N
N

N

HAL

open science

Asymptotic Models for Scattering from Strongly
Absorbing Obstacles: the Scalar Case
Houssem Haddar, Patrick Joly, Hoai Minh Nguyen

» To cite this version:

Houssem Haddar, Patrick Joly, Hoai Minh Nguyen. Asymptotic Models for Scattering from Strongly
Absorbing Obstacles: the Scalar Case. [Research Report] RR-5199, INRIA. 2004, pp.42.

00070793

HAL Id: inria-00070793
https://inria.hal.science/inria-00070793
Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

inria-


https://inria.hal.science/inria-00070793
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5199--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Asymptotic Models for Scattering from Strongly
Absorbing Obstacles: the Scalar Case

H. Haddar — P. Joly — H.M. Nguyen

N° 5199
Mai 2004

THEME 4

apport

derecherche







Zd INRIA

ROCQUENCOURT

Asymptotic Models for Scattering from Strongly
Absorbing Obstacles: the Scalar Case

H. Haddadfl , P. Joly* , H.M. Nguyen*

Théme 4 — Simulation et optimisation
de systémes complexes
Projet Ondes

Rapport de recherche n® 5199 — Mai 2004 —  HIl pages
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Modéles asymptotiques pour la diffraction par des
obstacles fortement absorbants: cas scalaire

Résumé : Nous dérivons diverses familles de conditions d’impédances généralisées pour
la diffraction d’ondes acoustiques par des obstacles fortement absorbants. Par opposition
aux travaux déja existants, la construction s’appuie sur un développement asymptotique
de l'onde diffractée par rapport & ’absorption du milieu. Des estimations d’erreurs sont
démontrées pour justifier mathématiquement 1’utilisation de ces conditions

Mots-clés : modéles asymptotiques, conditions d’impédances généralisées, obstacles for-
tement absorbants
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1 Introduction

The concept of Generalized Impedance Boundary condition (GIBC) is now a rather classical
notion in the mathematical modeling of wave propagation phenomena (see for instance [12]
and [T5]). Such tool is particularly used in electromagnetism for diffraction problems, in the
time harmonic regime, by obstacles that are partially or totally penetrable. The general idea
is, as soon as it is possible and desirable, to replace the use of an “exact model” inside (the
penetrable part of) the obstacle by approximate boundary conditions (also called equivalent
or effective conditions) on the boundary of the scatterer. This idea is pertinent in practice
when the boundary condition appears to be easy to handle from the numerical point of
view, which would be the case if it can be expressed with the help of differential operators.
The same type of idea, even though the purpose was different, led to the construction of
local absorbing boundary conditions for the wave equation ([I0} 8]) or more recently to the
construction of On Surface Radiation Conditions (&, @]) for pure exterior problems.

The diffraction problem of electromagnetic waves by perfectly conducting obstacles coated
with a thin layer of dielectric material is a prototype problem for the use of impedance
conditions. Indeed, due to the small (typically with respect to the wavelength) thickness of
the coating, the effect of the layer on the exterior medium is, as a first approximation, local
(see for instance [15, T2, G, 7, 2])

Another application, the one we have in mind here, is the diffraction of waves by strongly
absorbing obstacles, typically highly conducting bodies in electromagnetism. This time, it
is a well-known physical phenomenon, the so-called skin effect, that creates a “thin layer”
effect . The conductivity limits the penetrable region to a boundary layer whose depth is
inversely proportional to the conductivity of the medium. Then, here again, the effect of
the obstacle is, as a first approximation, local. The numerical results presented in Figures
of section L3 illustrate this skin effect phenomena.

As a matter of fact, the research on effective boundary conditions for highly absorbing
obstacles began with Leontovich before the apparition of computers and the development
of numerical methods. He proposed an impedance boundary condition, that is nowadays
known as the Leontovitch boundary condition (and that correspond with the condition of
order 1 in this paper). This condition only “sees” locally the tangent plane to the frontier.
Later, Rytov [14, [T5] proposed an extension of the Leontovitch condition which was already
based on the principle of an asymptotic expansion. More recently, Antoine-Barucqg-Vernhet
[6] proposed a new derivation of impedance boundary conditions based on the technique of
expansion of pseudo-differential operators (following there the original ideas of Engquist-
Majda [TI0] for absorbing boundary conditions).

Our purpose in this paper is to revisit the question of GIBC’s for the scattering of waves
by highly absorbing obstacles with a double objective:
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4 Haddar € Joly & Nguyen

e Propose a new construction of GI BC’s which is based, as Rytov’s contruction, on an
ansatz for the asymptotic expansion of the exact solution but which is technically dif-
ferent: we use a scaling technique and a boundary layer expansion in the neighborhood
of the boundary (which is, to our opinion, more adapted to a mathematical analysis)
while Rytov uses an ansatz similar to the ansatz for high frequency asymptotics.

e Develop a complete mathematical analysis (existence and uniqueness of the solu-
tion, stability and error estimates) for the approximate problems with respect to the
medium’s absorption.

The second point is probably the main contribution of the present work. It permits in
particular to give a sense to the order of a given GIBC, a notion whose meaning is not
always clear (at least not always the same) in the literature (it is sometimes related to
the order of the differential operators involved in the condition, sometimes linked to the
truncation order of some Taylor expansion,...): a GIBC will be of order k if it provides
an error in O(e¥T1). A point deserves to be emphasized in this introduction: for a given
order k there is not uniqueness of the GI BC'. We shall illustrate this fact here by presenting
several GIBC’s of order 2 and 3 ; for the same order, different GI BCs only differ by (maybe
important) other features such as their adaptation to a given numerical methods.

It is not surprising to see that, in the mathematical literature, much work is devoted to
mathematical analysis or the study of numerical methods for wave propagation models with
GIBCs (see for instance [, [[6]). Curiously, concerning a rigorous asymptotic analysis of
GI1BC's for highly absorbing media, it seems that, although some of the works by Artola-
Cessenat [3] go in this direction (for different problems than ours, however) there are very
few works in the mathematical litterature devoted to such a rigorous asymptotic analysis of
GI1BC’s for highly absorbing media, contrary to the case of thin coatings for which there is
an abundant literature.

In this first paper on the subject, we investigate in detail the question of GI BC’s for strongly
absorbing media in the context of time harmonic acoustic wave in 3 dimensions. The case
of Maxwell’s equations will be the object of a second paper (note however that, in the
degenerate 2D case, we get with this work GIB(C’s for 2D electromagnetic waves, at least
in the case of the TE polarization). The outline of the article is as follows. In section 2,
we present the model problem we shall work with and give the main basic mathematical
results related to this problem (Theorems X1l and and corollary ZT))). We state the
main results of our paper in section 3: the presentation of so-called NtD (section 3.1), DtN
(section 3.2) and robust (in a sense defined in section 3.2) GIB(C’s and the approximation
theorems Bl Section 4 is devoted to the construction of GIBC’s (see section 4.4) through
the use of a standard scaling technique (cf. section 4.2) in the neighborhood of the boundary
that permits an analytic description of the boundary layer (section 4.3) using a system of
local coordinates (section 4.1). The central section of the paper is section 5 where we prove
error estimates for NtD GIBC’s. The analysis is split into two steps: a justification (section

INRIA



Asymptotic Models for Imperfect Conductors 5

5.1) of the asymptotic expansion of section 4.2 (lemma BTl and corollary Bl and a second
part (section 5.2) linked to the GIBC itself (lemmas B4 and B6). Finally we explain in
section 6 how to modify the analysis for DtN and robust GIBC's.

2 Model settings

Let Q, ©; and Q. be open domains of R? such that Q@ = Q. UQ; and Q; N Q. = 0. We also
assume that €; is a simply connected and 0Q U 9Q; = 0. In the sequel, we set I' = 0Q;
and, for the simplicity of the exposition, we shall assume that I' is a C°° manifold. (see
Fig.M). We are interested in the acoustic wave propagation inside the domain 2. We assume

Figure 1: Geometry of the medium

that the time and space scales are chosen in such a way that the speed of waves is 1 and
we assume that the medium inside §2; is an absorbing medium. In other words, the wave
propagation is governed inside €2, by:

o2Us . 9U* .

where o°(z) is the function that characterize the absorption of the medium and ¢ a small
parameter defined later:
0 in Q
€ — Y €
“@={ a0 e g

Considering a time harmonic source F(z,t) = f(z)sinwt, where w > 0 denotes a given
frequency, one looks for time harmonic solutions:

Uf(z,t) = Re (u°(x) expiwt) .
Then, the function u®(z) is governed by the Helmholtz equation:

—Auf — W€ +iw ot (z)u® = f, in Q, (3)
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where we assume that the support of the function f is confined into .. Equation (@) has
to be complemented with a boundary condition on the exterior boundary 092. We consider
for instance the following absorbing boundary condition (see Remarks 21l and 22)

Onpu® +iwu® =0, on 0. (4)

Remark 2.1 According to {f)), the boundary OQ can be seen as a physical absorbing bound-
ary where a standard impedance condition is applied. The problem (3, [)) can also be seen
as an approzimation in a bounded domain (namely ) of the scattering problem in R3\ ;.
In such a case, the boundary condition on 0 has to be understood as an (low order) ap-
prozimation of the outgoing radiation condition at infinity.

Remark 2.2 In this paper, we could have treated as well the scattering problem in R3\ Q.
The reader will easily be convinced that the obtained results can be extended to this case
without any major difficulty. The only difference would lie in the reduction to a bounded
domain. This additional difficulty is purely technical and not essential in the context of this
paper whose main purpose is the treatment of the “interior boundary” T.

We are interesting in describing the solution behaviour for large o¢. For this, it is useful to
introduce as a small parameter the quantity:

e=w/ot <=0 =1/(we?). (5)

It is easy to see that ¢ has the same dimension as a length. It represents in fact the width
of the penetrable boundary layer inside €2; (also called the skin depth).

Our goal in this paper is to characterize, in an approximate way, the restriction u: of u®
to the exterior domain .. In order to do so, it is useful to rewrite problem (@), )) as a
transmission problem between uj = uf, and ug = uf, :

(i)  —AuS —wut = f, in .,
(i)  —AuS —w?uS + %uf =0, in Q
€
(i) B + iwus =0, on 9Q, (6)
(vi)  u§ =ué, on T,
v)  Opu§ = Jput, on T
( ) K3 €

INRIA
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2.1 Existence-Uniqueness-Stability

We present here the basic theoretical results relative to problem (B]). These results constitute
a necessary preliminary step towards the forthcoming asymptotic analysis.

Theorem 2.1 There ezists a unique solution u® € H'(Q) to problem ((@),[)). Moreover,
there exits a constant C > 0 independent of € such that
Hu€||L2(Q) <C ||f||L2(Q) : (7)

Proof. The existence and uniqueness proof is a classical exercise on the use of Fredholm’s
alternative. Let us simply recall that the uniqueness result resorts to the following identity:

1
/ |Vuf|? — w?|uf|? do +i </ wlu®|? ds + —2/ |uc|? dx) =0.
Q 0 e Ja;

that is valid for any solution u* of the homogeneous boundary value problem associated with
(®),@) (simply multiply equation @) by u® and integrate by parts over ). In particular,
u® = 0 in Q; and by unique continuation u® = 0.

Stability estimate ([ll) is proven by contradiction. Assume the existence of a sequence f€
with || f*][z2(q) = 1 such that the corresponding solution of (@), )), denoted v°, is such
that [[u®([;2(q) — 0o as e — 0. We set

v" =u"/ ||u€||L2(Q) and g° = f°/ HUEHL?(Q) :
Then [[v°|[12(q) =1 and [|g°[| ;2() — 0 as € — 0. One gets from (@)

—Av® — w?0® +iwovt = gf, in Q,

®)
On® + twv® =0, on 0NQ.

Consequently (once again, we multiply the previous equation by #° and integrate over 2)

1
/ (Vo> = w?|o°|?) dx +i (w / [v¢|? ds + —2/ [v¢)? d:v) :/ g°uvt dx.  (9)
Q a0 € Jo, Q.

Taking the real part of (@) yields

/ |V |? do = —w2/ [v¥)? dx—i—Re/ g°v° dx.
Q Q Q

e

Therefore one deduces that v is bounded in H'()). Hence one can assume that, up to the
extraction of a subsequence, v° — v weakly in H'(f2) and strongly in L?(2). First we have
[vllp2(q) = 1. Taking the limit in (8), restricted to €2, yields

—Av —w?v =0, in Q,
(10)
Onv +iwv = 0, on Of).

RR n° 5199
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On the other hand, taking the imaginary part in () shows in particular that

101720 < €% 6% M2 10N L2y -
Thus v* — 0 in L?(2;), hence v = 0 in ;. In particular
v=0 on 09;.
Combined with (), this condition shows that v = 0 in .. We get then v = 0 in Q which

is in contradiction with [[v[| 2y = 1. O

Corollary 2.1 There ezists a constant C' > 0 independent of € such that

[l i) SC 12 and  [[uf] L2,y < C [ fllp2(q) - (11)
Proof. This corollary is a direct consequence of energy identity

1 _
/ (|Vus]? — w?us|?) d:v—l—i(/ wlu®|? ds+—2/ |uf|? dgc) :/ fué dx
Q aQ e Ja, Q

e

and the stability result of Theorem Bl O

Corollary LTl shows in particular that the solution converges to 0 like O(e) inside Q;, at
least in the L? sense. This O(¢) L*-interior estimate is in fact not optimal. A sharper result
will be given in lemma B} where we show that [|u®]| ;2 q,) is O(%/?) (see Remark (.2).

2.2 Exponential interior decay of the solution

In this section, we first give an estimate which makes more precise the description of the
interior decay results. We show that if we look at the solution in a domain which strictly
interior to 2; the decay of the solution is more rapid than any power of . This is a first way
to express that the main part of the interior solution will concentrate near the boundary I'.
The precise result is the following:

Theorem 2.2 Let § > 0 and define Q) = {x € Q;;dist(x,0Q;) > 8}, then there exist two
positive constants C° and v° independent of € such that

H“f”Hl(Qg) < C%exp (—’75/5) /12 -

Proof. One possible proof of this estimate can be obtained by using the integral repre-
sentation of the solution inside §2; and the result of Corollary 2. We shall present here an
alternative variational approach that is also valid in the case of variable coefficients.

Let us introduce a cut-off function ¢s € C*°(€2) such that

¢s(x) =0 in Q., ¢s(x)=74° in QF

INRIA
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where the constant 3° > 0 is chosen such that

1
V5|2, < 1 (12)

We set v° = exp(¢s(x)/e)u®. Straightforward calculations show that

2
Au® = exp(—d¢s(z)/¢) (Avs - §(2V¢5 - VoF 4+ Aps v7) + |v?;5| vs) .

Hence v° satisfies

2 A Vos!|?
—AUE+EV¢5'V1}€+(—M2+$—| 92625|

+iwo®) v = f in Q
€ : (13)

Opv® + twv® =0 on ON.

Multiplying the first equation in ([3) by v¢ integrating by parts in Q) yields, using the fact
that v® = u in Q.,

2 A 2 _
Vs |2 dz + —/ Vs - Vo© o dz—|—/ (—w2 I o5 B |V¢5|2 z> e 2 di
& € Ja Q; € €
1 1 1 (1)
= [ s [ @i - V0 do i [ juas
@ 2e o0

Let us denote by L. the right hand side of the previous equality. According to Corollary E2TI,
there exists a constant C' independent of ¢ such that

|Lel < C 1 fllz2(0 -

On the other hand, thanks to inequality ([I2), using |b — a| > |b| — |a|, we have the lower

bound: .
Vool" —i  (Ads _ o) | 5 L _ 180l _
e? 5 e? 5
Therefore, taking the modulus of () yields
2
vaani%szi) - g HV¢6||L°<> ||VUEHL2(Q7_») |U€||L2(Qi)

1 [[Adslla 2 :
+ ( ? — f —w2 HUEHLQ(KL) < C ||f||L2(Q) '

Thanks to the inequality,

2 1 2 2 2 2
2 V@5l IVOTliLe ) 10N L2y < 5 IVO N2 + 2 IVOsle 1712 g, -

RR n° 5199



10 Haddar € Joly & Nguyen

and inequality (2,

1 1 [[Adsll
B ||V1)5H2L2(Qi) + < 2% = w? ||UEH2Lz(Qi) <C ||f||2Lz(Q) : (15)

1 A 1
1 Al _ w? > — | inequality (3 yields

Finally, for ¢ small enough so that 922 5 Z 12

1 2 1 2 2
) HVvSHp(Qi) + 42 H”EHB(Qi) <C ||f||L2(Q) J
and the theorem is proven with v° = 3% since
||uf||L2(Q§) <exp (=f/¢) HUEHL?(Qi) )

IV | 2y < exp (=8°/2) V0%l L2qq) -

2.3 A numerical illustration of the behaviour of the solution

As an illustration of the phenomena we wish to analyse, we present here some numerical
results in 2D. More precisely, we compute the diffraction of a incident plane wave propagation
along the x; axis in the direction z; > 0 by an absorbing disk €2; of center 0 and radius 1,
that is we look for a solution of the form:

u = expiwz; + u?, (16)

where the total field satisfies the interior equation with f = 0 while the diffracted field
u? satisfies the outgoing radiation condition. The pulsation w is taken equal to 47 which
corresponds to a wavelength A = 0.5. For the computation, a higher order finite element
method with curved elements is used. The effective computations are reduced to the disk
of radius 2 thanks to the help of an integral tranparent boundary condition (see [13]).

In figures 2.2 to 2.6, we represent the real part of the solution u. Clearly, the solution
penetrates less and less the interior disk when the absorption coefficient ¢ incerases and the
skin effect is clearly visible. To illustrate the boundary layer, we also represent the variations
of the modulus of the total field along the line x5 = 0: the exponential decay of the solution
inside €); appears clearly.

3 Statement of the main results

In this section, we present various approximate exterior boundary value problem that will
characterize various approximations of the “exact” solution u: in the exterior domain. Each

INRIA
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Figure 6: Variation of 1 — |u(z1,0)]

of these approximate problem is made of the standard Helmholtz equation in the exterior
domain 2., the outgoing impedance condition on OS2,

—AuSF — W2k = f in Q,
(17)
Dtk +iwus* =0 on 01,

and an appropriate GIBC on the interior boundary I'. We shall denote by u®* the ap-
proximate solution, where the integer index k refers to the order of the GIBC. The precise
mathematical meaning of this order will be clarified with some error estimates (see Theo-
rem ) that completely justify the GIBC’s. Let us say here that a GIBC of order k is a
boundary condition that will provide a (sharp) O(¢**1) error (in a sense to be given).

Let us mention here that, for a given integer k, there is not a unique way to write a GIBC
of order k. The GIBCs we will be speaking about in this paper will be of the form of a
linear relationship between the Dirichlet and Neumann boundary values, u®* and 9,u",
involving local (differential) operators along the boundary I'. The method that we shall use
for deriving these GIBCs will naturally lead us to Neumann-to-Dirichlet (NtD) GIBC’s.
These are the ones that we choose to present first in section Bl It will be clear in section Hl
that we can derive, at least formally, a GIBC of any order. However, the algebra becomes
more and more involved as k increases, and it is perhaps impossible to write a general theory
(existence, stability and error analysis) for any k. That is why we shall restrict ourselves, in
this paper, to GIBC’s of order £k =0,1,2 and 3.

In section B2 we shall show how to easily derive, from (NtD) GIBC’s some modified

GIBC(C’s that can be of Dirichlet-to-Neumann (DtN) nature (as more commonly presented
in the litterature) or of mixed type.

INRIA
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We would not discuss in this paper which GIBC is better for a given order. Several criteria
can guide such a choice: the adequation to a particular numerical method, the robustness of
the GIBC (this question will be slightly discussed later) or more importantly, its actual ac-
curacy. It appears that a valuable comparison between the accuracy of GI BC’s of the same
order will rely on numerical computations. That is why this part of the study is delayed to
a forthcoming work of more numerical nature.

3.1 Neumann-to-Dirichlet GIBCs

Neumann-to-Dirichlet GIBC can be seen as a (local) approximation of the exact Neumann-
to-Dirichlet condition that would characterize u¢, namely:

u +D0pu =0, onT, (18)
where D° € £L(H~=(T'), H2(T")) is the boundary operator defined by:
Dy = ui (),

where u$ is the unique solution of the interior boundary value problem:

— AU () — WP () + S uS(p) =0 i Q
i (19)

—Ohui(p) =@ on T

The absorbing nature of the interior medium is equivalent to the following absorbtion prop-
erty of the operator D¢ (this follows from Green’s formula):

VoeH HT), Im{De o) :__/ s ()2 dz < 0. (20)

It is well known that the operator D¢ is a non-local pseudo-differential operator whose ex-
plicit expression is not known (see however Remark below). Nevertheless as ¢ — 0, this
operator becomes “almost local” (even differential), which is more or less intuitive according
to the exponential interior decay of the solution with respect to ¢ ~*

We claim that a Neumann-to-Dirichlet GIBC of order k is given by:

FyDoFg,usk =0, onT, (21)

RR n° 5199
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where, for k = 0, 1,2, 3, the operator D** is given by:

For k=0, D=0, (22)
Fork=1 D' = 2 (23)
For k = 2, D2 = 2 + iHe?, (24)
For k=3, D= 2 +iHe? — O‘ng (BH* —G+w*+Ar), (25)

where, in expressions (22) to ([ZH),
* o= ‘/75 + z‘/Ti denotes the complex square root of ¢ with positive real part,
e H and G respectively denotes the mean and Gaussian curvatures of I" (see section ET]),

e Ar denotes the Laplace-Beltrami operator along I'.

Remark 3.1 It is worthwhile to remark that:

e One recovers of course the Dirichlet condition in the case k = 0 (the limit of D
when € — 0 is 0 for any k): the Dirichlet condition appears as the GIBC of order 0.

o The first three conditions are exactly of the same nature and correspond to a purely
local impedance condition. Notice that the geometry of T' only appears in the third
condition through the mean curvature H. The numerical approximation of the three
conditions has therefore the same cost (provided that H is easily computable). Thus

(Z4) has to be preferred to (Z3).

e Condition {Z8) is more complicated. It involves a tangential differential operator along
the boundary. This additional complexity will have of course consequences on the
numerical approximation but also, as later shown, on the mathematical analysis.

Remark 3.2 The operators D% are of the form Zj<k e/ DI and thus appear as some
truncated Taylor expansions of D°. This is particularly clear in the (very special) case where
Q; is the half-space x3 < 0. In that case, the symbol of D° can be computed explicitly. More
precisely, if one uses Fourier transform in the variables (x2,x2), one gets:

Dep(€) = DE(€)p(), D(€) = (I —w? +i/e?) ™%, ImDe(€) > 0.

It is then straightforward to recover conditions (Z2) to (Z4) from successive Taylor expansions

(for small €) of D=(£).

INRIA
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The main results of our paper are summarized in the following theorem:

Theorem 3.1 Let k = 0,1,2 or 3, then, for sufficiently small €, the boundary value problem
({T3), &0)) has a unique solution u®* € H'().). Moreover, there ezists a constant C,
independent of €, such that

||u2 — u87k||H1(Qe) < Ch ghtl, (26)
Remark 3.3 Let us mention that:

e For k < 2, the existence and uniqueness proof via Fredholm’s alternative is trivial.
The uniqueness proof relies on the following inequality (analogous to (20)):

W e L2(D), Im/ Dy 5 ds < _,,/ o ds, (for some v <0), (27
I I

that expresses in particular the absorbing nature of the boundary condition and provides
a sufficient (but not necessary) condition for the uniqueness of the solution. With this
argument, it is easy to see that, for k = 0,1, the existence and uniqueness result holds
in fact for any € > 0. For k = 2 one easily checks that (Z) is true as soon as:

V2
2 3
Note that this inequality is algebraic. When Q; is convex, H < 0 along T so that (Z8)
induces no constraints on €.

eH < a. e. onT. (28)

e In the case k = 3, the proof is more complicated. In particular, there is no clear
equivalent to inequality (ZA) and the uniqueness proof requires some more sophisticated
argument (see lemma[5.4). This explains why in this case, one has no explicit upper
bound for ¢ below which uniqueness is guaranteed.

3.2 Modified GIBCs

Dirichlet to Neumann GIBC’s. If we introduce N := (Dg)fl, then the exact boundary
condition for u¢ can be rewritten as :

Opul + N°uZ =0, onT, (29)
In our terminology a DtN GIBC will be of the form:
OnusF + N=Fusk =0, onT, (30)

where A©* denotes some local approximation of A®. They can be directly obtained from
D" by seeking local operators N'©* that formally satisfy:

DR = (NSF) 7 4 0. (31)
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The expression of N'** is derived from formal Taylor expansions of (D=*)~!. One gets,

For k = 2, /\/5’2:%4—7-(, (32)
For k = 3, N5’3:%+H—%(AF+H2—G+L«12). (33)

The important point here is that the results (existence, uniqueness and error estimates)
stated in theorem Bl for problem (), 1)) still hold for problem (({[), (BI)). We refer to
section Bl

Remark 3.4 Let us notice that:

o The difference between conditions (24) and (33) is quite small. In fact (33) can also
be seen as a NtD GIBC with D=? = (£ +H)~" ! Note however that it is clear that for
k = 2, the problem ({A), [30)) is well posed for any value of . This is a consequence
of the following (uniform) absorption property

R 2
Ve L2(D), Im/ o NF25 ds < —Q—*C / o[ ds. (34)
I I

e The difference between conditions (23) and {Z3) is much more important. This has
consequences on both mathematical and numerical analyses.

Robust GIB(C’s. As mentioned earlier, an important property of the “exact” impedance
condition is what we shall refer to as absorption property. It can be formally formulated for
D= (resp. N¥) by:

Y o, Im/ Dfp-pds <0,

' (35)

(resp. Yo, Im/cp-/\fgcpds go).
r

It is therefore desirable that NtD GIBC’s (resp. DtN GIBC'’s) preserve (BH), i. e. operators
D=k (resp. N&F) appearing in (1) (resp. (B0)) possesses an analogous absorption property.
In particular, this would automatically imply the well-posedness of the approximate problem
for any e. This is why we shall say that such a boundary condition is robust.

Remark 3.5 As later shown, the robustness, in the sense meant here, is not a necessary
condition for a GIBC to work. However, if one thinks of extending these conditions to time

dependent problems, then it is more likely that robustness will be required to ensure time
stability of the GIBC.
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In this sense, the second order NtD GIBC (£4) is not robust, while the second order DtN
GIBC B2) is. In other words (B2) is a robust version of ([Z)). Concerning the third order
conditions, neither the NtD GIBC [23) nor the DtN GIBC B3) is robust. Indeed, one has
the identities:

3 2
/D€’3¢-¢ds:£/|va|2ds+5d /[1+ﬁ—i€—(3H2—G+w2)]|go|2ds7
T 2 r r @ 2
2

/ v Nodpds = a—E/Ierlz ds + = /[1+i+z‘ -G+ )] o ds.
N 2 r g r o 2
from which one easily computes that (remember o = § + z%)

3

_ V2e ev2
I [ D0 pds =25 [(VogPas- 552 [ o lof? ds
r r r

—_ 2 2
Im/ <p-./\/57390ds—Q/|VF90|2ds—£ /p§ l|? ds.
r 4 r 2 Jr

where the functions p$ converge (uniformly on I') to 1 when ¢ tend to 0 (and are thus pos-
itive for £ small enough). The problem then is that the integrals in |V ¢|? come with the
wrong sign.

As we shall now explain, it is possible to construct robust GIBCs of order 3. The idea
is to use some appropriate Padé approximation of the imaginary part of the boundary oper-
ators that formally gives the same order of approximation but restore absorption property.
Consider for instance the NtD GIBC of order 3. Indeed

5 2
ImD3 = —eg <1 —eV2H + %(3712 -G+uw+ Ar)> :
One can therefore formally write
2 2 :
ImD*? = —¢ § <1 + %(3%2 -G+ w2)> <1 —eV2H + %AF> +0(e").

Note that, as H? — G = {(c1 — c2)?, where ¢; and ¢, are the two principal curvatures along
I' (see section EJ]), we have

2
(1+ %(3%2 — G +w?) > 0.

It is then sufficient to seek a positive approximation of (1 — ev/2H + %AF) which can be
obtained by considering the formal inverse, namely

2 2 -1
1—eV2H + %AF = {1 +eV2H + %(47{2 - AF)} + 0(%).

RR n° 5199



18 Haddar € Joly & Nguyen

Therefore,
c,3 V2 e? 2 2 2 -1 4
ImD™ = —e=~(1+ & (3H* = G +w?)) (1+eV2H+ = (4H —Ap)) T+ 0.
A robust NtD-like GIBC of order 3 is obtained by replacing D=3 by
2
D3 = gg (1 - %(3%2 —G+uwi+ AF)>
(36)
V2 e? 2 2 2 -1
—ie-(1+ 5 (3H* = G +w?) (1+eV2H+ = (4H — A
This expression will de used in practice in the following sense:
2 2 2
D3 = 5% (1 - %(37{2 -G+uwi+ AF)) - zega + = (37112 G+w?))y (37)
where v is solution to:
2
—%pr + (1 + eV2H + 262H2)p = . (38)
One can easily verify that
€,3 V2 2 2 2o 22 L E 2
D3 5 ds = —57(1+ (3H —G+uw?) [ (1 +eV2H+%2H?)|y| + 5 |Vevl® ds.
r r
(39)

The right hand side is non positive for all ¢ whence the absorption property for D23,

Of course one can follow a similar procedure to derive robust DtN third order GIBC. The
expression of this condition is based on the approximation:

vz

ImN®=® =
m 2e

(1+ ?(H2 —Gtw?) {1- E—;Ar}*l +0(e). (40)

Hence, replacing N3 by

2
NP = g(1+5\/§H—%(H2—G+w2+Ar))
) (41)
V2 e 2 e? -1

in B3) gives another third order DtN GIBC. This condition is robust in view of the following
identity, where the right hand side is non positive for all ¢

V2 0+

T €30 ds = — <
m/ N3¢ ds % /. 5

52
S0 =Gt (1o + 190 07) a5 (@)
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where v is solution to

52
_5AF7/) +¢Y =0

Remark 3.6 As one can notice, there is no unique manner to derive GIBC, and even
robust NtD (or DtN) GIBC. Note also that the proposed third order ones involve a fourth
order surface differential operator. It does not seem easy to derive a robust third order GIBC
with only second order differential operator.

4 Formal derivation of the GIBC

4.1 Preliminary material

Geometrical tools. Let n be the inward normal field defined on 0€2; and let § be a given
positive constant chosen to be sufficiently small so that

Q0 = {x € Q; ; dist(x, ;) < 6}

can be uniquely parameterized by the tangential coordinate z on I' and the normal coor-
dinate v € (0, ¢) through
r=x,+vn, x€Q. (43)

Let us now recall some concepts and identities from differential geometry (the notion of
surface differential operator is supposed to be known - see [I1]). Let C := Vn denote the
curvature tensor on I'. We recall that C is symmetric and Cn = 0. We denote c;, co the
eigenvalues of C (namely the principal curvatures associated with tangential eigenvectors 71,
9. G :=c1co and H := %(cl + co) are respectively the Gaussian and mean curvatures of T'.
Let us define the tangential operator R, on I' by

(I+vC(xr)) Ru(zr) = Ir(zr)

where I+.(zr) denotes the projection operator on the tangent plane to I' at xr.. Then one
has (see [1T])
V=R,V +0, n, (44)

where V.. is the surface gradient on I'. If one sets
J, i=det(I +vC) =1+ 2vH + V°G,

then, from integration by part formulas and (#4]), one gets

1 1
A = = dive (Ry JyRu) Ve + 5000, (45)
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where div, denotes the surface divergence on I'. Define the tangential operator M on I" by
I4+vM = J,(I+vC)"!,
then M is independant v and one has
CM=GI
Therefore, identity (@) can be transformed to

1 . 1 1
A — J—U leI‘ (J—U(Ip + VM)2> VF + J_Uaue]yauu

or, in an equivalent form
J2A = J, divy (Ir + vM)*Ve = Vi d, - (Ir + v M)V + J3 02+ 2J% (H+vG) 0, (46)

This latter expression is more convenient for the asymptotic matching procedure, that we
shall describe later, because we made the dependence of the operators coefficients polynomial
with respect to v.

The asymptotic ansatz. As it is quite usual, the derivation of the approximate boundary
conditions will be based on an ansatz about the solution, that is to say an a priori particular
form in which the solution is looked for. To formulate this ansatz, it is useful to introduce a
cut off function x € C*°(£;) such that x = 1 in Qf/2 and x = 0 in Q; \ Q9. In our ansatz we
are not interested by (1 — x)u$ that we know to decrease exponentially to 0 with ¢ (this is
theorem ) . For the remaining part of the solution, we postulate the following expansions:

uf(x) = ud(x) + eul(x) + e*ui(z) + -+ forz € Q. (47)
where u’, £ =0, 1, - -- are functions defined on Q. and
x(@)us (2) = ud (wr,v/e) + eu (zr,v/e) + e*ui(r,v/e) + -+ forx e Qf (48)

where x, z;. and v are as in (@) and where uf(zr,7) : I' x R* — C are functions such that

lim u!(zr,m) =0 fora.e. zp€T. (49)

n—00

The latter condition will ensure that the u¢’s are exponentially decreasing with respect to 7.

Remark 4.1 Note that the expansion {{8) makes sense since the local coordinates (zr,v)
can be used inside the support of x.
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In the next section, we shall identify the set of equations satisfied by (uf) and (uf) and the
formal expansions [{7) and (@) will be justified in section B

It will be useful to introduce the notation
ﬂf(‘rr‘vn) = U,LO(IF777)+€U%(IF,’I7)—|—€2UZZ(ZL’F,’I7)+"' (xr‘vn) EFXR+5 (50)
so that ansatz ([#X) has to be understood as

x(2)uf (x) = @ (xr,v/e) + O(e™) for z € Q. (51)

4.2 Asymptotic formal matching

Let us first consider the exterior field u, it is clear that each of the terms u* in the expansion
satisfies the (outgoing) Helmholtz equation in 2. (simply substitute ED) into @)(i)):

—AuF — w2k =0 in Q.,
(52)
Onuk +iwut =0 on 0f.

Concerning the interior field, from (@ii), (BIl) and the substitution v = e in ), we obtain
the following equation:

1 .2 .
=5 I Opys — ZJ2, (H+enG) 0y;
- Jan divr (Ir + EUM)Q VF ﬂf + VF Jgn . (Ip + E?’]M)2 VI‘ ’(715 (53)
3 2 L _
+ 5 (-’ + ) W =0

that can be rearranged in the following form after multiplying by 2:

(=02, +i)a; = (1—J3)(=0%, +i) u§ +2eJ2, (H + enG) 0yus + e2w?J3 i 5
+  &2Jey dive (In + enM)?Vy — &2 Vi Joy - (I + enM)?V @5,
Considering that J, is a polynomial of degree 2 in v, (B4) can be rewritten as:
8
(—02,+i) s = >  e'Agif, onT xR, (55)

=1
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where A, are some partial differential operators in (zr,n) that are independent of €. Formal
identification gives, after rather lengthy than complicated calculations,

Ay

Ay

As

Ay

As

As

Az

As

2H 0, — 6nH (=03, +1)

2n [ HAr + dive (MVy) = Vi H - Vi + 3w?H |

A H [ (3G +2H?) 0, | — 4n° H (3G + 2H?) (=07, + 1)

n* [ G Ar + 4H dive (MVy) + dive (M?V1) ]

n”? [Vi G-V +4V H - (MV;) = 3w*(G + 4H?) |

an G (G +4H?) 9, — 3n* G (G + 4H?) (=97, + 1)

2n® [ G divy (MVy) + H dive (M?V5) |

20 [Vi G- (MVy)+ Vi H - (MPV;) —2w® H (3G + 2H?) |
10n* G*H 0, — 6n° G*H (=9, + 1)

n* [ G divy (MPVy) = Vi G- (M?V;) + 302G(G + 4H?) |
2° G20, —n° G*(-07, +1)

61° W G*H

776 w2G3

(56)

(57)

(58)

(61)
(62)

(63)

Therefore, making the substitution (B) in equation (B3) and equating the terms of same
order in ¢, we obtain an induction on k that allows us to recursively determine the u*’s as

functions of n. With the convention u¥ = 0 for k& < 0, one can write it in the form

8
(-2, +i)uf =Y A uf~, onT xRT,
=1

(64)

for all £ > 0. For any k£ > 0, one assume that the fields uli and ule are known for | < k,
) can be seen as an ordinary differential equation in 7 for n € [0, 4+o00] whose unknown
n + uf(zr,n) (The variable xr has purely the role of a parameter). As this equation is
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of order 2, in addition to the condition at infinity #3), the solution of (64 with respect
to 71 requires one initial condition at n = 0. This condition will be provided by one of the
two interface conditions @ vi) and (@ v). We choose here to use the condition (B v) which
provides us a non homogeneous Neumann condition at 7 = 0 whose right hand side will
be given by the exterior field u¥~!, namely (substitute ([@7)-@8) into {@v) and identify the
series after the change of variable v = en)

Onuf (vr,0) = Opul 'o(ar), ar €T, (65)

With such a choice, the other condition (Bvi) will serve as a non homogeneous Dirichlet
boundary condition for the exterior field u¥, to complete (B2):

u§|p(:cr) = uf(:cr,()), [ (66)

Remark 4.2 Choosing (63) as the boundary condition for ([64) will naturally lead to NtD
GIBC'’s. The alternative choice ([68) would naturally lead to DtN GIBC'’s. Our choice
seems to be more natural because, thanks to the shift of index in (@A), the right hand side
really appears as something known from previous steps. Condition ([68) appears more as a
coupling condition!

4.3 Description of the interior field inside the boundary layer

We are interested in getting analytic expression for the “interior fields” u¥ by solving the
boundary problem (in the variable 1) made of (64)), (63) and [#J). To simplify the notation,
we shall set:

duf (zr) := 9yul(zr,0), ar €T. (67)

Using standard techniques for linear differential equations [], it is easy to prove that the
solution u¥ is of the form:

uf (zr,m) = Py (n) e " (68)
for all k£ > 0, where PfF is a polynomial with respect to 1 of degree k whose coefficients are
proportional to du?, - - -, duf*1 (remember o = @—i—z@) More precisely, these polynomials

satisfy a (affine) induction of order 8, of the form:
1 _ _ _
Ph () =~ duf ™ ee) + Le (P (), P ()

where Ly, is a linear form on C” whose coefficients are linear in the dul(zr)’s. We shall not
give here the expression of L for any k but restrict ourselves to the first four functions u*

%
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(this is sufficient for GIBC’s up to order 3)

uf(wr,m) = 0 (69)
1

wleen) = - () e (70)

1 H H

2 — — = dul = du® Z dud —an

o) = {3 dulon) + 5 doler) )+ 2 auden) fo )
1 H

W) = {3 dudon) + 25 dotan)

1

1
503 (3H? — G + w?) dul(zp) — —= Ar[dul](zy)

2a3

H 1
+7] o du%(:cr) = 5z (Ar — G + 3H? + w?) du?(:cr) ]

+ n? % (G — 3H?) dul (zr) } e 1 (72)

4.4 Construction of the GIBCs

Let us first check inductively that, starting from u? = 0 and u! solution of the exterior
Dirichlet problem the fields u* and u” are well defined. Assume that u’ and u! are known
for ¢ < k — 1. The the du}’s are known by (B1) ,u¥ is determined by the explicit expression
@R) (and more precisely () to () for k = 0, 1,2, 3). Then, u* is determined as the unique
solution of the boundary value problem (with f° = f and f* =0 for k > 1):

—AuF — W2l = fF in Q.,
Ok +iwuk =0, on 01}, (73)
uk = uflnzo ) on I

Remark 4.3 Since [ is compactly supported in ., we deduce inductively from standard
elliptic reqularity that u* is a smooth function in a neighborhood of T and u*(xr,0) is also
a smooth function.

The GIBC of order k is obtained by considering the truncated expansion:
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as an approximation of order k£ of u¢.

For example, for k = 0, we have u°* = 4? and from equations (B8) and B3), we deduce
that % = 0 on I'. In this case we set u®* = 45" and, as emphasized in remark [ the
Dirichlet condition:

u* =0, onT, (75)

is a the GIBC of order 0.

For larger k, another approximation is needed. The principle of the calculation is the
following. Using the second interface condition, namely (@liv), one has

k
Tkl (ae) = 3 eful(ar,0) for @ €T (76)
£=0

Substituting expressions (E9)- () into (@) leads to a boundary condition of the form
uF + D 9, uk = F T g8 on T, with gf = O(1) (77)

where D** is some boundary operator. The GIBC of order k that defines u* (not u¥) is
then obtained by neglecting the right hand side of ([T).

Obtaining () is the pure algebraic part of the work and we shall not give the details of
the computations which are straightforward and could be automatized. Note however that
their complexity increases rapidly with k. For k < 3, the reader will check easily that the
operators D=*’s are the ones announced in section Bl and that the g5’s are given by:

1
gi = - ’ﬂui7
«
e 1 2 - 1 2
g2 = — Onl, +iH 871(“’6 + Eue)v
‘f (78)
g5 = — Opud +iHO,(u? +eud)
«
1
- 3 [Ard, + (BH® — G+ w?)0y, | (ul + cul + ul) .
5 Error analysis of NtD GIBCs
Our goal in this section is to estimate the difference
us — us" (79)
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where 15" is the solution of the approximate problem (([[@), (ZIl)), whose well-posedness
will be shown in section (lemma BA)). It appears non trivial to work directly with the
difference us — u**, we shall use the truncated series u** introduced in section B4 as an
intermediate quantity. Therefore, the error analysis is split into two steps:

1. Estimate the difference ué — u* ; this is the object of section Bl and more precisely
of lemma BJl and corollary Bl

e,k

2. Estimate the difference u u®F ; this is the object of section 5.2 and more precisely

of lemma B8l
Estimates of theorem B] are then a direct consequence of corollary Bl and lemma B8

Remark 5.1 Note that step 1 of the proof is completely independent on the GIBC and will

be valid for any integer k. Also, for k = 0, the second step is useless since u°* = us",

5.1 Error analysis of the truncated expansions

Let us introduce the function a5*(z) : Q — C such that

Z etul(z), for z € Q.,
i) = ¢ T (80)
x(z) Z e‘ub(zr,v/e)  for x € Q;,
=0

where y, xr and v are as in section Il The main result of this section is:

Lemma 5.1 For any integer k, there exists a constant Cy, independent of € such that
[uf = * |y < Ch ehta,

lu — @S| 2y < Cr eMFE, (81)

A

IN

||u5 — ﬁi’k”[ﬁ(r) C;g EkJ’_l.

Note that this immediately gives an O(h*+1) H(Q.)-error estimate for the “exterior field”:
Corollary 5.1 For any integer k, there exists a constant Ch independent of € such that:
[Ju® — ag’k”Hl(Qﬁ) < @ ghtl, (82)

Proof. Simply write
uf — ﬁa,k — uf — ﬁa,k-i—l + Ek-l—lul;—i—l
which yields, since u=**! = u**+! in Q,

Ek-i—l ”ulec

u® =¥ g1 (q,) < llu® =T o, + .,
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that is to say, thanks to the first estimate of lemma Bk
l[us — aa,k”Hl(Qc) <, ght3 4 ghtl HUSHHHI(QC) < Oy ekt
O
Remark 5.2 For k = 0, since u$® = 0 inside Q; (cf {)), one deduces from the second
estimate of ([&1) that: ||u®[|12(q.) < C 3 .

We shall prove first a technical trace lemma (lemmalBb2) and a fundamental stability estimate
(lemma B3) that constitutes the basic ingredient to the proof of lemma Bl

Lemma 5.2 Let O be a bounded open set of R™ with C' boundary, then there exist a constant
C depending on O only such that

||u||2L2(60) <C (HVUHL2(0) llull 20y + ||U||%2(O)) , forallue H'(O). (83)

Proof. Assume first that O = R"! := {x € R" ; x,, > 0} and let u in C°°(R’} ) with compact
support. Obviously

< Qu
L0)? = —2/ —— dzy,.
ju(a’,0) g
Therefore, using Schwarz inequality,
(- 0)[F2@n-1) < [ Vull2@n) [[ullL2@n)- (84)
+ +

Using the denseness of C'°°(R’} ) functions with compact support we deduce that the previous
inequality holds for all u € H*(R"). Now let O be bounded open set of R™ and let x a
C>(Q) cut off function such that

x(x) =1 if dist(z,00) < n/2 and x(z) =0 if dist(z,00) > n

for a sufficiently small > 0. Using local parametric representations of suppy, we deduce
from (B4)) the existence of a constant C' depending on 0O and n such that

[ullZ200) < C IV (xu)ll 20y Ixull 20y,
(

whence the result of the lemma with a different constant C. O

Lemma 5.3 Let v° € H'(Q)) satisfying

—Av® — Wt =0, in Q.,
(85)

Opv® +iwv® =0, on 09,

RR n° 5199



28 Haddar € Joly & Nguyen

and the o priori estimate

1
‘/ (Vo] =20 |? ) dz  + i (/ w|ve|? ds + —2/ |v¢|? dm)‘
Q o0 €7 Ja; (86)
< A(SHE ey + 2 0220, )

for some non negative constants A and s independent of €. Then there exists a constant C
independent of € such that

3
[0y < Ce™* [[08llay < Ce*2, [0l paqr) < Ce**2, (87)
for sufficiently small ¢.

Proof. We first prove by contradiction that ||v®]|12() < C'e®t!. This is the main step of
the proof. Let w® = v°/||v°|| 12y and assume that A° := e~ !||v°| 12 is unbounded as
¢ — 0. Estimate BH) (notice it is not homogeneous in v¢) yields

1
'/ ([Vw]? —?wf|? ) dz  + i (/ w|w|? ds + —2/ |w® |2 dx)
Q oQ e Ja,

A/ 4
< (Tl + e et ) -
For sake of conciseness, we will denote by C' a positive constant whose value may change from
one line to another but remains independent of . For instance, (B8) yields in particular,

since 1/)¢ is bounded,

(88)

3
Hw8||2L2(Qi) < Ce? w2y + C el|wf|| L2 (a,)-

Next, we use Lemma with O = Q; to get
3 1 1 1
lof 32y < C X lollaay (109l aia, + 190 I5aq, ) + C ellwllizy,
1
which yields, after division by [[w®||7. Q1)
el T 3 -
Hw HL2(QI») <Ci EHw ||L2(Qi) +Cs g2 ||Vw ||L2(Qi)' (89)

1
Using Young’s inequality ab < 2/3 a*/%2 +1/3 b® with a = K~'c and b = K ||w5||z2(m)
(where K is a positive constant to be fixed later) we can write

1 2 3 3 K3 3
E||w€||l2/2(ﬂi) < 3 K 2¢g2 4+ 3 st||z2(ﬂi)' (90)

Choosing C; K® = 3/2 and substituting (89) into (@), we deduce a first main inequality,

3 3 1
lwll3q, < € < (1 + ||Vw€|\iz<gi>) . (91)
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Now, observe that another consequence of [85) is, since ||w®|z2(q) = 1,
IV 320y < € (1+ e Hlwlla + &7 w2 - (92)
On the other hand, using lemma once again, we have
1 1
e [[wf|| 2y < C e {7 w2} + C {7 w20 }? IV Zaq,
which, for € bounded, implies, using (@),
1
IVe|Baq) < C+C {e ufllzaan} (1+ 10 | Fagq) ) - (93)
Coming back to (@), we deduce that
1
e Mw || p2y < C (1 + HVU}E”E%Q”) , (94)

that we use in (@3] to obtain

2
10 oy < C (14 1V0 o ) -

This implies in particular that ||[Vw®[/z2(q) is uniformly bounded with respect to ¢ and
therefore w*® is a bounded sequence of H'(2). Up to an extracted subsequence, one can
therefore assume that w® converges weakly in H'(2) and strongly L?(Q) to some w with

w2y = 1.

From @), we deduce that w = 0 in ;. On the other hand, taking the weak limit in the
equations satisfied by w® in . and on 99, then using that w € H'(Q) one gets

2w=0, in Q.

—Aw —w
Opw +iww =0 on 09, (95)
w=0 on I

Therefore w = 0 in €, hence w = 0 in Q which contradicts ||wl|[z2(o) = 1. Consequently

[0°]| 220y < C e (96)

Estimate (B6) and Lemma B2 yields

5 1
Il 13200 < € (" I90° I aga
and, using (8]

Hv a|2 <O (e2t2 4 s+%|v a|%
v |L2(Q) = € € | v |L2(Qi)

1
O e + &2 2@ ) - (97)

1
sy + I lla@n ) - (98)
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Therefore, combining these two estimates, it is not difficult to obtain
011720y + €2V 17200y < C (€2 + 772 ([[0°]| L2y + €IVl 2(@))) 5

which yields

vl L2,y + el VO L2y < Cest2,

This corresponds to the first two estimates of (7). The third one is a direct consequence of
these two estimates by the application of Lemma, to ;. (I

Remark 5.3 Notice that since we simply used in the first step of the proof the fact that
1/X¢ is bounded, we have proved in fact that
. —(s+1 _
lim e G 0% L2() = 0.
Proof of Lemma Let us set ef = u — u5*. The idea of the proof is to show that ej
satisfies an a priori estimate of the type (BH) and then to use the stability lemma To
prove such an estimate, we shall use the equations satisfied by e, respectively in 2; and Q.
as well as transmission conditions across I'.

The exterior equation. By construction, u5 k satisfies in €2, the non homogeneous Helmholtz
equation with the radiation boundary condltlon on 9N and right hand side f (this is a direct
consequence of ([B2) for each k). Hence, € ; = ej|q, satisfies the homogeneous equation:

—Aeg y — wzezyk =0, in Q,,
(99)
Oneg . +iweg , =0,  on 9.

The interior equation. The truncated series ﬁ;k does not exactly satisfies the damped

Helmholtz equation inside €2;. They verify this equation with a small right hand side. To
see that, let us set:

e k Zg so that ﬂi’k =X ﬁf’k in ;. (100)
Indeed
A~5k+w2ﬂsk €%~ _X{Ausk+w2~sk iNEk}+2VX vusk+AX~sk

Inside the support of x the local coordinates (zr,v = en) can be used to make the identifi-
cation (cf. B

. 8
ot _ 1 2 4 ¢
Atw’— 5= (—877,74-2—25./4@). (101)
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From equation (€4)), after multiplication by the correct power of ¢ and summation, it is not
difficult to see (the calculations are a little bit long but not difficult) that

8 8 (-1
(-afm +i- Y ang> TR = =M TINTN e A qu TP (102)
=1 ¢=1 p=0

Therefore, thanks to () and (1),

ek 2mek L ~ck -
AU+ wrut — o U = Gk in (103)

where the function g is given, with obvious notation, by

8 (-1
gii =~ DD e Ap TP (v /e) + 2V - VST + Ay gt (104)
¢=1 p=0

From expression (B8) and the identity

+oo vaAn .
/ (—) e Ve dv=Cphe, VYneN,
0 €

it is not difficult to deduce the following estimate for each u}:

2
(/ [ud(.,v/e)? dm) < C,(8) e7 . (105)
Q?
In the same way, one easily shows that:

1

2
( / S L P+ vas? ) daz) < O(8) exp(—d/e) . (106)

Q8 \ 02

Regrouping estimates (IH) and (6) into ([, yields
g5 illz20 < C b2 (107)
Note of course that, by taking the difference between ([I3) and (@) (ii), €5, = €|, Satisfies
— Aej . + (—w2 + E%)eik =gri» 0 Q. (108)

The transmission equations. From interface condition (BH) it is clear that ﬂi’k, and thus ej,

is continuous across I'. However, from (@H), due to the shift of index between left and right
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hand sides, the normal derivative of ﬂi*k, and thus of eg, is discontinuous across I'. More
precisely, straightforward calculations lead to the following transmission conditions

€or — € =0, on I,
(109)
8nezk—8nefk:5k8nuk onT.

e’

Error estimates. We can now proceed to the final step of the proof. Multiplying equation
@9 by e, and integrating over (2., we obtain by using Green’s formula,

/ |Vez7k|2 dx — w2/ |e§)k|2 dx + iw /asz |€Z,k|2 do = /F(?n ecy €y, do . (110)

Qe Qe

In the same way, multiplying equation (I08) by e, and integrating over €2;, one gets

/|Vefk|2d:v—w2/ |e§k|2dx+12/ o2, 2 da
Q ’ Q. € Jao, 7

e g
—/6n €k €1 do
r

(111)
+ / Ghi €5 d -
Q
Adding together (ITI) and (1) and using () and [I7), gives
)
[wer -2 [ io [ el [ e
Q Q e} o (112)

_1
< Cic (¥ lleglluaay + 2 llegllzzcan)

where C}, is a constant independent of . Ones deduces the desired estimates by applying
Lemma B3 O

5.2 Error estimates for the GIBCs

Existence and uniqueness results for the approximate problems. We shall check
here that the u5*’s are well defined. This is our next result.

Lemma 5.4 For k=0,1,2,3, the boundary value problem:

—AusF — WSk = f, in Q,
OpuF +iwus* =0, on 09, (113)

us* +DEyER =0 on T,

admits a unique solution in H' () provided that ¢ H < \/2/2 if k = 2 or ¢ is small enough
if k= 3.
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Proof. Since the proof for k£ = 0,1, 2 is quite classical, we shall concentrate here on the case
k = 3. We start by reformulation problem ([II3)) as a system.

New formulation of the problem. Introducing ¢ = 0,u®?|r as a new unknown, problem
@) is equivalent, for k = 3, to find (u=3, %) € H'(Q.) x H'(T') such that

—Aus3 — w3 = f, in €.,
Oput 3 +iwus3 = 0, on 012,
114
O s = on I, (114)
29 2ia
—AF @8—293(5) (p‘s*? &3 on F,
H 2A
where we have set 03(c) =1 — % -4 % with A(w) = 3H? — G + W

Next we show that problem ([[T4) is of Fredholm type. For this, we first notice that ([14) is
equivalent to the variational problem:

Find (u®?3, %) € H*(Q.) x H'(T) such that V (v,%) € H*(Q.) x H*(T),
(115)
ar ((u?,¢%), (v,9)) + a5 ((u™°,9%), (v,9)) = | fodz.

Qe

where we have set:

a1 ((u, ), (v,9)) = /QVu-Vﬁdm—i—iw/@ﬂuﬁdw—i—/r(vpcp-Vpa—i—goi)ds

s (wphw) = — [ uvdo— [[14 5 06l Tas

2l

- = up ds —/(pﬁds.
e’ Jr r

One next remarks that a1 (-, -) is coercive in H'(£2.) x H!(T') while a5(-, -) is weakly compact
in H(Q,) x HL(T):

(u™, ") = (u, ) in H'(Q) x H'(T) = a5 ((u", ") (u", ©")) — a5 (v, ©)(u, 9)).

Therefore, to prove the existence of the solution of [[I4) (or [IIH)), it is sufficient to prove
uniqueness.

Uniqueness proof. We prove the uniqueness result for ¢ small enough by contradiction. If
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uniqueness fails then, up to the extraction of a sequence of values of ¢ tending to 0, one
can assume that here exists a non trivial solution (u®3,°) of the homogeneous problem
associated with (II4)), that we can normalize in such a way that:

[u™? 120, = 1. (116)

We multiply the Helmholtz equation by the complex conjugate of u and after integration
by parts, we replace, in the boundary term on I, the trace of u®? by its expression as a
function of ¢° from the last equation of (IT4). This leads to

~ =3
/ IV = w?us??) do + “— /|Vr<p5|2ds
Qe r

—I—E‘Oé/ 3(e) |°)? ds+iw/ |us3|? ds = 0.
r aQ

We now take the real part of the last equality (contrary to what is more usual, taking the
imaginary part does not provide the desired estimate, the term in |V ¢¢|? comes with the
wrong sign) and use ([I8) to get

3V2
/ |Vus3|? do + c ;/_ / Ve @®|? ds+e /’Re(aﬁg(s))wﬂz ds < w?. (117)
Q. r r

Since Re(af3(c)) tends to v/2/2 as & goes to 0, we deduce that u®? is bounded in H'(£).
Therefore, up to the extraction of a subsequence, we can assume that:

, weakly in H'(€,),
uEB — u, strongly in Lz(Qe)v
Auf? — Au, weakly in L*(Q.),

the latter property being deduced from the Helmholtz equation. By trace theorem, 9,,u3|.
(resp. O,us?|aq) converges to O, ulr (resp. dnulaq) in H > (T) (resp. H—3 (09)). Of course,
at the limit, we have:
—Au—w?u =0, in Q.,
(118)
Onu + iwu = 0, in 9Q.

while, passing to the (weak) limit in the last boundary equation of (ITd) after multiplication
by €3, we obtain
u=0, onl. (119)

From ([I8) and (1), we get u = 0 which is in contradiction with ||u|/z2q, ) = 1. O
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Analysis of the difference u®*—7u5*. We now proceed to step 2 of the sketch announced
in section 3. From now on, we shall set for £k = 0,1, 2, 3,

e,k e,k

ek = sk gk, (120)

The starting point of the error analysis is to remark that e** is a solution of a homogeneous
Helmholtz equation with outgoing absorbing condition on 0f2,

—Aes* —w?2e* =0 in Q.,
(121)
One®F +iwes* =0 on 09,

and satisfies a non homogeneous GI BC boundary condition on I' with small right hand side.
This comes directly from the construction of the GI BC' itself and is obtained by making the
difference between () and @II). Let us formulate this as a lemma:

Lemma 5.5 For k =1,2,3, there exists a smooth function g; such that
ek 4 Dok g ek = ghtl 95, (122)

with the estimates
19ill g3 0y < Crs for b =1,2,3, (123)

where Cy, is a positive constant independent of €.

This result can be seen as a consistency result for the boundary condition. Combined with
a stability argument, it is then possible to obtain the following estimates.

Lemma 5.6 For k =1,2,3, there exists a positive constant Cy, independent of ¢ such that
e TR R (124

Proof. From ([Z1)) and ([[22) and Green’s formula,

/ (|1Ve™*)? — w?eF|? ) da + iw/ le=*|? ds
e o (125)
+/ D= 9,65k . 9,65k ds = eF L / gy Onesk ds.
r r
Setting ¢f = 0,e°F|r, and introducing the functions 6;(e) = 1, f2(c) = 1 — £, (05(¢) has

been defined in the proof of Lemma B4), one can derive the following general identity by
using the explicit expressions of the D*’s,

/ (|Vek |2 — w2 e ) dx + iw/ le=*|? ds
e 0w (126)

= =3
e N
+ m/ Ok (e) 15| ds + v QT/ Ve @i |* ds = 6’““/92 Onet ds
I8 I8 T

RR n° 5199



36 Haddar € Joly & Nguyen

where v, =0 for £ =0,1,2 and v3 = 1. Taking the real part,
/ (|Vesk |2 —w?esF|? ) dx + E/Re(oﬂk(s)) |05 |? ds
r

V23

(127)
/ Vi 5|2 ds = el Re/ GrOnesF ds .
4 Jr r

+vg

In particular, since v, > 0 and Re(afi(c)) tends to v/2 as ¢ tends to 0, we obtain the
following estimate, for £ small enough,

/Q ( |vea,k|2 _ w2|ea,k|2 ) dx 5k+1 ||gZ||H%(F)”aﬂe&kHH*%(F) (128)

Cl " [|€5%| 1.0,

IN

IN

where the latter inequality comes from ([[Z3) and the fact that e** is solution the Helmholtz
equation inside ).. The remaining part of the proof in then rather straightforward. We first
prove by contradiction that

le**[l L2, < Ck "' (129)

If (T29) is not true, then pf = e~ (*+1)||e%¥|| would blows up (for a subsequence) as ¢ goes

to 0. Then, introducing

wk = e*F / ||es’k|\L2(Qe)7

ones derives from ([ZR)

[ IV0tt R do <4 Cu ) e o) < O (14 o ). (130

e

Therefore, w** is bounded in H'(2) and thus, up to the extraction of a subsequence,
converges weakly in H'(Q.) but strongly in L?(f.) to some w* € H'(f,.) that satisfies
w20,y = 1 as well as

—Aw* —?wF =0, in Q.,

(131)
Apw® +iww® =0, on O9N.
Finally, passing to the limit (in the weak sense) in the boundary condition
wst + DY gt = gif (€| r20,) = (ug) " (gk/ €M) (132)
we see (g5/ "1 is bounded and (u5)~! tends to 0) that w® also satisfies
wf =0, onT. (133)

System ((I31),(33)) implies that w* = 0, which contradicts ||w"||;2q) = 1. Therefore,
(3 holds. The Lemma estimate is now a direct consequence of (I29) and (T2H). O
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6 About the analysis of modified GIBC’s

The error analysis of modified GI BC’s can be done in a similar way as for the NtD GIBCs.
We shall restrict ourselves to stating the results and indicating the needed modifications in
previous section proofs.

6.1 Analysis of DtN G/BCs

Theorem 6.1 Let k = 1,2 or 3, then, assuming ¢ beeing sufficiently small when k = 3, the
boundary value problem ((IA), ([@)) has a unique solution u®* € H(Q.). Moreover, there
exists a constant Cy, independent of ¢, such that

Jug = u** | g1,y < Cr ¥ (134)

Proof. We shall only treat here the case k = 3 (the others are easy) and directly go to the
proof of estimate ([34)) assuming the existence and uniqueness of the solution. Of course,
we only need to look at the difference u®? — @53, namely to prove the equivalent to lemma

b8

Rather curiously, it appears that treating the boundary condition directly in its DtN form
B does not lead immediately to the optimal error estimate. This is why we shall rewrite
it as an NtD condition by introducing the inverse of the operator N'*3 (note that, by Lax-
Milgram’s lemma, N is an isomorphism from H*™2(T") onto H*(T)).

We repeat here the approach of Lemma B8l One first checks that the error e®3 satisfies
the homogenenous Helmholtz equation in €2, together with the non homogeneous boundary
condition:

-1
o 4 (N5F) 9,67 = £t g5, (135)
where g5 is a smooth function satisfying:

16511,y ) < oo for k=1,2,3, (136)

Proceeding as in the proof of Lemma Bl we obviously get

/ (|Ves*|? —w?e™3 ) dx + iw/ le=3|? ds

e _ o (137)
+/ (NS’?’) 0,653 - 9pe®° ds = Pl / g5 Ones3 ds.
r r
The key point is that, at least for € small enough, for any ¥ smooth enough,
-1
Re / (NEB) b dz < 0. (138)
r
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This is a consequence of
Re /J\/E’gga -pdr <0, for any ¢ smooth enough,
r

that follows from the identity (proven in section B2)
YERP o€ 9 o eH &2, 9 9
- Nedpds=— [ |Vep|°ds+—= [[1+—+i— (H —G+w?)]]|g|" ds,
T 2 r g r (0% 2

and the observation that

Rea=Rea=2/2,

2
lim[1+i+i%(H2—G+w2)]:1.
«

e—0

Therefore we have shown that, as soon as ¢ is small enough,

/ (Ve k|2 —w?e3|?) dx < 0, (139)
Qe
and the conclusion of the proof is identical to the one of Lemma 0.

Remark 6.1 Proceeding as in Section [ (for deriving formulas [Z8)), one first gets:
8nea,3 +N€,3ea,3 _ 53 hia?n

where h§ (as g5 in formula {Z8)) depends polynomially with respect to €. It is a polynomial
of degree 3 whose coefficients are smooth functions of xr, that can be explicitly expressed in

terms of ul,u? and u3. In particular:

hs =0(1), in any Sobolev norm.

One then deduces (L3H) with:
g5 = (eN=) 7 b

One finally obtains (IZA) after having noticed that (cf (33):

1 2 -
(N7t = = {1 + §H+i%(AF +H? —G+w2)} =0(e).

6.2 Analysis of robust GIB(C"s

Theorem 6.2 For any ¢ > 0, the boundary value problem associated with (IA) and the
boundary condition:
us? +DB30,u3 =0, onT, (140)
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where D3 is given by (38), has a unique solution u®> € H'(Q.). Moreover, there ezists a
constant Cs, independent of €, such that

lug = u*?| g1 (o) < Cs e, (141)
The same result holds if one replaces (ZQ) by:

Opud + NE3us3 =0,  onT, (142)
where N3 is given by ({d)).

We shall note detail the proof of this theorem which is almost identical to the one of theorem
B or lemma B8l . Let us simply recall that the existence and uniqueness result is valid for
any positive ¢ is due to properties (Bd) and [@Z). The main difference lies in the fact that
the algebra to obtain the equivalent to identities (B3) and ([3H) is slightly more complicated
and the calculations for obtaining the equivalent to property ([I38) are longer.
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