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Utilisation de la fonctionnelle “Ecart & la Réciprocité”
pour la recherche de fissures planes

Résumé : On s’intéresse au probléme de la détection de fissures planes dans un domaine
3D & l’aide d’ondes acoustiques ou électromagnétiques. En utilisant des données au bord
surdéterminées et le concept d’écart & la réciprocité, on peut ainsi retrouver des fissures
planes de forme quelconque.

Mots-clés : fonctionnelle “Ecart & la Réciprocité”’; probléme inverse en diffraction; re-
cherche de fissures planes
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1 Introduction

In this contribution we consider the inverse crack problem defined by over-determined bound-
ary data in the framework of the Helmholtz or Maxwell equations. Our concern focuses on
the determination of planar cracks by means of a over-determined boundary data corre-
sponding to electromagnetic time harmonic measurements. The inverse scattering problem
for screens has been initiated by Kress in [I3] where he shows, in particular, uniqueness
results for sound soft two dimensional screens form the knowledge of scattered waves as-
sociated with all incident directions. The sound hard case is treated in by Monch in [14].
The case of Robin-like boundary condition has been considered by Alves-Ha-Duong in [I].
These uniqueness results can be easily generalized to three dimensional cases. For some
uniqueness results using a finite number of measurements, we refer to the work of Rondi
[15] and Cheng-Yamamoto [9]. Our contribution gives a uniqueness result for the particular
case of planar screens with a constructive proof. There are, roughly speaking, two classes
of screen identification. The first one consists in iterative processes which rely on multiple
integration of the involved partial differential equation (Helmholtz and Maxwell in our case),
and may be highly time consuming especially for 3D problems. These methods are, on the
other hand, quite general and do not require strong assumptions on the screen geometry,
such as flatness. Newton type methods have been numerically experimented in [I3] and [T]
for 2D problems. The second class of inversion procedures contains ’quasi-explicit’ methods
which do not require solving the forward problem at all and turns out to have quite low
computational cost. The linear sampling method pertains to this class. It was originally
developed for obstacles with non empty interior. It has been adapted to the case of screens
by Briihl-Hanke [6] in the case of the electrostatic model and by Kirsch-Ritter [12], Cakoni-
Colton [7] and Cakoni-Colton-Darrigrandin [8] the electromagnetic case. This method is
‘quasi-explicit’ in so far as it does not require solving the forward problem at each step,
but only involves the solution of an integral equation of the first kind with right-hand side
dependent on some ‘sampling point’. However its implementation requires a knowledge of
the scattered waves for a large number of incident directions. The approach adopted here
pertains to the second class of identification procedures. It makes use of the Reciprocity
Gap concept introduced by Andrieux and Ben Abda [B],[4] . When complete data are avail-
able on the boundary this tool turned out to be relevant for recovering 3D planar cracks in
the case of elliptic equations (see [A] and references therein). The Reciprocity Gap concept
allows the reconstruction of planar cracks in two steps.

(i) We first recover the host plane (II)

(ii) We then reconstruct the crack as the support of the solution jump across (II).

In these steps we make use of the so called Caldéron type fields as test functions for the
reciprocity gap functional. Let us mention that these fields were also used to solve other
types of inverse problems. We would like to mention for instance the work by Vogelius et
al [2] on the reconstruction of small inhomogeneities and the work by Ikehata et al (see [11]
and references therein) making use of these techniques for the reconstruction of the shape
of a convex inclusion from Cauchy data.

The paper is outlined as follows: the opening section is devoted to the inverse acoustic
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problem. We adapt the Reciprocity Gap process to the case of sound-hard crack identifica-
tion. In the third section we show the link between the Reciprocity Gap and the far field
pattern which is usually used as data when identifying sound-hard or sound-soft screens in
the free space. In the fourth section we treat the inverse problem of recovering planar cracks
in the case of Maxwell’s equations. The concluding section is devoted to the discussion of
numerical experiments.

2 The acoustic inverse problem

We are concerned here with the reconstruction of a sound hard crack o from the knowledge
of a scattered wave and its normal derivative at a fixed frequency on the boundary of a
bounded and regular domain 2 that strictly contains 0. We shall restrict ourselves to plane
cracks: o C IT where II is a plane (or a line in dimension 2), but not necessarily connected.
The direct problem amounts to seek a solution u € H*(Q\ o) of

(i) Au+k*u=0 in Q\o
(i) Opu=20 on o (1)
(tit) u=f on 09

where f € H=(dQ) is the given data and k denotes the wave number. The well-posedness of
this problem if k2 is not an eigenvalue of the Laplace operator in €2\ o can be easily checked
using a variational method, for instance. The inverse problem we are interested in is the
reconstruction of the crack o from the knowledge of f and the flux g := 0,u on 092 where
n is the unit outward normal to 0.

This reconstruction is based on the reciprocity gap functional RG : H(f2) — C defined
by

RG(v) = fOpvds — / vgds (2)
o9 r9)

for all v € H(Q2), where
H(Q):={ve H(Q) / Av+ k?v =0 in Q}.

The integrals in (@) should be understood as a duality pairing between Hz (9€2) and H 2 (52).
This convention will be maintained without explicit mention throughout the remaining of
the paper.

Applying the Green formula in €2 and using the boundary condition ([Hi) shows that

RG(v) = / [u], Vu-Nds forall ve H(Q), (3)
I
where N is a unitary normal vector to II and [u], == ut —u~ on II where u*(z) =

lim,_ o+ u(z £ eN ) for a.e. x € II. We shall prove first that if RG is not identically 0 then
o coincides with the support of the jump of u across II.

INRIA



Reciprocity-Gap functional 5

Lemma 2.1 Assume that the host plane 11 is known and that the boundary data f is such
that RG # 0. Then Supp [u], = &.

Proof. The proof of this result follows the same idea as the proof of lemma 1.5 in [4]
given for k = 0. We present here a slight modification of that version. Without loss of
generality one may assume that Il = {z € R® ; 3 = 0}. Let V C Q be an open connected
set containing o, symmetric with respect to II. Define

[ uT(x, @0, 23) zeVT,
ut = i B V-
ut (21, x2, —23) T € ,

where Vt ={z eV /2-N>0}and V- ={z eV /z-N <0}
Obviously

AaT + k0t =0in VE
Now assume the existence of a part oy C o such that the surface measure of o is not 0 and
such that [u], = 0 on oo. Let Vj be an open connected subset of V' such that Vo No # 0
and (Vo No) C o¢. Since [u], = 0 and [Oyu], = 0 on o¢, one has Au + k*u = 0 in Vj,
and also [a*], = 0 and [OnaT], = 0 on og. Therefore, Aa*™ + k*a™ = 0 in Vj. Since Vj is
connected, the unique continuation principle ensures then that © = %" in V; and the same
principle ensures that @™ = u~ in V. Consequently, [u], = 0 on o and from (@) one gets
that RG = 0. This contradicts the hypothesis of the lemma.

Remark 2.1 The result of the previous lemma holds also if we assume that II is an ana-
lytic surface. The existence of " follows from classical theorems on analytic extension of
solutions across analytic boundaries.

Thus, when the plane II is known, the crack o can be determined from a knowledge of
[u],,. We shall now discuss the use of the reciprocity gap functional RG to recover IT and

[u]-
We shall denote by F the Fourier transform on II defined for v € L(II) by

F)(€) :/ v(z) exp(i€ - x)dx for all € e R®, £- N =0.
I
For 6 € C3, we define
v(z;0) = exp(if - 2) x € R,
Simple calculations show that for 6 such that |6] = &, v(-;0) € H(Q) and
RG(v(-6)) =i(8- N) / [u],, exp(if - x)ds(x)

o

1) Recovering [u],. We assume that IT is known and is defined by the equation z-N = ~
where N is a unit normal to II and v is a given constant. From now on ,/ denotes the
complex square root with non negative imaginary part. Let £ € R3, ¢ - N =0, and define

0(¢) = & — /K2 — |€]2N.
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Obviously 0(€) - 0(¢) = k? and therefore v(-;0(¢)) € H(Q). Using @), one easily verifies that

RG(v(50(8))) = —ivVk? — [§]? exp(—iy/k? — [¢]?) /H [u], exp(i§ - ) dz.
Therefore

iexp(ivy/k* — [€]*) RG(v(;6(S)))
VR
which explicitly determine [u], by taking the inverse Fourier transform of the right hand

side.
2) Recovering the normal N. Let S be the unit sphere and define, for 6 € S,

F([ul,)(€) = forall ¢ e R, £- N =0, (4)

A(B) = sup |RG(v(:;9))l.
p€EkS; 16

Lemma 2.2 Assume that the boundary data [ is such that for each ellipse £ centered at
the origin of magjor awis 2k and minor axis n, 0 < 1 < 2k, F([u],,) is not identically zero on
E. Then +N are the only zeros of A.

Proof. We first notice that A(+N) = 0 since RG(v(-;¢)) = 0 for all ¢ L N. Now assume
the existence of 6 € S such that 6 # +N and A(f) = 0. We deduce that RG(v(-; ¢)) = 0 for
all ¢ € kS such that ¢ -6 = 0.

E={p— (¢ -N)N; ¢ e kS; ¢ L 0} is an ellipse centered at the origin of major axis 2k
and minor axis 2|6 - N|. Since § # +N, 2|6 - N| < 2k. Hence F([u],,) is identically zero on
E\{S1,S2} where S; and S, are the endpoints of the major axis of £. By continuity F([u],)
is zero on &, which contradicts the hypothesis of the lemma.

Remark 2.2 The condition of the previous lemma is fulfilled if the boundary value f is such
that F([u],) does not vanish on a connected path linking the origin to the circle of radius k
centered at the origin.

3) Recovering the plane II. We assume here that N is known and shall determine
the position of the plane II. This amounts to the evaluation of the constant v = x - N for
all x € II.

Lemma 2.3 Assume that N is known and that the boundary data f is such that RG # 0.
Then v is uniquely determined.

Proof. Since o C Q2 and () is bounded, one can obtain a priori lower and upper bounds ~~
and v of . Since RG # 0, [u], # 0 and F([u],,) # 0. Moreover, the support of [u] is
compact, so F([u],,) is analytic on R?. Hence there exists § € k.S such that

0<(yt=~7)|0-N| <7 and RG(v(-,0))#0. (5)

INRIA
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We set € =0 — (0- N)N and §' = ¢ — (6 - N)N. Using () one get

RG(v(-,0)) = c exp(iv(0 - N)) and RG(v(-,0")) = —c exp(—iy(0- N))

where ¢ = i(6 - N) / [u],, exp(is - £) ds. The constant + is therefore uniquely determined in
i}

[v~,~vT] by the ratio
RG(v(-,0))/RG(v(-,0")).

3 Some remarks on the scattering problem

We consider in this section the special case of scattering problems, i.e. when ¢ is situated
in free space. We would like to point out the link between RG and the far field pattern that
is commonly used as data in inverse scattering experiments like in [T4]. We then describe in
terms of incident plane waves the suitable choice of data for the inverse problem. Consider
for instance u € HL _(R3\ o) satisfying

loc

Au+k>u=0 in R?3
{ ©)

Opu=0 on o,

u = u' 4+ u® where u'(z) = exp(ikz - d) with |d| = 1 is an incident plane wave and where u*
is the scattered wave satisfying the Sommerfeld radiation condition

lim  r(0pu® —iku®) =0

r=|z|—o0

uniformly with respect to & = z/r. It is well known [I0] that the scattered field has the
asymptotic expansion
eikr A
u*(@) = ——(uoo(2) + O(1/r))

uniformly with respect to &, where u, is called the far field pattern. On the other hand,
from the representation theorem of a radiating solution to the Helmholtz equation [I0], if
®(z,y) denotes the fundamental solution given in dimension three by ®(z,y) = exp(ik|z —
y|)/(4r|z — y|) for = # y, then the scattered field can be represented outside o by

u(z) = / (Vy®(z,9) - N) [ul, (v) dy.

From the asymptotic expansion

Vy@(z,y) = %ﬁjrb(—ikaﬁ exp(—ikd - y) + O(1/|z|))

RR n° 5290
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uniformly for all y € o, we derive

. ik . R
Uoo(Z) = —E(:v . N)/ [u], (y) exp(—ikd - y)dy. (7
Therefore, comparing this expression with (B)) one gets
. RG(-, —kz
oo () = - R ED) ®
T

where v(z,0) = exp(if - ). One sees therefore the close link between the reciprocity gap
functional and far field pattern. The identity @) also indicates that the functional RG
contains more informations than the far field pattern and that is why it allows explicit
reconstructions in the case of plane cracks.

Moreover, in the case of scattering problem, one can make clear the assumptions in
Lemmas T and The condition RG # 0 holds if and only if the incident wave u® is such
that d- N # 0. Obviously, if d-N = 0 then RG = 0. Now, assume RG = 0, then u,, = 0 and
therefore u®* = 0 by Rellich’s lemma and the unique continuation principle. The condition
Opu = 0 on the scatterer then implies 8,u* = 0 on ¢ and therefore d-N=0.

We were not able to link the assumption of lemma 22 to some condition on the incident
plane wave.

Remark 3.1 We would like to notice here that the use of the reciprocity gap functional to
obtain explicit reconstructions applies in principle to more general boundary conditions on
o, for example of impedance type Onu* + ikATu* = 0 on o where A\* are the impedance
of each side of the crack. The theoretical and numerical justification of this case are under
study.

4 Maxwell’s equations

We treat in this section the case of Maxwell’s equations where o represents a screen. All
the results of section ] can be derived in a very similar manner. We denote

H(curl,Q) :={E € L*(Q)®; curl E € L*(Q)%}

and if divs denotes the surface divergence operator on 92 and n the normal to 92 directed
to the exterior of (2, then we define

H 3 (div,00) :={E € H 2(0Q)*: E-n=0; div,E € H 2 (9Q)}
H™ 3 (curl,09Q) :={E € H () ; E-n=0; div,(E x n) € H™2 ()}
The electric field E(z), which is a vector in R?, satisfies E € H(curl,2) and

(i) curlcurl E —k?*E =0 in Q\o
(i) ExN=0 on o )
(i) Exn=F on 09

INRIA
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where F € H~2(div,dQ) is the boundary data and n is the normal to dQ directed to the
exterior of (2. The direct problem has been studied in [7] when it corresponds to a scattering
problem, i.e. the first equation in (@) is satisfied in R3\ o with Ex N =0on o, E = E'+ E?;
E’ is an entire solution to Maxwell’s equations and E° is the scattered field that satisfies
the Silver-Miiller radiation condition:
| llim (curl B® x & —ik|z|E®) =0

uniformly in all directions #. It is shown in [8] that there exists a unique solution E in
Hioe(curl ,R?). The well-posedness of problem (@) if k2 is not an eigenvalue of the Maxwell

operator in 2\ ¢ can be derived in a very similar way. We use as additional data for the
inverse problem the boundary values

G :=(curlE);. on 09,

where (V) denotes the tangential part of a surface vector field V. The reciprocity gap
functional RG,, is now defined on the space

H, () :={V € H(curl,Q) / curl curl V — k*V = 0 in Q},

by

RGM(V):—/ F - (curlV), ds—|—/ (V xn)-Gds (10)
o9 o9

where the integrals should be understood as duality pairing between H 2 (div,d%2) and
H~z(curl,dQ) (this convention will be kept in the remaining of this section). From the
Stokes formula and the boundary condition (@ii), one derives

RG (V) = / [(cwrlE),] - (V x N)ds forall V € H,(Q). (11)

g

We shall prove first that if RG,, is not identically 0 then & coincides with the support of
the jump of (curl £), across II.

Lemma 4.1 Assume that 11 is known and that the boundary data F' is such that RG,, # 0.
Then Supp [(curl )] = &.

Proof. The proof of this result follows the same lines as the proof Lemma Il Without
loss of generality one may assume that Il = {z € R® ; 23 = 0} }. Let £, E», E3 be the
cartesian components of E. Let W C 2 be an open connected set containing o, symmetric
with respect to II. Define

it | B (31,20, 23) zeWT,
(_E;r(xlax% _‘T3)a —E;(.Il,x% _‘T3)7E§r($17x25 —CCg)) zeW™.

RR n° 5290
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Obviously 5 ~
curlcurl EY — K2E1T = 0 in W#.

Now assume the existence of a part oy C o such that the surface measure of oy is not 0
and such that [(curl £),] = 0 on op. Let W, be an open connected subset of 1 such that
Wono #0 and (WoNo) C op. Since [(curl E),] = 0 and [(E);], = 0 on og, one has
curlcurl E — k*E = 0 in Wy and also [(curl ET),] = 0 and [(ET),] = 0 on oq. Therefore,
curlcurl E* — kB2E+ = 0 in W,. Since W, is connected, the unique continuation principle
ensures then that £ = ET in W, and the same principle ensures that Et = E in W~.
Consequently, [(curl E),] = 0 on ¢ and from () one gets that RG,, = 0, which is is
contradiction with the hypothesis of the lemma.

As in the case of the Helmholtz equation, using some special test functions V' one can
exploit () to recover the plane II and [(curl E);] . For (6,p) € C* x R? a direction-
polarization couple, we define

o

V(z;0,p) :=p exp(if - z) = € R3.

For §-0 =k and -6 =0, V(-; 0, p) satisfies Maxwell’s equations and therefore V (-;6,p) €
H, (). We also have that curl V(-;0,p) € H,,(Q).

1) Recovering [(curl )] . We assume here that II is known and is defined by the
equation: 2 - N = v where N is a unit normal to I and ~ is a given constant. Let £ € R3,
£+£0,&- N =0, and define

0(¢) =€ — k2 —[§2N and p(¢) = N x &,

where £ = £/|¢|. Then the couple (6(¢),H(€)) satisfies 6 - 0 = k2 and p- 6 = 0. Since
(&) x N = £, one deduces from () that

RGw(V(50(6),0(8))) = exp(—iy v k? — [¢[?)

) (12)
/ ([(Curl E)pl, {) exp(i€ - s) ds.
II
On the other hand, since £ - N = 0,
6(€) x B(E) = [EIN + /K2 — ¢,
Hence, (6(¢) x p(€)) x N = /k2 — [€]26 x N and
RGy(curl V(5 0(€), p(€))) = iv/k? = [€]? exp(—inv/k> = [¢[?)
(13)

/H ([(Cul“l E)T]n . (é X N)) exp(i§ -5) ds.

INRIA



Reciprocity-Gap functional 11

For all £ € R, £ #£ 0 and £ - N = 0, the pair (é,é x N) forms an orthonormal basis of II.
Therefore, if one sets

A() = RGu(V(50(£),p(§))) and B(£) = RGy(curl V(5 0(¢), 5(S))) (14)
it follows from ([2) and (I3) that

F ([(curl E)7],,) () = exp(ivy/k2 — [£]2) <A<£> £— W% (€ x N)) : (15)

This identity now provides then an explicit reconstruction of [(curl E),] by taking the
inverse Fourier transform of the right hand side. According to the previous Lemma, this
allows us to reconstruct o if the boundary value F' is such that RG,, # 0.

2) Recovering the normal N. Now let S be the unit sphere and define for p € 3,

A(p)= sup |RG(V(-0,p))|.
0ck S;01p
Lemma 4.2 Assume that for each ellipse £ centered at the origin, with major axis 2k and
minor axis 1, 0 < n < 2k, F([(curl )], ) - w is not identically zero on & where w is the

direction of the major axis of £. Then =N are the only zeros of A.

Proof. We first notice that A(+N) = 0 since RG(V(+6,p)) = 0 for all @ L N. Now
assume the existence of p € S such that p # +N and A(p) = 0. From this we deduce that
RG(V(+;0,p)) =0 for all § € kS such that 8- p = 0.

Therefore, for all § € k.S such that 6 -p =0, RG(V(-;0,p)) = 0. Hence, using ([Il) we have

exp(i(0 - N)(zo - N)) < /H [(curl B) ;)] | expl(iz - §)das) (px N)=0 (16)

where z is some point in IL

E={0—(0 -N)N;0 € kS;0 L p} is an ellipse centered at the origin of major axis
hx N . "

w= 2k”137N” and of minor axis of length 2|p- N|k < 2k (since p # £N). Moreover, ([[8)
D x

yields F([(curl E),] ) - w = 0 on &, which contradicts the hypothesis of the lemma.

3) Recovering the plane II. We assume here that N is known and shall determine
the position of the plane II. This amounts to the evaluation of the constant v = = - N for
all z € I

Lemma 4.3 Assume that N is known and that the boundary data F is such that RG,, # 0.
Then ~ is uniquely determined.

Proof. Since o C 2 and () is bounded, one can obtain a priori lower and upper bounds ~~
and 1 of 4.

RR n° 5290
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Since RG,, # 0, there exists 6 € k.S and p € S such that RG(V(-;6,p)) # 0. Therefore,
[(curl E) ], # 0 and F([(curl )] ) # 0. Moreover, the support of [(curl £),] is compact,
so F([(curl E)p] ) is analytic on R. Hence there exists 6 € k.S such that

0<(yF=97)I0-N| <7 and F([(curl E)z] )(§) #0

A

where £ =0 — (§- N)N.
Since F([(curl B)] )(€) # 0, there exists w € R?, w - N = 0 such that F([(curl E)] )(€) -

b w Thus we have RG(V (-;0,p)) # 0. Weset ¢ = ¢—(-N)N.

w # 0. We then set p = ”9 T
w

Using () one gets
RG(V(:6,p)) = ¢ exp(in(6 - N)) and RG(V(:6',p)) = ¢ exp(—iv(6 - N))

where ¢ = (/ [(curl E) ;] exp(is - §)ds) - (p x N). The constant + is therefore uniquely
II
determined in [y~,~*"] by the ratio

RG(V(:0,p))/RG(V (30", p)).

5 Numerical implementation and results

Only the acoustic case will be considered in this section. We use synthetic data that corre-
sponds to the scattering of incident plane waves. The forward solver is based on reformu-
lating the scattering problem as an integral equation using a double-layer potential. The
resulting equation is discretized using P! edge elements.

5.1 Numerical difficulties of the inverse scheme

There are some numerical difficulties linked with the application of the inverse scheme de-
scribed in section [ The first one is associated with the determination of the normal to the
host plane II. The second difficulty arises with the determination of the normal to the plane
crack IT. There is no a priori selection of the measurements (i.e. boundary data) that insures
the assumption on F([u],) required by lemma However the sufficient condition given
in remark Z2is in fact easier to check numerically. Since there is, so far, no theoretical link
between this condition and the choice of the boundary data, the only systematic strategy is
trial and error by varying the number & or the boundary data f. In scattering problems, this
trial and error would not be costly since numerical experiments showed that this condition
holds for “all” frequencies k and all incident directions d non orthogonal to N. However,
a better choice would be the use of low frequency k (for example k < 27/D where D is
the diameter of the crack). This choice prevents high oscillations of [u],, (see Figure[ll) and
therefore allows an easier determination of the zeros of the functional A.

INRIA



Reciprocity-Gap functional 13

To recover the position of the plane one has to seek 0 satisfying (). In scattering
experiments one can establish a systematic choice of 8 for any frequency if the direction d
of the incident plane wave is well chosen. In particular, take this direction so that

0<|d-N|<na/k(x* —~7).

Then 0 = kd satisfies the first requirement on condition (). From (®) we have RG(v(-,0)) =

4o (—d). From the optical theorem one has

A k
S(ttoo(—d)) = = [lucc| 7
47

which shows that RG(v(-,6)) # 0 since uo, # 0 (d- N # 0). Therefore 6 = kd satisfies the
condition (H).

Let us notice that in practice it is more convenient to change the frequency and not the
incident direction. As mentioned before, numerical experiments showed that RG(v(-,6)) # 0
if 0 is non orthogonal to N. Now if we further ensure k < 7/(y" — ~v~) then any 6 non
orthogonal to N would be convenient.

The first difficulty is linked to the evaluation of F([u],) outside the disc of radius k. This
difficulty derives from the ill-posedness of the inverse problem. More precisely, the evaluation
of F([u],) involves test fields v(-,0(£)) with complex valued vectors 6(£). The numerical

evaluation of RG(v(-,0(€))) is unstable because of the exponential factor e~ VI€* =k (@)
In the following numerical trials we use a rough regularisation process which consists in the
truncation of the Fourier transform by evaluating F([u],) for || < k and inverting it to
obtain an approximation of [u],.

5.2 Numerical trials

In implementing an identification algorithm based on measurements one has to keep in
mind that measured data are subject to noise, the effects of which have to be studied. In
the following numerical trials the data are synthetic, i.e. obtained by a boundary element
computation subject to errors, and they are, hence, already noisy. To the computational
noise, we have added a random noise generated by a Fortran routine. Notice that the shape
reconstruction, that is the second step of our identification process, is not that sensitive
to the amplitude of the noise (up to 50%). Indeed the random noise is filtered when we
evaluate [u], since this jump is calculated via an inverse Fourier transform.

A more realistic noise is considered by taking data associated with non perfectly flat
cracks (see Figure [[7).

For all the numerical trials, OS2 is taken to be the sphere of radius 1 centered at the
origin.

To test the recovery of the host plane II we take as an example a square-shaped crack
of side 1 in the plane (Oxy). Figure [ illustrates the dependence of the Fourier transform
of [u],, on the wave number k. To retrieve the plane I we fixed & = 3. The following table
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summarizes the results for different incident plane waves. The incident directions are given
in terms of their spherical angles (using geophysical convention).

Incident Normal Position ~

direction (exact = (0,0,1)?) (exact = 0)
(90°,0°) (0.5657 10~3, —0.9134 10~3,0.9999994)" | —0.002 10~—*
(60°,60°) | (0.5657 10~3,—0.9134 10~3,0.9999994)" | —0.069 10~*
(30°,45°) | (—5.8106 103, —1.8052 10~3,0.9999815)" | —2.157 10~ *

Figure 1: Modulus of the Fourier transform of [u] restricted to the disc of radius k (left k=
3 and right k=15). The incident direction is orthogonal to the crack.

Figure B illustrates how the reconstruction of the Fourier transform of [u] is unstable
outside the disc of radius k. However, one gets a very accurate reconstruction inside that
disc (compare with th right hand side of Figure [).
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Figure 2: Modulus of the reconstructed Fourier transform of [u], restricted to the disc of

radius k = 15 (left) and restricted to the disc of radius 1.4k (right).

As mentioned above, the complete identification of the crack is achieved by the recon-
struction of [u],. The jump of u across II is approximated by taking the inverse Fourier
transform of F([u],) (evaluated via the RG functional) restricted to the disc of radius k.

To test the efficiency of our inversion process, we examine four numerical situations to
recover an X-shaped , a D-shaped and four squares planar cracks as well as an X-shaped
quasi-planar crack. These choices include a non connected geometry and a non simply
connected one. We would like to mention that, up to our knowledge, there is no uniqueness
result -except the one given in this work- for the case of sound-hard non simply connected
cracks.

Our first numerical experiment corresponds to an X-shaped crack (see FigureBl). FigureH
illustrates the reconstructions obtained for various wave numbers when the host plane is
known. We used normal incident plane waves. As expected, the higher the frequency, the
better is the reconstruction. Notice for instance that k& = 40 gives a quite good idea of the
crack shape.

Figures Bl present experiments where the host plane is also unknown. In a first step we
recover this plane using an (arbitrary) incident direction (here d = (1/4,/3/4,/3/2) and
a small wavenumber, for instance & = 3. Once the host plane is recovered we use a higher
frequency (k = 40) to recover [u], and change the direction of the incident wave so that
it coincides with the reconstructed normal to the host plane. In these figures we vary the
amount of added random noise. In Figures BHE, no random noise is added to recover the
normal. However we added 50% of relative random noise in figure Bl We clearly observe
that the reconstruction of [u], (that is the second part of our process) is robust. The first
step is much more sensitive to added noise as shown in Figures [l The same conclusions
hold for the D-shaped crack (Figures @ [0, [Tl and M2) as well as for the four squares crack

(Figures [[3 [ [H and [IH).
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Figure 3: Mesh of the X-shaped crack.
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Figure 4: Modulus of [u], exact on the left hand side and (noise free) reconstructed on the
right hand side. From the top to the bottom : k& = 40, k = 25, k = 15 (the host plane is
known).
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Figure 5: Modulus of reconstructed [u], Figure 6: Modulus of reconstructed [u],
with 0% noise on data to recover the host with 0% noise on data to recover the host
plane (kK = 3) and 0% noise on data to plane (k = 3) and 50% noise on data to
recover [u|, (k = 40). recover [u|, (k= 40).

Figure 7: Modulus of reconstructed [u], Figure 8: Modulus of reconstructed [u],
with 10% noise on data to recover the host with 25% noise on data to recover the host
plane (k = 3) and 10% noise on data to plane (k = 3) and 25% noise on data to
recover [u|, (k = 40). recover [u|, (k = 40).
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Figure 10: Modulus of reconstructed [u],
with 0% noise on data to recover the host
plane (kK = 3) and 0% noise on data to
recover [u|, (k= 40).

Figure 11: Modulus of reconstructed [u],
with 0% noise on data to recover the host
plane (k = 3) and 50% noise on data to
recover [u|, (k = 40).
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Figure 12: Modulus of reconstructed [u],
with 10% noise on data to recover the host
plane (k = 3) and 10% noise on data to
recover [u|, (k = 40).
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Figure 13: Mesh of the four square-shaped
cracks.

Figure 14: Modulus of reconstructed [u],
with 0% noise on data to recover the host
plane (kK = 3) and 0% noise on data to
recover [u|, (k= 40).

Figure 15: Modulus of reconstructed [u],
with 0% noise on data to recover the host
plane (k = 3) and 50% noise on data to
recover [u|, (k = 40).

Figure 16: Modulus of reconstructed [u],
with 10% noise on data to recover the host
plane (k = 3) and 10% noise on data to
recover [u|, (k = 40).

Non perfectly flat crack. We reconsider here the case of an X-shaped crack and would
like to test the influence of the lack of flatness on our reconstruction process (see Figure [[T).
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In this case our data would simulate in some sense a kind of realistic noisy data.

We use a wave of incidence (60°,60°) and of wavenumber k& = 3 to recover the plane II. The
application of our inverse scheme gave N = (—3.1075500 1072, 3.2554988 10~2,0.9989867)"
and a position v = 2.7456786 10~3. Then the reconstruction of [u] was performed with
k = 40. The result is given in Figure [[8 showing that we still have a good idea of the crack
shape.

Figure 17: Perturbed X-shaped crack :

2(z,y) = 0.02sin(27 (222 + 32y — 4y* —x + Figure 18: Reconstructed modulus of [u] .
2y))
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