ < 1/2, this implies (171) for all (λ, λ′) ∈ Dc

κ.

(ii) To complete the proof for case (C), it only remains to prove that that the limit of Mλ at Ω−p is zero.
This is an immediate consequence of the expression (144) of Mee

λ , the fact that Je is bounded on [a,Ωc],
the estimate (75) and the Lemma 26 which implies that:

‖Mλ‖Hs,H−s ≤ Je(λ)
∑

±
‖W±ke(λ),λ‖2 . θ+

k,λ . (Ωc − λ)→ 0 as λ→ Ω−c .

Lemma 26. For Ωe 6= Ωm, the function λ 7→ θ+
ke(λ),λ can be continuously extended by zero at Ωc and

admits the following asymptotic behaviour

θ+
ke(λ),λ = A

∣∣λ− Ωc

∣∣1/2 + o
(
|λ− Ωc|1/2

)
when λ→ Ωc, (173)

for some A > 0.

Proof. Using the dispersion relation (26), one gets that

θ+
ke(λ),λ = −

µ+
λ

µ0
θ−ke(λ),λ =

|µ+
λ |
µ0

∣∣ke(λ)−√ε0 µ0 λ
∣∣1/2 ∣∣ke(λ) +

√
ε0 µ0 λ

∣∣1/2,

(where we use the fact that µ+(λ) < 0 in Λee). Hence, it follows that

θ+
ke(λ),λ = (2kc)1/2

∣∣µ+
Ωc

∣∣
µ0

∣∣ke(λ)−√ε0 µ0 λ
∣∣1/2 (1 + o(1)) when λ→ Ωc. (174)

As ke is C∞ at Ωc and ke(Ωc) = kc =
√
ε0 µ0 Ωc by definition of the cross points, one has

ke(λ)−√ε0 µ0 λ =
(
k′e(Ωc)−√ε0 µ0

)
(λ− Ωc) + o

(
λ− Ωc

)
as λ→ Ωc. (175)

If Ωe > Ωm, we know that k′e(Ωc) < 0, so that k′e(Ωc)−√ε0 µ0 cannot vanish. This holds true if Ωe < Ωm,
but it is not so obvious. Indeed, starting from the definition (27) of λe(k), a simple but somewhat tedious
calculation shows that

k′e(Ωc) =
√
ε0 µ0 F

(
Ω2

e/Ω
2
m

)
where F (X) :=

1−X
1− 2

(
X +X−1

)−1 .

As Ω2
e/Ω

2
m < 1, it is easy to see that F (Ω2

e/Ω
2
m) > 1, which confirms that k′e(Ωc)−√ε0 µ0 cannot vanish.

The asymptotic behaviour (173) then follows from (174) and (175) with

A := (2kc)1/2

∣∣µ+
Ωc

∣∣
µ0

∣∣k′e(Ωc)−√ε0 µ0

∣∣1/2.
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4 The limiting absorption and limiting amplitude principles

The hardest part has been done. We are now able to prove both limiting principles, which is the subject
of the present section. The main arguments of the proofs are classical (see, e.g., [12, 14, 15, 19, 39, 43]).
The basic ingredient is the Hölder regularity of the spectral density (Theorem 9).

4.1 Proof of Theorem 2

As briefly sketched in §3.1, the proof of the limiting absorption principle amounts to a simple limiting
process in a Cauchy integral. For the sake of clarity, we begin with the case where Ωe 6= Ωm.

The non-critical case. In this case, we know that Pac = Pdiv0 (see (14)). The starting point is the
Fourier representation of the absolutely continuous part of the resolvent (see (15)) given by Theorem 6,
which writes as

Rac(ζ) := R(ζ)Pac = F∗
1

λ− ζ
F for ζ ∈ C \ R. (176)

By virtue of Theorem 8 (more precisely formula (54)), it can be rewritten as a Cauchy integral as follows:

Rac(ζ) = s-lim
B(Hs,H)

∫

R

Mλ

λ− ζ
dλ. (177)

We want to find the limit of the above integral when ζ ∈ C\R tends to a given ω ∈ R\σexc, which makes
the function λ 7→ (λ − ζ)−1 singular at λ = ω. In order to isolate the role of this singularity, we choose
some ρ > 0 small enough so that the interval J := [ω − ρ, ω + ρ] does not contain any point of σexc and
we decompose the latter function as

1

λ− ζ
= f sin

ζ (λ) + f reg
ζ (λ) where f sin

ζ (λ) :=
1J(λ)

λ− ζ
and f reg

ζ (λ) :=
1R\J(λ)

λ− ζ
. (178)

This leads us to split the resolvent into the sum of a “singular part” and a “regular part”:

Rac(ζ) = Rsin(ζ) +Rreg(ζ) where

{
Rsin(ζ) := F∗ f sin

ζ (λ)F,
Rreg(ζ) := F∗ f reg

ζ (λ)F.

On the one hand, the family of functions ζ 7→ f reg
ζ (·) is differentiable with respect to ζ in a vicinity

of ω uniformly with respect to λ ∈ R. Hence, in this vicinity, the operator of multiplication by f reg
ζ (·)

is a holomorphic function of ζ for the operator norm of B(Ĥ). As F and F∗ are bounded operators,
ζ 7→ Rreg(ζ) is also holomorphic in this vicinity for the operator norm of B(H), thus a fortiori for the
one of B(Hs,H−s) for s > 1/2. Its limit value at ω is simply given by

Rreg(ω) = F∗ f reg
ω (λ)F = s-lim

B(Hs,H)

∫

R\J

Mλ

λ− ω
dλ, (179)

where the last equality is obtained via the formula (54) applied to f = f reg
ω .

On the other hand, the “singular part” Rsin(ζ) is no longer continuous on the real axis. We denote
by R±sin the restrictions of ζ 7→ Rsin(ζ) to the complex half-planes C± := {ζ ∈ C | ± Im ζ > 0}, i.e.,

∀ζ ∈ C±, R±sin(ζ) = F∗ f sin
ζ (λ)F =

∫

J

Mλ

λ− ζ
dλ.

Note that the “s-lim” symbol has been removed here. Indeed, function λ 7→ f sin
ζ (λ) is bounded and

compactly supported in R \ σexc, so that Theorem 8 applies: the latter integral is a Bochner integral
valued in B(H−s,H−s). The local Hölder regularity of the spectral density λ 7→ Mλ, given in Theorem
9, allows to apply the Sokhotski–Plemelj formula [21, theorem 14.1.c, p. 94] which ensures the existence
of the one-sided limits of R±sin(ζ) when C± 3 ζ → ω for the operator norm of B(Hs,H−s) for s > 1/2.
This formula provides us an explicit expression of these limits given by

R±sin(ω) = −
∫

J

Mλ

λ− ω
dλ ± iπMω ∈ B(Hs,H−s), (180)
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where the dashed integral denotes a Cauchy principal value at λ = ω (cf. Remark 28). Furthermore
(see [21, 26]), the local Höder regularity of the spectral density λ 7→ Mλ also ensures that ζ 7→ R±sin(ζ)

is locally Hölder continuous on C± \ σexc for the operator norm of B(Hs,H−s), with the same Hölder
exponents γ ∈ (0, 1) as those of λ 7→ Mλ. Let us notice that even if λ 7→ Mλ was locally Lipschitz
continuous (i.e., γ = 1), the Sokhotski–Plemelj theorem would not ensure that so is ζ 7→ R±sin(ζ). This
explains why the particular value γ = 1 has not been considered in Theorem 9 (see Remark 10).

Combining (179) and (180) yields the following complementary proposition of Theorem 2, in the case
where Ωe 6= Ωm.

Proposition 27. Let s > 1/2. For all ω ∈ R\σexc, Rac(ζ) has one-sided limits R±ac(ω) := limη↘0Rac(ω±
iη) for the operator norm of B(Hs,H−s), which are given by

R±ac(ω) = s-lim
B(Hs,H−s)

−
∫

R

Mλ

λ− ω
dλ ± iπMω. (181)

These one-sided limits provide the respective continuous extensions of both restrictions R±ac(ζ) of
ζ 7→ Rac(ζ) to the complex half-planes C± (see (17)). By virtue of the above mentioned properties
of Rreg(ζ) and R±sin(ζ), these extensions are locally Hölder continuous respectively in C± \ σexc, with
corresponding local admissible Hölder exponents given by (18). This completes the proof of Theorem 2
in the case where Ωe 6= Ωm.

Remark 28. Let us recall that in formula (181), the combination of the “s-lim” symbol with the dashed
integral implies two limit processes that can be considered independently by isolating a vicinity J of ω,
exactly as we did above. The principal value represented by the dashed integral means that we remove
from J a symmetric neighborhood of ω, i.e., considering Jδ := J \ (ω − δ, ω + δ), and we take the limit
of the integral on Jδ as δ ↘ 0 in the operator norm of B(Hs,H−s). The “s-lim” symbol means that we
introduce an increasing sequence of compact subsets of R \ (σexc ∪ J) whose union covers this set, and we
take the limit of the integral on these compacts subsets for the strong operator topology of B(Hs,H−s).
In both limit processes, the integrals on compact sets are Bochner integrals valued in B(Hs,H−s).

We point out that to gather the terms (179) and (180) to obtain (181), we replace the s-limB(Hs,H)

by the s-limB(Hs,H−s) to ensure the existence of the principal value in (180) (this is justified since the
existence of the s-limB(Hs,H) in (179) implies a fortiori the existence of the s-limB(Hs,H−s) of this term
as the H-norm dominates the H−s-norm).

The critical case. Suppose now that Ωe = Ωm. In this case, Pac and Pdiv0 no longer coincide. They
actually differ from the sum of the eigenprojection associated to ±Ωp (see (14)), which are eigenvalues
of infinite multiplicity. Hence, the Fourier representation (176) of Rac(ζ) has to be replaced here by

Rac(ζ) = F∗
1R\{±Ωp}(λ)

λ− ζ
F for ζ ∈ C \ R.

On the other hand, the diagonal expression (177) of Rac(ζ) holds true. As a consequence, the above proof
remains valid if we simply replace the definition (178) of f sin

ζ and f reg
ζ by

f sin
ζ (λ) := 1R\{±Ωp}(λ)

1J(λ)

λ− ζ
and f reg

ζ (λ) := 1R\{±Ωp}(λ)
1R\J(λ)

λ− ζ
.

Remark 29. Notice that we can get with little effort an improved version of the limiting absorption
principle. The improvement lies in the fact that we can replace the topology of B(Hs,H−s) by a finer
one, namely that of B(Hs,D(A)−s) for s > 1/2, where D(A)−s is simply a weighted version of the domain
of A (see §2.1) defined by

D(A)−s := {U ∈H−s | AU ∈H−s}

(where AU has to be understood in the sense of distributions). This improvement results from the fact
that the resolvent naturally appears as a bounded operator from H to D(A) equipped with the graph norm,
since AR(ζ) = I + ζR(ζ) for ζ ∈ C \R. The improved version is easily deduced from the use of the latter
relation in the limiting process.
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4.2 Proof of Theorem 4

In the following, U(t) denotes the solution to our Schrödinger equation (4) starting from rest (i.e.,
U(0) = 0) with a time-harmonic excitation G(t) = Gω e−iω t kicked off at t = 0. We assume that the
circular frequency ω belongs to R \ σexc.

The general case. We first prove the general result (19) which applies in both critical and non-critical
cases, assuming that the excitation Gω ∈Hs belongs to the range of Pac.

We have seen in §2.2 that U(t) = φω,t(A)Gω where φω,t(·) is defined in (9). As Gω is in the range
of Pac, one has Gω = PacGω. Thus, we can use the spectral representation (54) applied to the bounded
function φω,t(·), which yields

∀t ≥ 0, U(t) = φω,t(A)Pac Gω = lim
H

∫

R
i

e−iλ t − e−iω t

λ− ω
MλGω dλ. (182)

The first step is to relate this expression to the time-harmonic solution U+
ω := R+

ac(ω)Gω ∈ H−s given
by the limiting absorption principle for s > 1/2. Proposition 27 provides us its spectral representation:

U+
ω = lim

H−s
−
∫

R

MλGω

λ− ω
dλ + iπMωGω. (183)

The idea is to rewrite (182) as

U(t) = −ie−iω t lim
H

∫

R

(
−e−i (λ−ω) t

λ− ω
MλGω +

MλGω

λ− ω

)
dλ

and to split the integral into two parts, by integrating separately both functions inside the parentheses.
Of course, this splitting has to be done carefully, since both functions are singular at λ = ω, while φω,t(λ)
is not. The proper way to do this is to introduce two Cauchy principal values at λ = ω defined in H−s,
i.e.,

U(t) = −ie−iω t

(
lim
H−s
−
∫

R

−e−i (λ−ω) t

λ− ω
MλGω dλ+ lim

H−s
−
∫

R

MλGω

λ− ω
dλ

)
.

As the second Cauchy principal value is exactly the one involved in the expression (183) of U+
ω , we obtain

U(t) = −ie−iω t
(
U+
ω − V (t)− iπMωGω

)
where

V (t) := lim
H−s
−
∫

R

e−i (λ−ω) t

λ− ω
MλGω dλ. (184)

It is then clear that the proof of (19) will be complete once we have proved the following lemma.

Lemma 30. Let s > 1/2 and ω ∈ R \ σexc. Then for all Gω ∈Hs, we have

lim
t→+∞

∥∥V (t) + iπMωGω

∥∥
H−s

= 0,

where V (t) is defined in (184).

Proof. As in the proof of the limiting absorption principle shown in §4.1, we can separate the Cauchy
principal value at ω from the limit in H−s in the definition of V (t). We simply have to choose some
ρ > 0 small enough so that the interval J := [ω−ρ, ω+ρ] does not contain any point of σexc, which leads
us to decompose V (t) in the form

V (t) = V sin(t) + V reg(t) where

V sin(t) := −
∫

J

e−i (λ−ω) t

λ− ω
MλGω dλ and V reg(t) := lim

H−s

∫

R\J

e−i (λ−ω) t

λ− ω
MλGω dλ. (185)
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We are going to prove successively that

lim
t→+∞

∥∥V sin(t) + iπMωGω

∥∥
H−s

= 0 and lim
t→+∞

∥∥V reg(t)
∥∥
H−s

= 0, (186)

which of course implies the statement of the lemma thanks to the triangle inequality.
(i) Let us first consider V sin(t) that we rewrite as

V sin(t) = vsin(t) MωGω + eiω t Ṽ
sin

(t) where vsin(t) := −
∫

J

e−i (λ−ω) t

λ− ω
dλ and

Ṽ
sin

(t) :=

∫

J

e−iλ t Ṽ λ dλ with Ṽ λ :=

(
Mλ −Mω

)
Gω

λ− ω
.

Note that the latter integral is no longer a Cauchy principal value since the function J 3 λ 7→ Ṽ λ ∈H−s
is Bochner integrable. Indeed by virtue of the Hölder continuity of Mλ (Theorem 9), for any given γ ∈ ΓJ ,
there exists a constant CγJ > 0 such that

∀λ ∈ J \ {ω},
∥∥Ṽ λ

∥∥
H−s

≤ CγJ |λ− ω|
−1+γ ‖Gω‖Hs .

As a consequence, the Riemann-Lebesgue theorem (applied to H−s-valued Bochner integrals) gives us

lim
t→+∞

∥∥Ṽ sin
(t)
∥∥
H−s

= 0. (187)

Besides, using the change of variable ξ = (λ− ω)t, we have

vsin(t) := −
∫ +ρt

−ρt

e−i ξ

ξ
dξ,

where the Cauchy principal value is now at ξ = 0. Using standard complex integration on a suitable
contour (see for instance section 6.5 of [32]), one easily shows that

lim
t→+∞

−
∫ +ρt

−ρt

e−i ξ

ξ
dξ = −iπ.

Together with (187), this yields the first statement of (186).
(ii) Consider now the part V reg(t) defined in (185). In view of formula (54), we can rewrite it as

V reg(t) = f reg
t (A)PacGω where f reg

t (λ) := 1R\J(λ)
e−i (λ−ω) t

λ− ω
,

since λ 7→ f reg
t (λ) is a bounded function on R. This shows in particular that V reg(t) actually belongs to

H and that the limit in (185) can be taken in H instead of H−s. This limit is constructed by considering
an increasing sequence (Sn) of compact subsets of S := R \ (J ∪ σexc) whose union covers S, so that

V reg(t) = lim
n→∞

V reg
n (t) where V reg

n (t) := E(Sn)V reg(t) =

∫

Sn

e−i (λ−ω) t

λ− ω
MλGω dλ. (188)

From the above definitions of V reg(t) and V reg
n (t), we have

V reg(t)− V reg
n (t) = f reg

t (A)E(S \ Sn)PacGω,

from which we deduce that

‖V reg(t)− V reg
n (t)‖H−s ≤ ‖V

reg(t)− V reg
n (t)‖H ≤ ‖f

reg
t ‖∞ ‖E(S \ Sn)PacGω‖H ,

where ‖f reg
t ‖∞ = ρ−1. Moreover we know from (58) that

‖E(S \ Sn)PacGω‖2H =

∫

R
1S\Sn(λ) 〈MλGω,Gω〉s dλ,
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which tends to 0 by definition of the sequence (Sn) since λ 7→ 〈MλGω,Gω〉s ∈ L1(R) by Corollary 12. As
the latter quantity is independent of t, this means that the convergence of V reg

n (t) to V reg(t) is uniform
with respect to t.

For any given δ > 0, we know now that we can find an integer nδ such that

∀t ≥ 0,
∥∥V reg(t)− V reg

nδ
(t)
∥∥
H−s

≤ δ/2.

Furthermore, as Snδ is bounded, we can use as in (i) the Riemann-Lebesgue theorem applied now to
the Bochner integral (188) for n = nδ, which shows that V reg

nδ
(t) tends to 0 in H−s as t → +∞. As a

consequence, we can find Tδ > 0 such that

∀t ≥ Tδ,
∥∥V reg

nδ
(t)
∥∥
H−s

≤ δ/2.

By the triangle inequality, we conclude that for any δ > 0, we can find Tδ > 0 such that ‖V reg(t)‖H−s ≤ δ
for all t ≥ Tδ. In other words, we have proved the second statement of (186), which completes the proof
of the lemma.

The critical case. We assume now that Ωe = Ωm and prove the asymptotic behavior (20) for an
excitation Gω ∈Hs ∩Hdiv0. From (14), we see that Gω can be decomposed as

Gω = PacGω + P−Ωp
Gω + P+Ωp

Gω. (189)

Hence the solution U(t) = φω,t(A)Gω to our Schrödinger equation (4) can be decomposed accordingly:

U(t) = Uac(t) + U−Ωp
(t) + U+Ωp

(t) where

Uac(t) := φω,t(A)PacGω and U±Ωp
(t) := φω,t(A)P±Ωp

Gω.

On the one hand, the asymptotic behaviour of Uac(t) results from the previous lines (the only differ-
ence is that we do not assume here that Pac G ∈H−s, but this assumption is actually not needed, since
(182) holds true by replacing U(t) by Uac(t)). We obtain

lim
t→+∞

∥∥∥Uac(t) + iR+
ac(ω)Gω e−iωt

∥∥∥
H−s

= 0.

On the other hand, Theorem 6 tells us that the operator φω,t(A) is a multiplication by φω,t(±Ωp) in
the range of the spectral projection P±Ωp

associated to the eigenvalues ±Ωp). Hence

U±Ωp
(t) = φω,t(±Ωp)P±Ωp

Gω.

The conclusion follows.

Remark 31. (i) For simplicity, the limiting amplitude principle is formulated in Theorem 4 for zero
initial conditions. But, one can easily restate this result for nonzero initial conditions U(0) = U0. Indeed
it is readily seen that the transient contribution due to non-vanishing initial conditions in the range of
Pac is “locally evanescent”, in the sense that the local energy decays: ‖ exp(−iA t)PacU0‖H−s → 0 as
t → 0 for all U0 ∈ Hs, contrary to the total energy, which is conserved: dt‖ exp(−iA t)PacU0‖H = 0.
This property is a consequence of the Riemann-Lebesgue theorem, exactly as we did for some evanescent
components of U(t) in the above lines (see proof of Lemma 30, point (ii)). Thus, for non a zero initial
condition U0 ∈ Hs in the range of Pac (which coincides with Hdiv0 for Ωe 6= Ωm), the formula (19)
remains unchanged. Whereas for the critical case Ωe = Ωm and an initial condition U0 ∈ Hs ∩Hdiv0,
one deduces from the decomposition (189) applied to Gω = U0, the fact that ‖ exp(−iA t)PacU0‖H−s → 0
and the diagonalization Theorem 6 (to rewrite the terms exp(−iA t)P±Ωp

Gω) that

lim
t→+∞

∥∥∥ exp(−iA t)U0 −
∑

±
exp(∓iΩp t)P±Ωp

U0

∥∥∥
H−s

= 0.

Hence, one has to add to the asymptotic expansion (20) the contribution of the the plasmonic waves:∑
± exp(∓iΩp t)P±Ωp

U0 due to the initial condition U0.
(ii) Following the comments of Remark 29, we can also obtain an improved version of the limiting

amplitude principle. Indeed, formulas (19) and (20) holds true for the graph norm of the space D(A)−s
defined in Remark 29 instead of the norm of H−s. Moreover, the asymptotic behaviour of dU/dt in the
norm of H−s can be derived formally by differentiating the formulas (19) and (20) with respect to t. We
finally mention that these results can be shown rigorously in a similar way as in the proof of Lemma 30.
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5 Limiting absorption and amplitude principles at ω = ±Ωp

This section deals with a case that has not be treated up to now, namely in the case where the source
frequency is ω = ±Ωp and Ωe 6= Ωm, which corresponds to the case where Λee is not a union of straight
lines (see Figure 1), the latter case being already covered by Theorems 2 and 4.

It is clear by parity arguments that +Ωp and −Ωp can be treated similarly. For the ease of the reader,
in the following lemmas, propositions and proofs, we shall consider only the vicinity of Ωp while the
statements of the main theorems (namely Theorems 34, 36 and 37) will consider both +Ωp and −Ωp.

5.1 New functional framework and main results

As we saw in this paper (see sections 3.1 and 4), the key assumption to prove limiting absorption and
limiting amplitude results at ω is to establish the local Hölder regularity of the spectral density λ 7→Mλ

on a vicinity of ω. When ω = Ωp, one cannot obtain such property in B(Hs,H−s) since the function
λ 7→ Mλ does not have a limit in B(Hs,H−s) when λ → Ωp. This singular behavior concerns only the
part Mee

λ associated with the spectral zone Λee in the decomposition (142) of Mλ. The other components
Mz
λ for z ∈ Z \{ee} (see (143)) admit a limit in B(Hs,H−s) when λ→ Ωp and furthermore the function

λ 7→Mz
λ is Hölder continuous in B(Hs,H−s) on a vicinity of Ωp.

The singular behaviour of

Mee
λ U :=

∑

k∈Λee(λ)

Je(λ) 〈U ,Wk,λ,0〉sWk,λ,0 (190)

is linked to the fact that the function k 7→ λe(k) has a finite limit, namely Ωp, when |k| → +∞ (cf.
the asymptote of the curves composing the zone Λee ∩ {(k, λ) ∈ R2 | λ > 0} in Figure 1). In particular
Je(λ) = |λ′e(λ−1

e (|λ|))|−1 becomes singular at the vicinity of Ωp. More precise results are provided by
the following lemma (whose proof is given in Appendix A.1).

Lemma 32. (Asymptotic at the frequency Ωp) Let Ωe 6= Ωm and K := ε0µ0 (Ω2
m − Ω2

e). One has the
following asymptotic formula for λ→ Ω−p (if K < 0) and for λ→ Ω+

p (if K > 0):

ke(λ) =
(Ωp |K|

8

) 1
2 |λ− Ωp|−

1
2 (1 + o(1)), (191)

Je(λ) =
1

2

(Ωp |K|
8

) 1
2 |λ− Ωp|−

3
2 (1 + o(1)), (192)

∣∣k′′e (λ)
∣∣ =

3

4

(Ωp |K|
8

) 1
2 |λ− Ωp|−

5
2 (1 + o(1)), (193)

θ±λ,ke(λ) =
(Ωp |K|

8

) 1
2 |λ− Ωp|−

1
2 (1 + o(1)), (194)

Ake(λ),λ,0 =
µ

1
2
0 Ωp

2
√

2π

(Ωp |K|
8

)− 1
4 |λ− Ωp|

1
4 (1 + o(1)). (195)

A consequence of lemma 32 is that the function λ 7→ Mee
λ ∈ B(Hs,H−s) for λ 6= Ωp does not have a

limit in B(Hs,H−s) when λ → Ωp. For ensuring the existence of such a limit, it is necessary, as we
shall see later, to change the functional framework by considering for s ≥ 0 a smaller Hilbert space Xs

for s ≥ 0. To this aim, it is first useful to reinterpret, via Fubini’s theorem the weighted space Hs as a
weighted space of functions of x with values in a weighted space of functions of y:

Hs = L2
s

(
Rx, L2

s(Ry)
)
×
(
L2
s

(
Rx, L2

s(Ry)
))2 × L2

s

(
R+,x, L

2
s(Ry)

)
× L2

s

(
R+,x, L

2
s(Ry)

)2

and to define (with obvious notation)

Xs := L2
s

(
Rx, H1

s (Ry)
)
× L2

s

(
Rx, H2

s (Ry)
)2 × L2

s

(
R+,x, H

1
s (Ry)

)
× L2

s

(
R+,x, H

2
s (Ry)

)2
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where HN
s (Ry) :=

{
v | ∂jyv ∈ L2

s(Ry), 0 ≤ j ≤ N}. The space Xs is endowed with the norm

‖U‖2Xs
:= ε0 ‖E‖2L2

s(Rx,H1
s (Ry)) + µ0 ‖H‖2L2

s(Rx,H2
s (Ry))2

+ ε−1
0 Ω−2

e ‖J‖2L2
s(Rx,H1

s (Ry)) + µ−1
0 Ω−2

m ‖K‖2L2
s(Rx,H2

s (Ry))2 ,

where U = (E,H, J,K) ∈ Xs and where for a positive integer N and the open set O = Rx,R+,x:

‖u‖2L2
s(O,HNs (Ry)) :=

∫

O

N∑

n=0

∥∥ηs(x, ·) ∂ny u(x, ·)
∥∥2

L2(Ry)
dx.

The dual of Xs is denoted X ∗s . Xs has been chosen dense in Hs so that H−s can be identified to a
subspace of X ∗s , with continuous embedding. For this reason, and for simplicity of notation, the duality
product between X ∗s and Xs will still be denoted 〈·, ·〉s. One denotes by ‖ · ‖X∗s the associated dual norm
defined for all U ∈ X ∗s by:

‖U‖X∗s := sup
‖V ‖Xs≤1

|〈V ,U〉s|. (196)

We then introduce the bounded operators B(Xs,X ∗s ) from Xs into X ∗s endowed with the operator
norm ‖ · ‖Xs,X∗s . Then, one has the obvious continuous embedding

B(Hs,H−s) ⊂ B(Xs,X ∗s ),

with the convention that one identifies an operator of B(Hs,H−s) defined on Hs with its restriction on
the dense subset Xs. We shall then be able to prove that the limit of the resolvent exists as an element
of B(Xs,X ∗s ). Moreover, the function λ 7→ Mee

λ ∈ B(Xs,X ∗s ) will be shown to be Hölder continuous at
the neighbourhood of Ωp.

Remark 33. In the literature concerning the limiting absorption principle at a point where the dispersion
curves admits a local extremum is referred to as a threshold. Here Ωp is a specific form of threshold
associated to a dispersion curve that has an horizontal asymptote. For such points, the local behavior of
the spectral density depends not only on the regularity of the generalized eigenfunctions but also of the
convergence speed of the dispersion curve to its horizontal asymptote. This type of thresholds arises also in
the context of magnetic Schrödinger operator [34]. In [34], the convergence of the corresponding dispersion
curves to their horizontal asymptote is super-exponential. Thus, to obtain the Hölder regularity of the
spectral density, the authors consider the smaller Hilbert space of functions whose “Fourier components”
associated to the considered dispersion curve decrease supra-exponentially when λ tends to its threshold.
Here, we meet a new situation since this convergence speed (given by the Lemma 32) is polynomial in k.
We could consider also a space of functions U ∈ H whose generalized Fourier transform FU(k, λ, 0) =
〈U ,Wk,λ,0〉s decays as 1/ke(λ)α for some α > 0 when λ → Ωp. As in [34], this approach would lead to
a non explicit space in the physical variables (x, y) but the space will be “more optimal”. Here, we prefer
to adopt another strategy which yields the construction of a non-optimal space but which has the great
advantage to be explicit in the (x, y) variable. More precisely, we give with our functional framework
sufficient conditions on the regularity in the y direction to insure the decay of the part of the generalized
Fourier transform associated to Λee at the vicinity of Ωp and thus obtain the local Hölder regularity of
Mλ at Ωp.

In the rest of this section, our main goal will be to establish the existence and local Hölder regularity of
λ 7→ Mλ on (R \ σexc) ∪ {Ωp} for Ωe 6= Ωm for the topology of B(Xs,X ∗s ). Obviously, we need to do so
only in an interval of the form [Ωp − η,Ωp + η] for η small enough.

All the difficulties are concentrated on the study of the generalized eigenfunctions W±ke(λ),λ,0, called
plasmonic generalized eigenfunctions in the rest of this section.

The next theorem is a limiting absorption and limiting amplitude result at the threshold frequencies
±Ωp for Ωe 6= Ωm. It replaces Theorems 2 and 4 for this new case. Its proof is the same as the one
performed for Theorems 2 and 4 in section 4 and will not be reproduced here. However, its validity relies
on two results Theorems 36 and 37 which are counterpart of Theorems 8 and 9. The proof of Theorems
36 and 37 is the object of the following sections.
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Theorem 34. (Limiting absorption and limiting amplitude principles at ±Ωp for Ωe 6= Ωm)
Let Ωe 6= Ωm, s > 1/2 and ω = ±Ωp. On one hand, the limiting absorption principle holds at ω.
More precisely, the absolutely continuous part of the resolvent Rac(ζ) has one-sided limits R±ac(ω) :=
limη↘0Rac(ω± iη) for the operator norm of B(Xs,X ∗s ). Moreover, using the notation (17), the function

ζ 7→ R±ac(ζ) ∈ B(Xs,X ∗s ) is locally Hölder continuous in C±\{0,±Ωm} of index γ ∈ (0, s−1/2)∩(0, 1/3].

Namely, for any compact K of C± \ {0,±Ωm}, there exists γ ∈ (0, s− 1/2) ∩ (0, 1/3] and CK,γ > 0 such
that

∀(ζ, ζ ′) ∈ K ×K,
∥∥∥R±ac(ζ ′)−R±ac(ζ)

∥∥∥
Xs,X∗s

≤ CK,γ |ζ ′ − ζ|γ .

On the other hand, for any Gω ∈ Xs which belongs to Hdiv0 (i.e. the range of Pac), the limiting amplitude
principle holds true in the sense that the solution U(t) to (4) with zero initial conditions satisfies:

lim
t→+∞

∥∥∥U(t) + iU+
ω e−iωt

∥∥∥
X∗s

= 0,

where U+
ω := R+

ac(ω)Gω ∈ X ∗s .

Remark 35. We point out that compared to Theorem 2, we have not only replaced in Theorem 34 the
spaces Hs and H−s by the space Xs and its dual X ∗s , but also the available set of admissible Hölder
exponents γ which is now (0, s− 1/2) ∩ (0, 1/3].

In section 5.2, we give the key properties of the spectral density Mλ in this new setting: namely the
construction of a functional calculus with Mλ and its Hölder regularity that are used to prove Theorem
34. The remaining sections are devoted to prove the results of section 5.2. In section 5.3, we provide
new X ∗s estimates for W±ke(λ),λ,0 and corresponding Hölder regularity estimates in section 5.4. Finally,
all these estimates are used to prove the Hölder regularity of the spectral density λ 7→ Mλ in the space
B(Xs,X ∗s ) in section 5.5.

5.2 The spectral density in the new functional framework

In order to understand the need of a new functional framework, let us come back to §3.1 and see what
happens if, instead of assumption (45), we choose a Borel set S ⊂ R whose closure contains Ωp (but not 0
or ±Ωm). This amounts to allow in Theorem 8 bounded functions with a compact support that contains
Ωp, or to allow in Proposition 11 intervals [a, b] that contain Ωp.

On the one hand, it is easy to see that all the arguments that concern the surface spectral zones (that
is, for z ∈ Z \ {ee}) remain unchanged, since Ωp do not give rise to a singular behavior of the associated
generalized eigenfunctions. In particular, the first statement of Proposition 11 holds true if [a, b] contains
Ωp. On the other hand, the arguments that concern the lineic spectral zones (that is, for z = ee) are
no longer valid since Λee([a, b]) becomes unbounded. In particular, the second statement of Proposition
11 cannot justify the use of the Lebesgue’s dominated convergence theorem and the change of variable
in the last integral of (47). As for the surface spectral zone (see the proof of Theorem 8), using the fact
that for all U ∈Hs, we have

‖Mee
λ U‖H−s ≤

∑

k∈Λee(λ)

Je(λ) ‖Wk,λ,0‖2H−s ,

this justification would require now to verify that the map

λ 7→
∑

k∈Λee(λ)

Je(λ) ‖Wk,λ,0‖2H−s

belongs to L1([a, b],H−s). Unfortunately, using Lemma 32 and similar calculations as in the proof of
Proposition 38, one can see (after small computations) that the above map is O(|λ− Ωp|−3/2) near Ωp,
which is not integrable. Hence Theorem 8 is no longer true for functions whose support contains Ωp.

The good news is that such a result becomes true if the spectral density Mλ is considered as an
element of B(Xs,X ∗s ), instead of B(Hs,H−s). Indeed, Proposition 38 together with (192) show that the
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above map with H−s replaced by Xs is now O(|λ − Ωp|1/2) near Ωp, which is of course integrable, and
actually continuous: it implies that Mee

λ tends to 0 in B(Xs,X ∗s ). As regards the other components of
the spectral measure, that is, Mz

λ for z ∈ Z \ {ee}, the results of §3 proved in B(Hs,H−s) clearly holds
in the weaker topology of B(Xs,X ∗s ). Hence, we have the following theorem, which is the counterpart of
Theorem 8.

Theorem 36. Let s > 1/2 and Ωe 6= Ωm. For every bounded function f : R→ C with a compact support
that does not contain any point of {0,±Ωm}, the operator f(A)Pac is given by

f(A)Pac =

∫

R
f(λ)Mλ dλ,

where the spectral density Mλ is defined for all λ ∈ R \ {0,±Ωm} as a bounded operator from Xs to X ∗s .
The above integral is understood as a Bochner integral in B(Xs,X ∗s ).

We deduce from the previous theorem, in the same way as for formula (54) in section 3, that for any
bounded function f whose support S is no longer compact and/or contains points of {0,±Ωm}, one has:

f(A)Pac = s-lim
B(Xs,H)

∫

R
f(λ)Mλ dλ.

We point out that from Theorem 36, we deduce exactly in the same way as in Section 3.1 an equivalent
of Corollary 12. We simply have to replace in the formulation of Corollary 12 the space Hs by Xs and
the duality product 〈·, ·〉s has to be understood as the duality product between Xs and X ∗s .

The following theorem is the counterpart of Theorem 9. Its proofs is given in section 5.5.

Theorem 37. Let Ωe 6= Ωm and s > 1/2. The spectral density λ 7→ Mλ ∈ B(Xs,X ∗s ), given by (49) is
locally Hölder-continuous on R \ {−Ωm, 0,Ωm} of index γ ∈ (0, s − 1/2) ∩ (0, 1/3]. In other words, for
any interval [a, b] ⊂ R \ {−Ωm, 0,Ωm}, it exists Cγa,b > 0 such that

‖Mλ′ −Mλ‖X∗s ,Xs
≤ Cγa,b|λ

′ − λ|γ , ∀λ′, λ ∈ [a, b]. (197)

5.3 X ∗
s -estimates of the plasmonic generalized eigenfunctions

The following proposition replaces Proposition 15 in which the right-hand side of estimate (75) blows up
when |k| → +∞ (see (194)).

Proposition 38. Let Ωe 6= Ωm, s > 1/2 and [a, b] = [Ωp − η,Ωp + η] with η > 0 sufficiently small such
that 0,Ωc /∈ [a, b]. Then, there exists a constant Cη > 0 (depending only on η) such that

‖Wk,λ,0‖X∗s ≤ Cη |λ− Ωp|, ∀(k, λ) ∈ Λee([a, b]). (198)

Proof. Obtaining X ∗s estimates relies on a bound for the duality product 〈U ,Wk,λ,0〉s, for U ∈ Xs, of
the form ∣∣〈U ,Wk,λ,0〉s

∣∣ ≤ C(λ) ‖U‖Xs

that yields, by definition of the dual norm (196), the estimate ‖Wk,λ,0‖Xs ≤ C(λ). By (33), it requires to
estimate all the duality products between the components of Wk,λ,0 and a vector U = (E,H, J,K) ∈ Xs

since

|〈U ,Wk,λ,0〉s| .
∣∣∣
∫

R2

E wk,λ,0 dxdy
∣∣∣+ |k|

∣∣∣
∫

R2

Hx wk,λ,0 dxdy
∣∣∣+
∣∣∣
∫

R2

Hy ∂xwk,λ,0 dxdy
∣∣∣

+
∣∣∣
∫

R2
+

J wk,λ,0dxdy
∣∣∣+ |k|

∣∣∣
∫

R2
+

Kx wk,λ,0dxdy
∣∣∣+
∣∣∣
∫

R2
+

Ky ∂xwk,λ,0 dxdy
∣∣∣.

(199)

In the following, we are going to estimate each of the terms of the right hand side of (199), regrouping
them column by column. These are obtained by standard manipulations such as Fubini’s theorem (since
the product of a L2

s and a L2
−s function for s ≥ 0 is L1) and integration by parts that are justified by the
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fact that D(R) is dense in Hk
s (R), k = 1, 2 and L2

s(R) is continuously embedded in L1(R) for s > 1/2.

(i) By definition of wk,λ,0 (cf. (32), (37) and (38)), using that Ak,λ,0 and ψk,λ,0 are even in k = ±ke(λ)
along Λee, we have

∣∣∣
∫

R2

E wk,λ,0 dxdy
∣∣∣ = Ake(λ),λ,0

∣∣∣
∫

R2

ψke(λ),λ,0(x)E(x, y) e∓ike(λ)ydxdy
∣∣∣,

A naive estimate, using ‖ψke(λ),λ,0‖L2
−s(R2) . 1 (because |ψke(λ),λ,0| ≤ 1 and (60)) would lead to

∣∣∣
∫

R2

E wk,λ,0 dxdy
∣∣∣ = |Ake(λ),λ,0| ‖E‖L2

s(R2) . |λ− Ωp|
1
4 ‖E‖L2

s(R2)

which would not be sufficient to compensate the blow up of Je(λ) in the expression (190). To get a
sharper estimate (when λ→ Ωp), we will use two properties:

• the fact that ke(λ) → +∞ when λ → Ωp, which can be exploited through an integration by parts
in the y-variable (this is where we use the fact that U ∈ X ∗s ). More precisely, one has

∣∣∣
∫

R2

E wk,λ,0 dxdy
∣∣∣ =

Ake(λ),λ,0

ke(λ)

∣∣∣
∫

R2

ψke(λ),λ,0(x) ∂yE(x, y) e∓ike(λ)y dxdy
∣∣∣,

thus, by the duality between L2
s and L2

−s,

∣∣∣
∫

R2

E wk,λ,0 dxdy
∣∣∣ ≤

Ake(λ),λ,0

ke(λ)
‖ψke(λ),λ,0‖L2

−s(R2) ‖∂yE‖L2
s(R2).

• ψke(λ),λ,0 ∈ L2(Rx) and, by an explicit computation and (194),

‖ψke(λ),λ,0‖L2(Rx) = (1/
√

2)
(
(θ+
ke(λ),λ)−1 + (θ−ke(λ),λ)−1

) 1
2 . |λ− Ωp|

1
4 .

Therefore, we have a sharper L2
−s-estimate of ψke(λ),λ,0 (better than ‖ψke(λ),λ,0‖L2

−s(R2) . 1 )

‖ψke(λ),λ,0‖L2
−s(R2) . ‖ψke(λ),λ,0‖L2

−s(Rx) . ‖ψke(λ),λ,0‖L2(Rx) . |λ− Ωp|
1
4 . (200)

Finally, using (200), together with the asymptotic behaviours (191) and (195) for Ake(λ),λ,0 and ke(λ)
respectively, we obtain ∣∣∣

∫

R2

E wk,λ,0 dxdy
∣∣∣ . |λ− Ωp| ‖∂yE‖L2

s(R2). (201)

Proceeding exactly in the same way, we obtain the companion estimate

∣∣∣
∫

R2
+

J wk,λ,0 dxdy
∣∣∣ . |λ− Ωp| ‖∂yJ‖L2

s(R2
+). (202)

(ii) For the terms in the second column of (199), since an additional factor |k| has appeared, we need an
additional integration by parts to compensate it. It leads to

|k|
∣∣∣
∫

R2

Hx wk,λ,0 dxdy
∣∣∣ . |λ− Ωp| ‖∂2

yHx‖L2
s(R2), (203)

|k|
∣∣∣
∫

R2
+

Kx wk,λ,0 dxdy
∣∣∣ . |λ− Ωp| ‖∂2

yKx‖L2
s(R2

+). (204)

(iii) For the terms of third column of (199), the problem comes from the apparition of the x-derivative
of w that makes appear an additional factor θk,λ. More precisely, one has for x 6= 0:

∂xwk,λ,0 = − sgn(x) θk,λ(x) wk,λ,0.
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Since θ±k,λ behaves proportionally to |k| far large k (see (191) and (194)), the same procedure as in point
(ii) can be applied. One then obtains

∣∣∣
∫

R2

Hy ∂xwk,λ,0 dxdy
∣∣∣ . |λ− Ωp| ‖∂2

yHy‖L2
s(R2), (205)

|k|
∣∣∣
∫

R2
+

Ky ∂xwk,λ,0 dxdy| . |λ− Ωp| ‖∂2
yKy‖L2

s(R2
+). (206)

Finally, the desired estimate (198) follows from substituting (201, 202, 203, 204, 205, 206) into (199).

5.4 Hölder estimates of “plasmonic generalized eigenfunctions” at Ωp

For establishing such Hölder estimates, we essentially use the same strategy as the one exposed in section
3.3.1, which rests upon preliminary estimates of λ-derivatives of various functions. Such estimates are
the object of section 5.4.1 whose results are exploited in section 5.4.2 to establish Hölder estimates for
the function λ 7→W±ke(λ),λ,0 ∈ X ∗s .

We assumes that [a, b] = [Ωp − η,Ωp + η] with η > 0 sufficiently small such that 0,Ωc, /∈ [a, b]. The
difference with the estimates of section 3.3.2 relies on the fact that Ωp ∈ [a, b]. Hence the set Λee([a, b])
is not bounded and contains points arbitrarily closed to the horizontal asymptote λ = Ωp. One deals
with the case (ke(λ), λ) ∈ Λee([a, b]), but by parity arguments in k, one checks easily that these estimates
hold also for (−ke(λ), λ) ∈ Λee([a, b]) (that is by replacing ke(λ) by −ke(λ) in the left-hand side in the
inequalities (208, 209, 210, 211, 212)).

5.4.1 λ-derivatives of the “plasmonic generalized eigenfunctions”

• Derivative of powers of θ±ke(λ),λ. We use (see Remark 21) formula (128) namely

∂λ
[
(θ±ke(λ),λ)α

]
=
α

2

[
∂kΘ±ke(λ),λ k

′
e(λ) + ∂λΘ±ke(λ),λ

]
(θ±ke(λ),λ)α−2. (207)

Using (191), (192) (since Je(λ) = |k′e(λ)|), (194), |∂kΘ±ke(λ),λ| = 2ke(λ) . |λ−Ωp|−1/2 and |∂λΘ±ke(λ),λ| . 1

leads to ∣∣∂λ
[
(θ±ke(λ),λ)α

]∣∣ . |λ− Ωp|−1−α2 . (208)

• Derivative of the coefficient Ake(λ),λ,0. Its expression is given by

∂λ
(
Ake(λ),λ,0

)
= ∂λ(θ+

ke(λ),λ)
1
2 Be(λ) + (θ+

ke(λ),λ)
1
2 ∂λBe(λ)

where Be(λ) is defined from Ake(λ),λ,0 = (θ+
ke(λ),λ)

1
2 Be(λ) with Ake(λ),λ,0 given by (37). By virtue of

(191) and (192), one gets easily (details are omitted) that

Be(λ) = O(|λ− Ωp|
1
2 ) and ∂λBe(λ) = O(|λ− Ωp|−

1
2 ) when λ→ Ωp.

Combining these estimates with the asymptotic formula (194) and (208) for α = 1/2 finally leads to:

∣∣∂λ
(
Ake(λ),λ,0

)∣∣ . |λ− Ωp|−
3
4 . (209)

• Derivative of ψke(λ),λ,0(x) eiky. From the expression (134), one gets using (191) and (208) for α = 1:

|∂λ(ψke(λ),λ,0(x) eiky)| . (|x|+ |y|)ψke(λ),λ,0(x) |λ− Ωp|−
3
2 , ∀(x, y) ∈ R2. (210)

• Derivative of wke(λ),λ,0(x, y). Applying (209), (210) and (195) on the expression (132) of ∂λwk,λ,0
gives:

|∂λwke(λ),λ,0(x, y)| . (1 + |x|+ |y|) ψke(λ),λ,0(x) |λ− Ωp|−
5
4 , ∀(x, y) ∈ R2. (211)
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• Derivative of ∂xwke(λ),λ,0(x, y). One has ∂xwke(λ),λ,0(x, y) = sgn(x) θk,λ(x)wke(λ),λ,0(x, y) for x 6= 0.
Furthermore, with the expression of wke(λ),λ,0 (see (32, 38)), one sees that

|wke(λ),λ,0(x, y)| . Ake(λ),λ,0 ψke(λ),λ,0(x).

It is then easy to show that (again the details are left to the reader), using (211), (194), (195) and (208)
for α = 1,

|∂λ∂xwke(λ),λ,0(x, y)| . (1 + |x|+ |y|) ψke(λ),λ,0(x)
∣∣λ− Ωp

∣∣− 7
4 , ∀(x, y) ∈ R∗ × R. (212)

5.4.2 Hölder estimates of the plasmonic generalized eigenfunctions

The following proposition replaces Proposition 23 which does not hold if ±Ωp ∈ [a, b].

Proposition 39. Let Ωe 6= Ωm, s > 1/2, γ ∈ (0, 1] ∩ (0, s− 1/2) and [a, b] = [Ωp − η,Ωp + η] with η > 0
sufficiently small such that 0,Ωc /∈ [a, b]. Then, there exists a constant Cγη > 0 (depending only on η and
γ) such that for all (±ke(λ), λ), (±ke(λ′), λ′) ∈ Λee([a, b]) and λ ≤ λ′:

‖W±ke(λ′),λ′,0 −W±ke(λ),λ,0‖X∗s ≤ C
γ
η sup
λ̃∈[λ,λ′]

|λ̃− Ωp|1−
3
4γ sup

λ̃∈[λ,λ′]

|λ̃− Ωp|−
3
4γ |λ′ − λ|γ . (213)

Proof. Let (k = ke(λ), λ), (k′ = ke(λ′), λ′) ∈ Λee([a, b]) and λ ≤ λ′ and U = (E,H, J,K) ∈ Xs, then
one has

|〈U ,W±k′,λ,0−W±k,λ′,0〉s| ≤
3∑

`=1

∣∣
∫

R2

U `(W`
±k′,λ′,0−W`

±k,λ,0)dxdy
∣∣+

6∑

`=4

∣∣
∫

R2
+

U `(W`
±k′,λ′,0−W`

±k,λ,0)dxdy
∣∣.

Thus, to establish the Hölder estimate on the vector-valued function of λ: Wk,λ,0 , we derive such an
estimate on all the components of Wk,λ,0.

(i) Estimate of the first term. Since U1 = E and Wk,λ,0 = wk,λ,0, one has

∣∣∣
∫

R2

U1 (W1
±k′,λ′,0 −W1

±k,λ,0)dxdy
∣∣∣ =

∣∣∣
∫

R2

E (w±k′,λ′,0 − w±k,λ,0)dxdy
∣∣∣.

By integrating by parts in y (as in the proof of Proposition 38), one obtains:

∣∣∣
∫

R2

U1 (W1
±k′,λ′,0 −W1

±k,λ,0)dxdy
∣∣∣ =

∣∣∣∣
∫

R2

∂yE
(w±k′,λ′,0
ke(λ′)

− w±k,λ,0
ke(λ)

)
dxdy

∣∣∣∣ . (214)

We follow again the method described in section 3.3.1 which consist to obtain a Hölder estimate via an
interpolation between a L∞-estimate and a Lipschitz estimate given by the mean value theorem. First,
one obtains from the definition of (32) of w±k,λ,0 and the asymptotic behavior (195) of Ak,λ,0 that:

|w±k,λ,0(x, y)| . ψk,λ,0(x) |λ− Ωp|
1
4 , ∀(x, y) ∈ R2, (215)

and thus with the estimate (191), it follows immediately that:

∣∣∣w±k,λ,0
ke(λ)

(x, y)
∣∣ . ψk,λ,0(x) |λ− Ωp|

3
4 , ∀(x, y) ∈ R2. (216)

It yields the L∞-estimate:
∣∣∣w±k,λ

′,0

ke(λ′)
(x, y)− w±k,λ,0

ke(λ)
(x, y)

∣∣ . sup
λ̃∈[λ,λ′]

ψke(λ̃),λ̃(x) sup
λ̃∈[λ,λ′]

|λ̃− Ωp|
3
4 . (217)

Combining the estimates (191), (192) (as Je(λ) = |k′e(λ)|), (215) and (211) gives after simple computa-
tions: ∣∣∣∂λ

(w±k,λ,0
ke(λ)

)
(x, y)

∣∣∣ . (1 + |x|+ |y|) ψk,λ,0(x) |λ− Ωp|−
3
4 , ∀(x, y) ∈ R2. (218)
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By applying the mean value inequality with the estimate (218), one gets:
∣∣∣w±k,λ

′,0

ke(λ′)
(x, y)− w±k,λ,0

ke(λ)
(x, y)

∣∣ . (1 + |x|+ |y|) sup
λ̃∈[λ,λ′]

ψke(λ̃),λ̃(x) sup
λ̃∈[λ,λ′]

|λ̃− Ωp|−
3
4 |λ′ − λ|. (219)

We introduce the function hλ,λ′ : (x, y) 7→ (1 + |x| + |y|)γ supλ̃∈[λ,λ′] ψke(λ̃),λ̃(x). Interpolating between

the inequalities (217) and (219) yield:
∣∣∣w±k

′,λ′,0

ke(λ′)
(x, y)− w±k,λ,0

ke(λ)
(x, y)

∣∣∣ . hλ,λ′(x, y) sup
λ̃∈[λ,λ′]

|λ̃− Ωp|
3
4 (1−γ) sup

λ̃∈[λ,λ′]

|λ̃− Ωp|−
3
4γ |λ′ − λ|γ ,

for all (x, y) ∈ R2. It follows from (214) that
∥∥∥w±k

′,λ′,0

ke(λ′)
− w±k,λ,0

ke(λ)

∥∥∥
L2
−s(R2)

. ‖hλ,λ′‖L2
−s(R2) sup

λ̃∈[λ,λ′]

|λ̃−Ωp|
3
4 (1−γ) sup

λ̃∈[λ,λ′]

|λ̃−Ωp|−
3
4γ |λ′−λ|γ . (220)

We point out that supλ̃∈[λ,λ′] ψke(λ̃),λ̃ is uniformly bounded by 1, thus hλ,λ′ ∈ L2
−s(R2) for γ ∈ (0, s −

1/2). However, we do not dominate this supremum by 1 since one wants to benefit from the decay of
‖hλ,λ′‖L2

−s(R2) when λ is close to Ωp.

We now bound ‖hλ,λ′‖L2
−s(R2). Clearly, it exists λ± ∈ [λ, λ′] such that min

λ̃∈[λ,λ′]
θ±
ke(λ̃),λ̃

= θ±ke(λ±),λ±
. Thus,

one has

sup
λ̃∈[λ,λ′]

ψke(λ̃),λ̃(x) = e
−θ±

ke(λ±),λ±
|x|
, for ± x ≥ 0.

Hence, using the inequality (1+ |x|+ |y|) ≤ (1+ |x|)(1+ |y|) for x, y ∈ R and the facts that (1+ |x|)2γ/(1+
|x|2)s . 1 and y 7→ (1 + |y|)γ ∈ L2

s(Ry) for γ < s− 1/2 leads to

‖hλ,λ′‖L2
−s(R2) .

∥∥∥ sup
λ̃∈[λ,λ′]

ψke(λ̃),λ̃

∥∥∥
L2

(Rx)

=
1√
2

(
(θ−ke(λ−),λ−

)−1 + (θ+
ke(λ+),λ+

)−1
) 1

2

and thus it follows with (194) that:

‖hλ,λ′‖L2
−s(R2) . sup

λ̃∈[λ,λ′]

|λ̃− Ωp|
1
4 . (221)

One concludes from (214), (220) and (221) that for γ ∈ (0, 1] ∩ (0, s − 1/2) and (k, λ), (k′, λ′) ∈
Λee([a, b]) and λ ≤ λ′:
∣∣∣
∫

R2

U1 (W1
±k,λ′,0−W1

±k,λ,0)dxdy
∣∣∣ . sup

λ̃∈[λ,λ′]

|λ̃−Ωp|1−
3
4γ sup
λ̃∈[λ,λ′]

|λ̃−Ωp|−
3
4γ |λ′−λ|γ ‖∂yE‖L2

s(R2). (222)

(ii) Estimate on the second term. Integrating by part twice in y to compensate the additional factor k
in W2

±k,λ,0 (see (33)) gives

∣∣∣
∫

R2

U2 (W2
±k′,λ′,0 −W2

±k,λ,0) dxdy
∣∣∣ =

∣∣∣
∫

R2

∂2
yHx

( w±k′,λ′,0
µλ′λ′ ke(λ′)

−
w±k,λ,0)

µλλ ke(λ)

)
dxdy

∣∣∣.

As the functions λ → 1/(µ±λ λ) are C∞ on [a, b], the estimates (217) and (219) still holds by replacing
w±k,λ,0/ke(λ) by w±k,λ,0/(µλ λke(λ)). Hence, one gets with the same reasoning:

∣∣∣
∫

R2

U2 (W2
±k′,λ′,0 −W2

±k,λ,0) dxdy . sup
λ̃∈[λ,λ′]

|λ̃− Ωp|1−
3
4γ sup

λ̃∈[λ,λ′]

|λ̃− Ωp|−
3
4γ |λ′ − λ|γ ‖∂2

yHx‖L2
s(R2).

(223)
(iii) Estimate on the third term. As in the proof of Proposition 38, we need to integrate by part twice
in y to compensate the additional factor θk,λ that appears in the expression of ∂xw±k,λ′,0. It yields:

∣∣∣
∫

R2

U3 (W3
k,λ,0 −W3

k′,λ′,2)dxdy
∣∣∣ =

∣∣∣
∫

R2

∂2
yHy

( ∂xw±k′,λ′,0
µλ′ λ′ke(λ′)2

−
∂xw±k,λ,0)

µλ λ ke(λ)2

)
dxdy

∣∣∣,
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with ∂xw±k,λ,0(x, y) = sgn(x) θk,λ(x)wke(λ),λ,0(x, y) for x 6= 0.

On one hand, from the above formula, (215), (191) and (194), one gets

∣∣∣∂xw±k,λ,0(x, y)

µλ λ ke(λ)2

∣∣∣ . ψk,λ,0(x) |λ− Ωp|
3
4 , ∀(x, y) ∈ R∗ × R. (224)

On the other hand, from (224), (215), (191), (192) and (212), one obtains that

∣∣∣∂λ
(∂xw±k,λ,0(x, y)

µλ λ ke(λ)2

)∣∣∣ ≤
∣∣∣∂λ∂xw±k,λ,0(x, y)

µλ λ ke(λ)2

∣∣∣+
∣∣∣∂xw±k,λ,0(x, y)∂λ

( 1

µλ λ ke(λ)2

)∣∣∣

. (1 + |x|+ |y|)ψk,λ,0(x) |λ− Ωp|−
3
4 , ∀(x, y) ∈ R2. (225)

(224) and (225) are the equivalent of the estimates (216) and (218) for the first component. Thus following
the same reasoning as for the first component gives

∣∣∣
∫

R2

U3 (W3
k,λ,0 −W3

k′,λ′,2)dxdy
∣∣∣ . sup

λ̃∈[λ,λ′]

|λ̃− Ωp|1−
3
4γ sup
λ̃∈[λ,λ′]

|λ̃− Ωp|−
3
4γ |λ′ − λ|γ ‖∂2

yHy‖L2
s(R2). (226)

(iv) As the three last components of Wk,λ,0 are only given (up to a multiplication by C∞ function in
λ on [a, b]) by a restriction to R+ of the three first components, one easily deduced a similar estimates
as the ones in (222), (223) and (226) for these components. Thus combining all these estimates and the
definition of the dual norm (196) leads to (213).
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Figure 4: Zoom for the case [a, b] = [Ωp − η,Ωp] and Ωm < Ωe.

Proof. Using the Theorem 9, it only remains to prove a local estimate at Ωp, that is on an interval
K = [Ωp − η,Ωp + η] with η sufficiently small such that 0,Ωm,Ωe,Ωc /∈ K and Λdd(K) = ∅.

As the change of topology is only due to the spectral zone Λee at the vicinity of Ωp for Ωe 6= Ωm,
it requires only to obtain new estimate on the part of the spectral density Mee

λ associated with Λee for
Ωe 6= Ωm. For the other spectral zones Z \ {ee}, we can show that the estimate (145) is satisfied for
[a, b] = [Ωp−η,Ωp +η] and Hölder indexes γ ∈ (0, s−1/2)∩ (0, 1) if Ωp 6= Ωe or γ ∈ (0, s−1/2)∩ (0, 1/2)
if Ωe = Ωp (this latter case can occur only if Ωe < Ωm). The proof is exactly the same proof as the one
of section 3.4 performed for intervals [a, b] ⊂ R \ σexc that does not contain ±Ωe and ±Ωc (Case A) or
does not contain ±Ωc for the particular case Ωe = Ωp(Case B). It does not depend on the fact that ±Ωp

is contained in the considered interval.
We consider the case Ωe > Ωm (see Figure 4). Thus, one can choose η sufficiently small such that

Λde(λ) = Λde(λ′) = ∅ and Ωe /∈ [a, b]. The proof for Ωm > Ωe is obtained in the same way.
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For λ, λ′ ∈ K, one has for all U ∈ Xs:

‖Mλ′U −MλU‖X∗s ≤
∑

z∈{di,ei}
‖Mz

λ′U −Mz
λU‖X∗s + ‖Mee

λ′U −Mee
λ U‖X∗s ,

Indeed, in the proof of Theorem 9 (case A), the Hölder estimate in B(Hs,H−s) of the terms related to
the spectral zones Λdi and Λei holds on K (which implies the same estimate in the norm B(Xs,X ∗s )).
Thus, we obtain that for 0 < γ < s− 1/2 and γ < 1:

‖Mλ′U −MλU‖X∗s . |λ′ − λ|γ ‖U‖Xs + ‖Mee
λ′U −Mee

λ U‖X∗s . (227)

Hence, as explained at the beginning of the proof, one only needs to derive a Hölder estimate for λ 7→Mee
λ

on K. As Λee(λ) = Λee(λ′) = ∅ and thus Mλ = Mλ′ = 0 for λ, λ′ ∈ [Ωp − η,Ωp], it is sufficient to prove
this estimate for λ, λ′ ∈ (Ωp,Ωp + η] with λ ≤ λ′. We point out that we already show that the limit Mee

λ

when λ→ Ω+
p is zero in B(Xs,X ∗s ) to ensure the continuity of Mee

λ at Ωp, see section 5.2.
(i) a) Now, we show that Mee

λ is Hölder continuous with an index 0 < γ < s − 1/2 and γ ≤ 1/3 on
the set (Ωp,Ωp + η]. First, one has from the expression (190) of Mee

λ

∥∥Mee
λ′U −Mee

λ U
∥∥
X∗s
≤
∑

±
q±λ,λ′ ‖U‖Xs , (228)

where we have denoted

q±λ,λ′ :=
∣∣Je(λ′)− Je(λ)

∣∣ ∥∥W±ke(λ),λ

∥∥2

X∗s

+
∣∣Je(λ′)

∣∣
{∥∥W±ke(λ′),λ′

∥∥
X∗s

+
∥∥W±ke(λ),λ

∥∥
X∗s

} ∥∥W±ke(λ′),λ′ −W±ke(λ),λ

∥∥
X∗s
. (229)

We deal with the first term of (229). Thanks to the asymptotic formula (192) and (193), that for η
sufficiently small and since Ωp < λ ≤ λ′:

|Jee(λ′)− Jee(λ)| . (λ− Ωp)−
3
2 and |Jee(λ′)− Jee(λ)| . (λ− Ωp)−

5
2 |λ′ − λ|.

Thus, by interpolation, it follows immediately that for 0 ≤ γ ≤ 1:

|Jee(λ′)− Jee(λ)| ≤ (λ− Ωp)−
3
2−γ |λ′ − λ|γ .

It gives with (198) that for η sufficiently small, 0 ≤ γ ≤ 1/2 and Ωp < λ ≤ λ′

|Jee(λ′)− Jee(λ)| ‖W±ke(λ),λ,0‖2X∗s . (λ− Ωp)1/2−γ |λ′ − λ|γ . |λ′ − λ|γ . (230)

For the second term of the right hand side of (229), as Ωp < λ ≤ λ′, one has

λ− Ωp ≤ λ′ − Ωp and sup
λ̃∈[λ,λ′]

∣∣λ̃− Ωp

∣∣1− 3
4γ sup

λ̃∈[λ,λ′]

∣∣λ̃− Ωp

∣∣− 3
4γ = (λ′ − Ωp)1− 3

4γ (λ− Ωp)−
3
4γ

and thus by virtue of (198), (213) and (192), it yields

Jee(λ′)
(
‖W±k′,λ′,0‖X∗s + ‖W±k,λ,0‖X∗s )‖W±k′,λ′,0 −W±k,λ,0‖X∗s

. (λ′ − Ωp)−
3
2 (λ′ − Ωp) (λ′ − Ωp)1− 3

4γ (λ− Ωp)−
3
4γ |λ′ − λ|γ

. rλ,λ′ |λ′ − λ|γ , (231)

with
rλ,λ′ := (λ′ − Ωp)

1
2− 3

4γ(λ− Ωp)−
3
4γ .

Here, it remains to show that rλ,λ′ is bounded. The problem (which is similar to the one of section 3.4.4
for the case (C)) is that rλ,λ′ is not a continuous function on the line λ = Ωp. However, we see that for
any fixed κ ∈ (0, 1), it is continuous, thus bounded, in any domain of the form

D̃κ :=
{

(λ, λ′) ∈ (Ωp,Ωp + η]2
∣∣ κ (λ′ − Ωp) < λ− Ωp ≤ λ′ − Ωp

}
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since (1/2 − 3γ/4) − 3γ/4 = 1/2 − 3/2γ ≥ 0 for γ ∈ (0, 1/3]. Combining (230), (231), (229) and (228)
yields that for any γ ∈ (0, s− 1/2) ∩ (0, 1/3] and λ, λ′ ∈ D̃κ, one has

∥∥Mee
λ′U −Mee

λ U
∥∥
Xs,X∗s

. |λ′ − λ|γ . (232)

(i) b) To conclude, we have to prove that (232) holds true in the complement of D̃κ, that is,

D̃c
κ :=

{
(λ, λ′) ∈ (Ωp,Ωp + η]2

∣∣ κ (λ′ − Ωp) ≥ λ− Ωp

}
.

The idea is to use directly (227) (and not (231)) for η sufficiently small with the following inequality

‖Mee
λ′ −Mee

λ ‖Xs,X∗s . ‖Mee
λ′‖Xs,X∗s + ‖Mee

λ ‖Xs,X∗s . (λ′ − Ωp)
1
2 + (λ− Ωp)

1
2

and to notice that the inequality κ (λ′ − Ωp) ≥ λ − Ωp which characterizes points of D̃c
κ can be written

equivalently as

λ′ − Ωp ≤ (1− κ)−1 (λ′ − λ) or λ− Ωp ≤ (κ−1 − 1)−1 (λ′ − λ).

Thus, we finally obtain for any γ ∈ (0, s− 1/2) ∩ (0, 1/3]:

‖Mee
λ′ −Mee

λ ‖Xs,X∗s . |λ′ − λ|1/2 . |λ′ − λ|γ , ∀(λ, λ′) ∈ Dc
κ.

Combining this inequality, (232) and (227) completes the proof of (197).

A Appendix

A.1 Asymptotic formulas at the vicinity of ±Ωp

We prove here the Lemma 32 that gives some asymptotic expansions which are useful to establish a
Hölder estimate of the spectral density at ±Ωp.

Proof. To prove the asymptotic expansion (191), one first establishes the asymptotic expansion of λe(k)
when k → +∞. From the expression (27) of λe, one obtains after some simple computations:

λe(k) = Ωp −
K Ωp

8
k−2 +O(k−4), as k →∞. (233)

We deduce from (233) an asymptotic expansion of k = ke(λ), where ke = λ−1
e is defined by (28). Using

the equivalence between the limits k = ke(λ)→ +∞ and λ→ Ω±p for ±K > 0, one gets from (233):

∣∣λ− Ωp

∣∣ = 8−1|K|Ωp ke(λ)−2 +O(ke(λ)−4), as λ→ Ω±p for ±K > 0,

and it yields

ke(λ) =
( |K|Ωp

8

) 1
2 ∣∣λ− Ωp

∣∣− 1
2
(
1 +O(ke(λ)−2)

)
.

One concludes finally to (191) by using the fact that ke(λ)→∞ for λ→ Ω±p for ±K > 0.
• To compute the asymptotic expansion (192) of Je(λ) = |λ′e(ke(λ))|−1, one first computes λ′e thanks

to (27). After some simplifications, one gets that:

λ′e(k) =
g(k)

λe(k)
with g(k) := Ω2

m

( k
K
− k

K

(
1 +

K2

4k4

)− 1
2
)
. (234)

As

g(k) =
Ω2

m

8k3

(
K +O(k−4)

)
as k → +∞, (235)

it follows that:

λ′e(k) =
Ω2

m

8λe(k)k3

(
K +O(k−4)

)
, as k → +∞. (236)
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Using again that for k = ke(λ), the limit k → +∞ is equivalent to the limit λ = λe(k)→ Ω±p for ±K > 0,
one deduces an asymptotic in λ for k = ke(λ). Thanks to (191) and the definition (11) of Ωp, one obtains:

λ′e(ke(λ)) =
Ωp

4 ke(λ)3
(K + o(1)) = 2

(Ωp|K|
8

)− 1
2 ∣∣λ− Ωp

∣∣ 32 ( sgn(K) + o(1)
)
.

One arrives finally to the asymptotic expansion (192) by using that Je(λ) = |λ′e(ke(λ))|−1.
• To show (193), one uses the relation between the derivatives of ke and its inverse λe which gives

|k′′e (λ)| =
∣∣λ′′e (ke(λ))

∣∣Je(λ)3. (237)

Thus, as one knows the asymptotic behaviour of Je, it only remains to compute the asymptotic of the
second derivative of λe. To this aim, differentiating with respect to k the relation (234), one gets that:

λ′′e (k) =
(
g′(k)λE(k)− λ′e(k)g(k)

)
λe(k)−2. (238)

By differentiating g and computing its asymptotic at +∞, one shows after simplifications that:

g′(k) = Ω2
m

(
− 3K

8k4
+ o
( 1

k4

))
, as k → +∞. (239)

Using the asymptotic expansions (233), (235), (236) and (239) in (238) gives:

λ′′e (k) = −3KΩp

4 k4

(
1 + o(1)

)
as k → +∞.

Applying the asymptotic expansion (191) in the latter expression for k = ke(λ) yields

∣∣λ′′e
(
ke(λ)

)∣∣ = 6
(Ωp |K|

8

)−1∣∣λ− Ωp

∣∣2(1 + o(1)). (240)

Thus, using the asymptotic formula (192) and (240) in (237) leads after simplifications to (193).
• For (194), one deals first with the expansion of θ−λ,ke(λ). By (24) and (21), one has

θ−λ,ke(λ) =
√
ke(λ)2 − ε0µ0λ2 = |ke(λ)|

√
1− ε0µ0

(
λ ke(λ)−1

)2
.

Thus, it yields immediately with (191) the asymptotic formula (194). One deduces the expansion of
θ+
λ,ke(λ) from the one of θ−λ,ke(λ) by using the dispersion relation (26) which gives:

θ+
λ,ke(λ) = −µ

+(λ)

µ0
θ−λ,ke(λ) = (1 + o(1)) θ−λ,ke(λ) as λ→ Ω±p for ±K > 0.

• Concerning the asymptotic formula (195), one deduces from the definition (37) of Ake(λ),λ,0 that :

Ake(λ),λ,0 =
λ2 |µ+

λ θ
+
λ,ke(λ)|

1/2

√
2πΩm(4ke(λ)4 + (ε0µ0)2(Ω2

e − Ω2
m)2)1/4

=
Ωpµ

1
2
0

2
√

2π

|θ+
λ,ke(λ)|

1/2

ke(λ)
(1 + o(1)),

as λ→ Ω±p for ±K > 0. Combining the latter expression, (191) and (194) gives immediately (195).

A.2 The limiting absorption principle near the frequency ±Ωe

In this paragraph, we indicate what changes have to be made in order to adapt the proof of Theorem
2 for the particular value γ = 1/2 of the Hölder exponent in a vicinity of +Ωe or −Ωe (see Remark 3).
Indeed the approach we propose in §3 to prove the Hölder regularity of the spectral density (Theorem
9) is not valid in this particular case. This is actually due to our choice of introducing the function θmin

k,λ

(see (88)) which yields more concise but less precise estimates. To deal with this particular case, we have
to distinguish between θ+

k,λ and θ−k,λ in the Hölder estimates.
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We assume again for simplicity that Ωe > Ωm and we consider an interval [a, b] of the form [Ωe, b] or
[a,Ωe] contained in R\ (σexc∪{Ωc}). We see in Figure 3 that the two spectral zones which are concerned
are Λdd and Λde. Only the latter is problematic. Indeed, the core of the problem is that for γ = 1/2,
Lemma 24 is wrong for z = de (whereas it holds true for z = dd). To remedy, we have to come back to
the very first estimates where we have used θmin

k,λ . This started with the λ-derivative of Ak,λ,±1 given in
(92). Here, Jde = {+1} so that instead of (94), we obtain the more precise estimate

∀(k, λ) ∈ Λde([a, b]), |∂λAk,λ,1| . |θ−kλ|
−3/2 + |θ+

k,λ|
−1,

which can be then used in the proof of Lemma 19. Instead of (105) and (106), we infer that

∀(x, y) ∈ R2,
∣∣∂λwk,λ,1(x, y)

∣∣ .
(
|θ−k,λ|

−3/2 + |θ+
k,λ|
−1
)

(1 + |x|),

∀(x, y) ∈ R∗ × R,
∣∣∂λ∂xwk,λ,1(x, y)

∣∣ .
(
|θ−k,λ|

−3/2 + |θ+
k,λ|
−1
)

(1 + |x|).

Proceeding as in the proof of Proposition 20, we deduce that for all (k, λ), (k, λ′) ∈ Λde([a, b]) such that
λ ≤ λ′,

∥∥Wk,λ′,1 −Wk,λ,1

∥∥
H−s

.

(
sup

λ̃∈[λ,λ′]

|θ−
k,λ̃
|−1/2−γ + sup

λ̃∈[λ,λ′]

|θ+

k,λ̃
|−γ sup

λ̃∈[λ,λ′]

|θ−
k,λ̃
|−1/2+γ/2

)
|λ′ − λ|γ ,

which is more precise than (117). As we are only interested in the case where γ = 1/2, from now on
we choose this particular value. We move to §3.4.2, where the definition (153) of dλ,λ′,j and (63) (for
γ = 1/2) yield now

dλ,λ′,1 .

(
sup

λ̃∈[λ,λ′]

|θ−
k,λ̃
|−1 + sup

λ̃∈[λ,λ′]

|θ+

k,λ̃
|−1/2 sup

λ̃∈[λ,λ′]

|θ−
k,λ̃
|−3/4

)
|λ′ − λ|1/2.

Hence the relation (151) for z = de will be proved once we have verified that the integral on Λde(λ) ∩
Λde(λ′) of the quantity inside the parentheses is bounded. As θ+

k,λ̃
and θ−

k,λ̃
cannot vanish simultaneously,

this amounts to proving separately
∫

Λde(λ)∩Λde(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ+

k,λ̃

∣∣−1/2
dk . 1 and

∫

Λz(λ)∩Λde(λ′)

sup
λ̃∈[λ,λ′]

∣∣θ−
k,λ̃

∣∣−1
dk . 1,

instead of Lemma 24. In the present case, the statement of this lemma is equivalent to (158) with
exponent β = −1/2 for

∣∣θ+

k,λ̃

∣∣ and β = −1 for
∣∣θ−
k,λ̃

∣∣, that is, replacing in the first integral the exponent

−1 (for which the inequality is false) by −1/2 (for which the inequality is true). Finally it is easy to see
that on one hand we can reuse exactly the arguments of the proof of Lemma 24 for case (B) to prove the
above inequalities and on the other hand that the proof of Lemma 25 for case (B) holds for γ = 1/2.
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milieu stratifié perturbé, J. Diff. Equat. 62 (3) (1986), 357–409.

[13] Y. Dermenjian and J. C. Guillot, Scattering of elastic waves in a perturbed isotropic half space with
a free boundary. The limiting absorption principle. Math. Methods Appl. Sci. 10 (2) (1988), 87–124.

[14] D. M. Eidus, The principle of limiting absorption, Amer. Math. Soc. Transl., 47 (2) (1965), 157–191.

[15] D. M. Eidus, The principle of limit amplitude, Russ. Math. Surv., 24 (3) (1969), 97–167.

[16] A. Figotin and J. H. Schenker, Spectral theory of time dispersive and dissipative systems, J. Stat.
Phys., 118 (1) (2005), 199–263.

[17] B. Gralak and A. Tip, Macroscopic Maxwell’s equations and negative index materials, J. Math.
Phys., 51 (2010), 052902.

[18] B. Gralak and D. Maystre, Negative index materials and time-harmonic electromagnetic field, C.R.
Physique, 13 (8) (2012), 786–799.

[19] C. Hazard and F. Loret, Generalized eigenfunction expansions for conservative scattering problems
with an application to water waves. Proc. R. Soc. Edinb.: Section A Mathematics, 137 (5) (2007),
995–1035.

[20] E. Hille and R. S. Phillips. Functional analysis and semi-groups (Vol. 31). American Mathematical
Soc., 1996.

[21] P. Henrici, Applied and computational complex analysis, vol. 3, Wiley, New York, 1986.

[22] Koji Kikuchi and Hideo Tamura, Limiting amplitude principle for acoustic propagators in perturbed
stratified fluids, J. Differ. Equations, 93 (2) (1991), 260–282.

[23] P. R. Loh, A. F. Oskooi, M. Ibanescu, M. Skorobogatiy and S. G. Johnson, Fundamental relation
between phase and group velocity, and application to the failure of perfectly matched layers in
backward-wave structures, Phys. Rev. E, 79 (6) (2009), 065601.

[24] J. Li and C.T. Chan, Double-negative acoustic metamaterial., Phys. Rev. E., 70 (5) (2004), 055602.

[25] S. A. Maier, Plasmonics: fundamentals and applications, Springer, New York, 2007.

63
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