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Abstract:

Using direct reinforcement learning (RL) to accomplish a task can be very inefficient, especially
in robotic configurations where interactions with the environment are lengthy and costly.
Instead, learning from expert demonstration (LfD) is an alternative approach to gain better
performance in an RL setting, which also greatly improves sample efficiency. We propose a novel
demonstration learning framework for actor-critic based algorithms. Firstly, we put forward
an environment pre-training paradigm to initialize the model parameters without interacting
with the target environment, which effectively avoids the cold start problem in deep RL
scenarios.Secondly, we design a general-purpose LfD framework for most of the mainstream
actor-critic RL algorithms that include a policy network and a value function like PPO, SAC,
TRPO, A3C. Thirdly,we build a dedicated model training platform to perform the human-
robot interaction and numerical experimentation. We evaluate the method in six Mujoco
simulated locomotion environments and our robot control simulation platform. Results show
that several epochs of pre-training can improve the agent’s performance over the early stage of
training. Also, the final converged performance of the RL algorithm is also boosted by external
demonstration. In general the sample efficiency is improved by 30% with the proposed method.
Our demonstration pipeline makes full use of the exploration property of the RL algorithm,

which is feasible for fast teaching robots in dynamic environments.

Keywords: deep learning, deep reinforcement learning, learning from demonstration (LfD),

actor-critic framework, robotics

1. INTRODUCTION

The actor-critic (AC) framework has been extensively used
in reinforcement learning (RL) algorithms. This frame-
work combines policy gradient methods and value func-
tions, namely the actor and the critic. However, most
actor-critic algorithms such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) and Asynchronous
Advantage Actor-Critic (A3C) (Mnih et al., 2016) heav-
ily rely on agent-environment interaction to improve its
performance. Especially during the early stage of learn-
ing, the model development requires large amounts of
exploration experience, which can be very expensive and
time-consuming. Over the course of training from scratch,
a reinforcement learning model could not internalize the
expert knowledge and human behavioral prior which leads
to useless and expensive exploration at early stages, which
ends up usually reaching the sub-optimum at much later
stage. Thus, there has been plenty of research focusing on

the combination of RL algorithms with expert demonstra-
tions. Pre-training the policy network and critic network
may be the most common way to leverage expert demon-
strations. However, in the case of limited demonstrations,
it is prone to overfit during the course of training, resulting
in ill-conditioned network parameters and poor perfor-
mance.

In this study, we proposed a novel strategy (Fig. 1) for
learning from demonstration (LfD, Schaal (1997)) that is
available for all actor-critic based algorithms, accelerating
the convergence of reinforcement learning and improving
the final performance. We first construct two separate
demonstration environments aimed at pre-training the
actor network and the critic network. We then create an
auxiliary value function to assist the pre-training of the
policy network. After the demonstration process, we use
the pre-trained parameters as model initialization, and
perform the standard reinforcement learning procedure
until convergence in the target environment.
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Fig. 1. Demonstration Learning procedure: Two pre-
training environments are constructed based on ex-
pert replay data. We pre-train the “actor” and “critic”
network separately in these two demonstration envi-
ronments. We train the policy network along with the
“Surrogate value function” to fit the policy environ-
ments.The final RL model is initialized with the pre-
trained network afterwards.

We aim at solving tasks in various environments, combin-
ing human demonstration with reinforcement learning. We
investigate the performance of our method both in stan-
dard simulation benchmark environments and in simulated
humanoid robotic configuration. The results show that
our method has improved sample efficiency and achieved
better performance in benchmark environments. The main
contributions of our work can be summarized as:

e The demonstration process augments the episode re-
wards at early stage during training, i.e., the algo-
rithm costs less samples to reach convergence. The
sample efficiency is improved in most benchmark en-
vironments.

e Learning behaviors through reinforcement learning is
more stable via demonstration even without careful
hyperparameter tuning.

e The model with demonstration can achieve higher
episode rewards that cannot otherwise be acquired
through simple exploration by the RL model itself.
The knowledge is distilled from demonstration data
through pre-training.

In the following sections, we will first present reinforce-
ment learning, background and related LfD work. Then
we will explain our demonstration framework. Next, we
will show our experimental configuration and results that
manifest the improvement. The article concludes with a
brief discussion and possible future works.

2. BACKGROUND

Actor-critic framework  Traditional reinforcement learn-
ing methods can generally be divided into value-based
methods and policy-based methods (Arulkumaran et al.,
2017). The former includes the classical Q-Learning
(Watkins and Dayan, 1992) algorithm and its deep learn-
ing based variants like DQN (Mnih et al., 2013) and

Double-DQN (van Hasselt et al., 2015). These methods
have better sample efficiency and can update parameters
for every time step,but value-based methods often can-
not handle high dimensional or continuous control envi-
ronments. The latter approaches parameterize the policy
model and use policy gradient based optimization to guide
the agent to explore the environment. These methods
present more stable behavior during training and can be
easily implemented to solve continuous, high-dimensional
problems. However, policy-based methods usually suffer
from low sample efficiency since the model can only update
parameters after collecting enough interactions.

The actor-critic algorithm (Konda and Tsitsiklis, 2000) is
proposed to combine the strong points of policy-based and
value-based methods. At each training step, it applies an
actor model to choose an action at a given environment
state. The critic part aims at estimating the expectation
of accumulated rewards at specific states. The actor con-
tinuously iterates to increase the probability of choosing
a suitable action in different states, and the critic keeps
iterating to give a more accurate value assessment. Hence,
the actor-critic framework maintains the characteristics of
single-step updates and fast learning, and can be applied to
the continuous action space. Most state-of-the-art model
free reinforcement learning algorithms such as TD3 (Fu-
jimoto et al., 2018), SAC (Haarnoja et al., 2018), DDPG
(Lillicrap et al., 2015) and PPO (Schulman et al., 2017)
are based on the actor-critic framework.

Reinforcement Learning with LfD  Reinforcement learn-
ing algorithms rely on trial and error mechanisms to
leverage the agent exploration and exploitation (Sutton
et al., 1998) of the environment. Then collected interaction
experiences will be used to optimize the model. However,
sparse reward signal can cause the inefficient and random
attempts during the early stage of training (Parisi et al.,
2020), which will slow down the training of the model.

When acquiring new skills, human beings usually start
with learning from expert demonstrations. Inspired by this
idea, learning from demonstration is proposed to accel-
erate robot learning process. Within LfD framework, the
robot decision policy learns from examples or demonstra-
tions that are provided by a teacher (Argall et al., 2009).
LfD has been applied to improve robot performance in real
life (Safavi and Zadeh, 2017), (Konidaris et al., 2012). At
the same time, this kind of technique is also studied as
an alternative against low sample efficiency of reinforce-
ment learning in some cases. (Hester et al., 2017)) use
demonstration data to pre-train the Q-function network in
a DQN model. (Vecerik et al., 2017) seek to use priority re-
play buffer to leverage the ratio of demonstration data for
training the network. By using demonstration dataset as
part of replay experiences reflects the off-policy character-
istic of a model being able to learn from other experiences.
However, we need a large amount of demonstration data
to maintain the performance. Some approaches to reduce
this burden train a student network from several teaching
networks in a continuous learning manner through policy
distillation (Traoré et al., 2019) or use intrinsic motivation
to LfD (Nguyen et al., 2011). Other studies evaluate the
artificial expert providing help on demand Bennetot et al.
(2020).



(Zuo et al., 2017) and (Lin et al., 2020) both modify the
objective function of reinforcement learning to evaluate the
similarity of sampled data and demonstration data. The
algorithms motivate the agent to act as expert when there
are similar frames in the demonstration dataset. However,
these approaches may fail in high dimensional observation
spaces. On the one hand, demonstration data becomes
sparser due to the curse of dimensionality (Bellman, 1966),
which renders data less representative. On the other hand,
enumerating the demonstration dataset becomes infeasible
with large size dataset. High dimensional states will inval-
idate this approach through the curse of dimensionality.

Works in (Cruz et al., 2017) and (Nair et al., 2017) apply
ideas of imitation learning to fit the demonstration dataset
in a supervised manner. (Xiang and Su, 2019) use the mean
episode rewards in demonstration data as a baseline to
amplify the incentive in high reward zone. Another work
(Vasan and Pilarski, 2017) trains mechanical prostheses
with AC framework agents to imitate complex movements
through demonstration methods. However, the idea behind
this implementation is to fit the demonstration trajectory
using a RL model. However, this approach may degrade
the RL’s exploration behaviors into a supervised way.
The model in (Zhao et al., 2017) projects demonstration
data into a nonlinear control model to assist actor-critic
learning. Despite the promising results, the method is not
easily applicable into other non-robotic domains.

Our demonstration pipeline makes full use of the explo-
ration property of the RL algorithm, which equips the
model with strong robustness. Instead of forcing the agent
to fit the demonstration data, we create two demonstration
environments from expert experience to simulate natural
RL learning process. We will explain our method in detail
in the next section.

3. METHODOLOGY
3.1 Pre-training Environments

When performing learning from demonstration under the
actor-critic RL framework, two artificial demonstration
environments are needed during the pre-training phases.
The first, actor demonstration environment, is for training
the policy network. In the common actor-critic framework,
the actor model includes a policy network that takes
current sate as input and outputs a corresponding action.
Thanks to the Markovian assumption within the RL scope,
only the current state is sufficient for the agent to take an
action.

Actor demonstration environment is built as follows: We
firstly load all demonstration data which preserves sequen-
tial time order of observation during expert replay. Then
we recreate this demonstration scenario in the pre-training
environment. Under the reset command, the environment
will randomly choose one episode from the dataset. It
will continuously feed the model with time step frames
during demonstration, formatted as {s?, sZ,r7,al’}. D
denotes data coming from demonstrations. Regardless of
the action that the model takes, the feeding order of
time step data remains the same in order to simulate
the demonstration process. After receiving actions, the
demonstration environment returns a reward signal r™

that describes the distance in probability between the
action given by the model and the action taken during
demonstration. The reward is also leveraged by the reward
signal collected in demonstration dataset. This encourages
the agent to imitate expert behavior. We reformulate the
actor demonstration environment &£,as:

5w(at|3?) - {StDﬂa TtDJrlv atDJrl}

ﬂ (1)
Ti41 = Pﬂ"(s?_l)(atp) X 7'?

where P is the probability to choose the action aP at the
given state sP ;. m denotes the expert policy. And we note
r™ the reward function in &,. The second demonstration
environment is dedicated to pre-training the “critic” part
of the model. The value function takes an environment
state as input and outputs the expectation of future ac-
cumulated rewards based on the input. The critic demon-
stration environment interacts with the model in the fol-
lowing way: At first, the environment chooses randomly
an episode from the demonstration dataset. Data frames
can be provided either in expert replay order or in random
order. That is because the value function fits the states to
episode returns and can be trained in a supervised way.
Since the value function generates no action, the model
will continuously receive states and rewards from the
demonstration environment while the environment runs
alone by itself. The interaction in the critic demonstration
environment &, can be formulated as:

gv(®|stD) — {Sg’l’ Tg’l} (2)
v _..D
Tip1 =T

where r} denotes the reward function in &, at time step .
8.2 Pre-training Method

The reward function during demonstration is not the
same as in the RL setting, which demands for another
value function v/, to assist the pre-training of the policy
network. This is because the policy network training
requires a value function as baseline guidance. Yet, the
reward signal will change along with the switch from pre-
training with LfD to training in the target environment
and thus, this auxiliary value function will be discarded
once the pre-training is finished. Different from the original
PPO clipped loss function, we use this assistant value
function to compute the GAE (Generalized Advantage
Estimation) (Schulman et al., 2015) style advantage.

The policy 7’ will be optimized by minimizing the follow-

ing loss function in original PPO algorithm:

LEETP () = B,y [min(R,(0) AL, clip(R}(6),1 — €, 1 + ¢) A})]
(3)

where,
7' (a¢|sP)
Ry = —— L (4)
wold(at|st )
o Tt
=3 N 0T+ 1l (Ba) — v (sB0) - (9)
1=0

R} denotes the ratio between the probability of current
action under the updated and the old policy distribution.
And A] represents the advantage evaluated with v/,. As
for the value function pre-training, the parameters are op-
timized in a supervised way. The value estimation adapts



in a way of minimizing £,/ in order to fit the incremental
rewards. After all pre-training, the reinforcement learning
model will be initialized with the pre-training parameters.

T
Lo =10 (s8) =D A"l (6)
i=t

3.8 Algorithm

Proximal Policy Optimization (PPO, Schulman et al.
(2017)) algorithm has achieved state-of-the-art perfor-
mance in many control and gaming tasks. And it adopts
actor-critic structure in the model. Although we develop
our demonstration learning algorithm mainly based on
PPO framework, our method is applicable for most actor-
critic reinforcement learning algorithms that include a
policy network and a value function like SAC, TRPO, A3C
etc.

Firstly, we initialize our student model, which has similar
structure with PPO, with random parameters. Besides, we
initialize our auxiliary value function network to provide
states estimation for policy pre-training.

Secondly, we follow the steps described in subsection 3.1
to create demonstration environments. Then, LfD training
is based on pre-training 7’ and v’ in the constructed
environments.

Third, we initialize PPO model with pre-trained param-
eters and perform the standard PPO training procedure
until the return converges.

We summarize our demonstration algorithm as Algo-
rithm 1

Algorithm 1 L{D training algorithm

Input:Initialize parameters for demonstration model
7', v'. Initialize parameters for auxiliary value estimation
network v/,. Load demonstration data {s”, s> 1,77, al};
Procedure:
1: Create &, and &, with r] and r} as their step rewards:
T . D D
Tip1 = Pn'(s?_l)(at ) X1y
v _.D
Tegp1 =T
2: //Perform LfD training for #’ with v/, in &,

3: for ks =1,...,K; do
4: Update 7" and v, by gradient descent to minimize
Lppo(r', U;/)

5: end for

6: //Perform demonstration v’ in &,

7. for ke =1,...,K, do

8: Update v’ to minimize L,/ , where
T

Lo =W (sP) =Y A"l

i=t

9: end for

10: Initialize parameter for PPO model m, v with pre-
trained parameters stored in 7/, v’

11: Perform standard PPO training procedure in target
environment &£ until convergence

Output: Trained PPO model and parameters

4. EXPERIMENTS

This section will mainly answer three core questions in the
following:

(1) Can our proposed method outperform the original
RL algorithm in most environments with few expert
demonstration episodes? And how much better re-
sults can we expect?

(2) Under what circumstances does our proposed method
exhibit better performance?

(3) Is our demonstration framework applicable to real
robotic setup in an opening scene?

We will present our experimental results to investigate
these questions in order.

4.1 Simulated robotic experiments

Results on standard benchmark environments  First, we
examine the performance of our method across 6 Ope-
nAl gym environments Brockman et al. (2016) with Mu-
joco implementation Todorov et al. (2012) (Fig. 2: Ant,
HalfCheetah, Hopper, Humanoid, Swimmer and Walker.
Five of them involve 2D locomotive control problem and
Humanoid is a 3D task where the robot aims to walk
as far as possible without falling. For every benchmark

Fig. 2. 2D and 3D robot models used as benchmark
environments: Ant-v2, HalfCheetah-v2, Hopper-v2,
Humanoid-v2, Swimmer-v2, Walker2d-v2

environment, an expert agent is obtained by training an
SAC algorithm until the convergence. We collect demon-
stration data by replaying the expert model during 20
episodes. The demonstration frame in dataset is recorded
as {sP,sP,,rP,aP}. We then create the demonstration
environments described in Section 3.1. To reset one demon-
stration environment episode, we bootstrap by sampling

data from the demonstration dataset.

We choose PPO algorithm as the target algorithm to be
trained from scratch; we pre-train a PPO model with
the demonstration dataset and train standard PPO in
the target environment. We ran each RL experiments
with 10 different random seeds per environment. Other
hyperparameter information can be found in Table A.1
and the learning curve in Fig. 3:

When the learning curve bends towards top-left, the RL
model needs less interactions with the environment to
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Table 1. Time steps to reach the same level of
performance (ratio between the time steps of
our approach and PPO). Each row represents
the time needed for our method to reach 2%

of the maximum rewards PPO gets.

Ant-v2 HalfCheetah-v2 Hopper-v2
80% 0.71 0.54 5.27
50% 0.77 0.69 1.50
30% 0.78 0.70 0.13
Humanoid-v2 Swimmer-v2 ‘Walker2d-v2
80% 0.95 0.70 0.79
50% 0.92 0.74 0.87
30% 0.87 0.14 0.81

gain similar performance, what manifests better sample
efficiency. Table 1 also shows that our algorithm can
boost sample efficiency by 30% except for Hopper-v2,
which might suffer from over-fitting. Especially at early
training stages, the efficiency gain is even stronger. At this
stage, training in Hopper-v2 benefits 87% of improvement
in terms of sample efficiency. From Fig. 3, we see that
demonstration can boost performance in terms of sample
efficiency and final reward.

Table 2, Table 3 along with Fig. 4 compare mean episode
rewards from early training stages and after the algo-
rithm’s convergence. Thanks to our approach, the model
warms up through the expert demonstration dataset and
thus, the performance at the very beginning of training is
improved. In the meanwhile, we also improve RL’s final
performance with the help of the demonstration dataset.
The know-how is distilled from the demonstration dataset
and internalized by the PPO model. The model acquires
performance that can not be achieved by simple explo-
ration. Therefore, the expert demonstration can guide the
original model out of sub-optima and so achieve better
performance.

Table 2. Initial rewards per episode.

Ant-v2 HalfCheetah-v2 Hopper-v2
PPO —112+£14.0 —346 £+ 53.3 14.1 +£5.48
Ours 35.1£20.4 —215 4+ 80.9 243 + 95.1
Humanoid-v2 Swimmer-v2 ‘Walker2d-v2
PPO 106 4+ 8.03 —2.14+£174 1.59 + 2.50
Ours 109 £+ 7.12 25.0 +1.72 7.92 + 7.41

In summary, we boost the performance of the PPO model
on three aspects:

(1) Rewards at initial stage of training are raised.
(2) The final episode rewards becomes higher.
(3) Stability and sample efficiency become stronger.

Table 3. Final rewards per episode.

Ant-v2 HalfCheetah-v2 Hopper-v2

PPO 5682 + 356 4648 + 1749 2785 + 708

Ours 5891 4+ 130 7027 £ 611 2362 £ 604
Humanoid-v2 Swimmer-v2 Walker2d-v2

PPO 5193 + 463 132+1.3 5203 4+ 1143

Ours 4985 + 806 132 £0.7 6296 + 1136

4.2 Ablation study

In our ablation study, we investigate the question: how
the demonstration process can influence the initial episode
rewards and the final rewards? We test our method in the
Ant-v2 environment since the training both with PPO and
our method presents stable behaviors.

Table 4. Influence of pretraining epochs on

episode rewards at different RL training stages

in the Ant-v2 environment. Results over 5 runs
using different random seeds

20 Eps 50 Eps 100 Eps
Early Reward | 35.1 £20.4 319 4+ 102 463 £+ 122
Final Reward | 5891+ 130 5916 +£157 3835+£89
200 Eps 500 Eps
Early Reward 581 + 73 623+ 77
Final Reward | 3004 + 212 1879 £ 47

Table 4 shows that increasing the number of pre-training
episodes can enhance the model’s initial performance.
Demonstrations before the actual RL training can help
the agent to imitate the expert behavior, leading to higher
rewards at early training stages. Nevertheless, excessive
pre-training leads to overfitting. This overfitting problem
traps the RL algorithm within a local optimum, which
restricts the rewards at a low level.

Experiments demonstrate the fact that the initial perfor-
mance tends to be better with more pre-training, but the
model may also overfit the demonstration dataset with too
many demonstration epochs. The overfitting causes a 68%
drop in terms of the final performance (Table 4). Hence, a
trade-off exists between the pre-training epochs, the model
initial and final performances. Although the model’s per-
formance is sensitive to the number of pretraining epochs,
the choice of 20-50 epochs works robustly for all kinds of
environments within our experimental scope.

Results in simulated robotic configuration ~ We also in-
spect the performance of our approach in a simulated hu-
manoid robotic scenario. The environment (Fig. 5) consists
of a robot that aims to reach out the fruit in front of
it. The robot model is a re-designed open-source InMooV
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humanoid robot Langevin (2014)!. InMoov is a life-size
robot with 87 joints structure that can be produced by
3D printing. We partly re-designed the robot structure for
human-robot synchronized control system (Gong et al.,
2017), of which 53 joints can be actively controlled. This
robotic simulation is built based on PyBullet (Coumans
and Bai, 2016-2019), an open source real-time physics
simulation engine. And we developed the RL interface
through the idea of Raffin et al. (2018).

Fig. 5. Robotic fruit picking task in simulation and real
life.

The state given by environment consists of 53 joint angles
that are limited by the robot intrinsic functionality. The
reward signal depends on the distance between the end
of robot’s index finger and the center of the fruit. The
action generated by the model provides a control signal
for all robot joints and is characterized by 53 dimensions
as well. Therefore, states and actions are presented as a 53
dimension vector, and the reward is the minus distance to
motivate robot to approach the target. Thus, the problem
can be reformulated as:

sy € R% ay € R% ry = —d(finger, fruit) e R (7)

In our robotic simulation configuration, the robot has to
figure out the dynamics mechanism beneath the states,
actions and the rewards, which involves a high dimensional
inverse problem for robotic control. The reward signal only
provides information about the distance between the robot
and the target. This converts the problem in a ”learning
to coordinate” task.

For the experiments in this part, we firstly obtain our
expert model by training a well converged PPO model.
We reload the model that is trained from demonstrations
and save the replay experiences into the demonstration
dataset. Implementation details and hyper-parameters,
pretraining epochs and network structure, are the same
as described in Section 4.1.1.

I https://inmoov.fr Open source 3D printed life-size robot

Episode Reward

rrrrr
— ours

— PPO

20m 30m
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Fig. 6. Learning curve for RL in the InMoov environment

From Fig. 6, LfD training exhibits both strong stability
and sample efficiency. This phenomenon consolidates our
conclusion in previous sections.

5. CONCLUSION

To summarize our contributions, we present a novel
pipeline for learning from demonstration based actor-critic
RL models. In six standard Mujoco locomotion simulation
environments , our method could improve agent learning
speed in a more stable manner and achieve better sample
efficiency in complex behaviors. The demonstrations can
guide the model towards better performance both at early
stage and final stage of training. We also perform exper-
iments on InMoov open source robot , which shows that
our method can as well be effective in the real life setting.

In terms of future work, we would like to test the per-
formance of our demonstration strategy when the envi-
ronment states consist of raw pixels, both in end to end
approaches and state representation learning Lesort et al.
(2018). Implementation of demonstration learning across
other actor-critic RL algorithms could also be helpful to
boost the current performance.
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Appendix A. HYPERPARAMETER TABLE

Table A.1. Hyperparameters for our PPO im-
plementation and RL from demostration.

Hyperparameter Value
Policy learning rate 3x 1071
Value function learning rate 10-3
ot 0.99
A 0.97
Clip ratio (e€) 0.2
Target KL to clip 0.01
Update interval 80
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